
PHYSICAL REVIEW E 95, 042804 (2017)

Critical nucleus size for crystallization of supercooled liquids in two dimensions
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Using molecular dynamics simulations, we study the crystallization of supercooled liquids in two dimensions in
which particles interact with other particles via the Lennard-Jones-Gauss potential. We first prepare supercooled
liquids at various temperatures by rapid quenching from the melt. The simulations are performed with a crystalline
seed inserted at the center of the initial system. We investigate the time evolution of the inserted nucleus and its
surroundings and determine the critical nucleus size nc defined as the smallest nucleus which survives. The results
show that nc scales as ∼(Tm − T )−2 with the melting temperature Tm, as expected in the classical nucleation
theory. We also obtain the crystallization time at various temperatures as a function of nucleus size and show that
the presence of a crystalline seed significantly affects the crystallization time when the temperature is higher than
the characteristic temperature T ∗ at which the crystallization time becomes the shortest. This indicates that the
crystallization is controlled by thermodynamics in this temperature range. When the temperature is lower than
T ∗, the effect of the inserted nucleus on crystallization is less significant, which indicates that crystallization is
controlled by emergence and merging of small crystalline nuclei.
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I. INTRODUCTION

Crystallization of supercooled liquids plays important roles
in various phenomena. To list a few, prion diseases are believed
to be caused by partial crystallization of normal prion [1,2],
and the taste of chocolate depends strongly on the partial
crystallization of its constituents [3–6]. It is thus important
to understand the mechanism of crystallization of supercooled
liquids in both basic and applied research. In this context,
classical nucleation theory (CNT) predicts that the size of a
critical nucleus depends on the decrease in free energy of a
bulk molecule �ψ during the phase change as

nc ∝ �ψ−d , (1)

where nc is the number of particles in a critical nucleus, and
d is the dimension of space [7,8]. According to the Landau
theory of phase transitions, �ψ is proportional to Tm − T , so
nc is expected to behave as

nc ∝ (Tm − T )−d, (2)

where Tm is the melting temperature.
Conversely, the crystallization time of supercooled liquids

shows a characteristic shape, called the nose shape, when it is
plotted as the temperature on the vertical axis and the logarithm
of the crystallization time on the horizontal axis. This plot is
commonly known as a time-temperature-tranformation (TTT)
diagram [9,10]. When we denote by T ∗ the characteristic
temperature at which the crystallization time becomes the
shortest, the crystallization time increases with temperature for
T > T ∗, and it decreases with temperature for T < T ∗. The
shape of TTT diagram can be understood from the viewpoint
of two-step process in crystallization, that is, nucleation and
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growth. It is believed that macroscopic crystallization is
dominated by nucleation process in T > T ∗ and by growth
process in T < T ∗. To confirm the difference in the mechanism
of crystallization at various temperatures, we examine the
effect of nucleus on the TTT diagram.

In this paper, we investigate the effects of a nucleus on the
crystallization of supercooled liquids in two dimensions by
using molecular dynamics (MD) simulations and determine
the critical nucleus size as a function of temperatures. We insert
a crystalline disk at the center of the supercooled liquid and
observe whether the disk grows or shrinks with time at a fixed
temperature. A similar seeding approach has been applied to
the analysis of crystallization in several water models [11,12]
and in other systems such as NaCl, Lennard-Jones, and Hard
Spheres [13,14] and successfully described the nucleation
rate in a wide range of supercooling in these systems. In
this work, we model the interaction of particles by using the
Lennard-Jones-Gauss (LJG) potential. With this potential, the
TTT diagram has been reported in two dimensions [15], in
which no crystalline seed was inserted. We also investigate
how the TTT diagram depends on the size of the inserted disk.

We organize this paper as follows. In Sec. II we explain
our model system and the method of the MD simulations. In
Sec. III we analyze the time evolution of the inserted disk
and determine the critical nucleus size. We also determine the
dependence of the TTT diagram on the size of the inserted
disk. In Sec. IV we discuss the results.

II. METHODS

A. Model potential

We consider a system of atoms that interact isotropically
through the LJG potential:

V (r) = ε0

[( r0

r

)12
− 2

( r0

r

)6
]

− ε exp

[
− (r − rG)2

2σ 2

]
. (3)
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FIG. 1. The LJG potential for the parameters rG = 1.47r0,
ε = 1.5ε0, σ 2 = 0.02r2

0 .

The LJG potential consists of the LJ potential and a pocket
represented by the Gaussian function. It forms a double-well
potential for most values of the parameters, with the second
well at position rG, of depth ε, and with width σ . This
potential has been used to represent the self-assembly of two-
dimensional monatomic complex crystals and quasicrystals
[16]. It has also been used to stabilize some types of simple
lattices [17,18] and to represent water-like anomalies [19,20].

In this work, we set parameters to the following values:
rG = 1.47r0,ε = 1.5ε0, and σ 2 = 0.02r2

0 . Figure 1 shows the
LJG potential with these parameters. With these parameters,
the potential has two minima, with the second minimum being
deeper than the first. The melting temperature Tm is 0.44ε0/kB ,
which was determined from heating simulations of the crystal
in a bulk system [15]. The system with these parameters is
known to crystallize in equilibrium [15,21], and its crystalline
state in two dimensions is the pentagon-triangle phase in the
ground state [21].

Previous works have also found that these parameters
prompt a glassy state in both two [15] and three dimensions
[22]. The system has strong geometric frustration because the
pentagonal structure is stabilized by the potential form, and
thus quenching of the system can produce a glassy state.

B. Simulation details

We performed two-dimensional MD simulations in the
isothermal-isochoric (NVT) ensemble under free boundary
conditions. The free boundary condition was realized by
placing an assembly of particles in the center of a large box.
The box was made sufficiently large so that the particles felt
zero pressure. We did not use periodic boundary conditions
because the shape of a simulation box has an influence
on crystallization [23], although the choice of boundary
conditions does not have a significant effect on determining
whether the inserted nucleus shrinks or not. The temperature
was controlled by a generalized Nosé-Hoover thermostat [24].
The units of length, energy, and time in the present simulations
are r0, ε0, and (mr2

0 /ε0)1/2, respectively. In this paper, all results
are given in reduced units. In all the simulations, the interaction
potential is cut off at rc = 2.5 and a time step of 0.01 is used.

First, we prepared 10 liquid samples, each consisting of
4096 particles, and disk-shaped crystal nuclei of various sizes.

FIG. 2. The initial configuration, before quenching, of a liquid
sample with a crystal nucleus at the center. The local structure can be
classified by a few basic tiles which are drawn by lines between the
first neighbor particles. Pentagon, triangle, and square tiles are shown
in blue, orange, and purple, respectively.

In each liquid sample, the disk of particles at the center is
replaced by the crystal disk with the same radius. The number
of particles was kept constant by removing a few liquid atoms
from the outermost region of the liquid sample. Figure 2
shows the initial state of a liquid sample with a crystal nucleus
at the center. Next, we quenched the system instantaneously
to a target temperature Tset that was below the melting tem-
perature, that is, the velocity of each particle was reassigned
so that the velocity distribution of the system satisfied the
Maxwell-Boltzmann distribution for T = Tset . Instantaneous
cooling was employed to avoid any nucleation during cooling,
because nucleation may hinder proper comparison of the
crystallization process.

C. Method for measuring the extent of crystallization

The crystal structure of the system is composed of pen-
tagonal and triangular tiles (see Fig. 2). It has been shown in
a previous work [15] that there exist three basic tiles in this
system: pentagon (P), triangle (T), and square (S) tiles, and
the number of combined structures of them is a good index
for measuring the crystallization time. Figure 3(a) shows three
combined tiling structures: PPPT, PPP, and PPTS. Figure 3(b)
shows the time evolution of the number of particles whose
surroundings can be identified as those three combined tiling
structures and a sum of them. When crystallization proceeds,
the number of PPTS decreases a bit, while the numbers of
PPPT and PPP increase and finally reach constant values.
The sum of the numbers of three combined tiling structures
also reaches a constant value; thus, it may be possible to use
it for determining the crystallization time. This concept is
appropriate for higher temperatures, but for lower temperatures
the definition is incomplete, because the system is often
trapped in the local minimum of the potential energy. In this
case, the sum of the numbers of tiling structures become
constant, but the system has not reached a crystalline state
at the moment. Thus, we defined the crystallization time as the
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FIG. 3. (a) Three characteristic tiling structures: PPPT, PPP, and
PPTS, adapted from Ref. [15]. (b) The time evolution of the number
of characteristic tiling structures at T = 0.34. The curves (PPPT),
(PPP), and (PPTS) correspond to the structures shown in (a). The
curve (all) represents the sum of the numbers of those three tiling
structures.

time at which the sum of the numbers of such tilings reaches a
threshold value, 3000. This value corresponds to about 73% of
the total number of particles. Since there are boundaries and
edges, most part of the system has a crystalline structure at
the threshold. The TTT diagram thus determined is shown in
Sec. III B.

To evaluate the critical nucleus size, we examined the time
evolution of the total number of such three combined tiling
structures nx in three regions defined by the radius of the
initially inserted nucleus R: (i) r � R, (ii) R < r < R + 5, and
(iii) R + 5 � r � R + 10, where r is measured from the center
of mass of the seed [25]. We normalized nx for comparison
with the initial density of crystal tilings in the seed ρ0 = nx(t =
0)/πR2 by multiplying the area of the region of interest Aj ,
where j is a number of the region (j = 1,2,3). We can judge
whether the seed shrinks or not by nx in region (i). From the
time evolution of nx in regions (ii) and (iii), we can confirm
that the crystal structure grows.

III. RESULTS

A. Time evolution of the crystalline seed

The time evolution of nx with a crystalline seed of R = 6
and 12 is shown in Fig. 4. With the nucleus of R = 6, the
crystal structure of the nucleus breaks after a very short time
at T = 0.34. Particles around the nucleus, in regions (ii) and
(iii), form crystal structures at first, but they do not grow. An
initial nucleus also breaks at T = 0.30, whereas the number
of crystal tilings in outer areas grows as time passes. This
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FIG. 4. The time evolution of the number of crystal tilings nx for T = 0.34, 0.30, and 0.26 in three regions: (i) r � R (purple solid line),
(ii) R < r < R + 5 (green dashed line), and (iii) R + 5 � r � R + 10 (blue dotted line), where R is the radius of the initially inserted nucleus.
The abscissa represents time in reduced units. The sizes of the inserted nuclei are (a) R = 6 and (b) 12. nx is normalized by the initial density
of crystal tilings in the seed ρ0 by multiplying the area of the region of interest Aj (j = 1,2,3).
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FIG. 5. The average fraction f (R) of crystal tilings in region
(i) r � R, where R is the radius of the initially inserted nucleus. The
calculations were performed over the period from t = 9000 to 10 000.
Solid lines are fitting functions of f (x) = a(x − b)c, where a, b, and
c are fitting parameters.

result means that spontaneous nucleation occurs in outer areas
but does not mean that the inserted nucleus moves to outer
areas and grows there. The seed breaks after a very short time
(see Supplemental Material [26]). The fraction of crystal
tilings of initial nucleus also goes to ∼0 at T = 0.26; thus, this
nucleus size (R = 6) is not sufficiently large to induce crystal
growth at these temperatures. In contrast, for the nucleus of
size R = 12, the fraction of crystal tilings in region (i) stays
constant at 0.4. It is difficult to determine whether this nucleus
is or is not sufficiently large to induce crystal growth. The time
evolutions of the number of crystal tilings, however, are dif-
ferent from those with the nucleus of size R = 6. At T = 0.30
and 0.26, the fractions of crystal tilings in region (i) are ∼0.7
and ∼0.8, respectively. These values indicate that the initial
nuclei almost keep their crystalline structures, although their
values decrease from 1 due to the configurational arrangement
mainly at the boundary. In addition, nx in regions (ii) and (iii)
increase; it grows first in region (ii) followed by region (iii).
Note that nx in region (iii) surpasses that in region (ii) at long
t since spontaneous nucleation occurs outside the region (iii).
Thus, we conclude the nucleus size of R = 12 is sufficiently
large to induce crystallization of the whole system at T = 0.30
and 0.26.

As shown in Fig. 4, t = 10 000 is sufficiently long to judge
whether an initial nucleus shrinks or not. We thus calculated the
average fraction f (R) of crystal tilings in the region (i) from
t = 9000 to 10 000 at a variety of temperatures, as shown in
Fig. 5, to determine the critical nucleus size. Fitting functions
of f (x) = a(x − b)c are also shown as solid lines, where a,
b, and c are fitting parameters. We defined the critical nucleus
radius as the radius at which f (R) vanishes, namely, from
R = b. The radius defined here is a lower limit of radius of the
nucleus which survives in the system.

We define the critical nucleus size nc as the number of
particles in the smallest nucleus which survives in the system
and show it as a function of temperature in Fig. 6. We fitted
the temperature dependence in the form of Eq. (2) with the
melting temperature Tm as

nc = α

(Tm − T )2
, (4)
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FIG. 6. Temperature dependence of the critical nucleus size. The
solid line is a fitting function of Eq. (4).

where α is a fitting parameter. We found that α is 3.1 by least-
squares fitting. It well obeys CNT, although it slightly deviates
at low temperatures. This result is discussed in Sec. IV. The
relationship between critical nucleus size and supercooling
temperature has been reported in the LJ system, and it also
agrees with CNT [27,28].

B. TTT diagram

Extending the MD simulations, we obtained the TTT
diagram, which is shown in Fig. 7. Here we plotted the
crystallization time t ′ as a function of temperature, where t ′ is
scaled as

t ′ = N

N − n
t, (5)

where N is the total number of particles, n is the number of
particles in the inserted nucleus, and t is the crystallization
time, which is directly determined in the simulation using the
method described in Sec. II C, namely, N − n is the number of
(remaining) liquid particles excluding the seed nucleus, and t ′
represents the crystallization time in the system with N liquid
particles. As shown in Fig. 7, when the number of particles
in a crystal nucleus n is more than 464, which corresponds to
R = 12, the crystallization time becomes evidently shorter.
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FIG. 7. The time-temperature-transformation diagram for vari-
ous sizes of crystal nuclei. The crystallization time t ′ is defined
by Eq. (5). T ∗ is the temperature at which the crystallization time
becomes the shortest without an inserted nucleus. The melting
temperature of bulk system is 0.44.
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FIG. 8. Crystallization process at T = 0.26. The local structures are classified by a few basic tiles: blue is pentagon, orange is triangle, and
purple is square. The circles are drawn for eye guide.

This behavior is noticeable especially near the melting temper-
ature. At low temperatures, the TTT diagram does not change
when the inserted nucleus size exceeds the critical size, but it
changes for much larger nucleus. This result is discussed in
Sec. IV.

IV. DISCUSSION

We have investigated effects of a crystalline nucleus on the
crystallization of supercooled LJG liquid in two dimensions
by controlled MD simulations, where a nucleus is inserted in
the system at the initial state of simulations. We first observed
if the nucleus survives or not, and we obtained the critical
nucleus size as the smallest size of the nucleus which survives
in the system. We found that the temperature dependence of
the critical nucleus size well obeys CNT, as shown in Fig. 6.
We then examined the effect of the inserted nucleus on the
crystallization time, and obtained the TTT diagram for each
size of the inserted nucleus. As shown in Fig. 7, the effect of the
inserted nucleus on the crystallization is much stronger above
the temperature T ∗ at which the crystallization time becomes
the shortest. In the temperature range T ∗ < T < Tm, diffusion
of atoms is sufficiently fast to survey a large area in the phase
space, and the crystallization is controlled by thermodynamics,
i.e., by the difference in free energy between liquid and
crystalline phases, �G = Gliquid − Gcrystal. Since �G(Tm) <

�G(T ∗) and �G is a driving force of crystallization, it is easier
to crystallize at T ∗ than just below Tm. The crystallization time
is an increasing function of temperature and so is the critical
nucleus size.

For temperatures below T ∗, diffusion of atoms is slow and
so is the growth of the nucleus. Therefore, it is harder to
crystallize at lower temperatures below T ∗ despite the fact that
�G(T ∗) < �G(T < T ∗). In fact, we clarified in our previous
work [29] for spontaneous nucleation that the crystallization
at low temperatures is the merging process of small nuclei
which emerge in many different areas. The crystallization

process at T = 0.26 < T ∗ is shown in Fig. 8. The circles
show nuclei that appear at some places. They cannot grow
easily because of the slow diffusion of particles, and other
nuclei appear with time in other parts of the system. They
gradually grow and merge each other, and finally the system
reaches a polycrystalline state. It may transform into a perfect
crystal after much long time, but in a practical sense, it is
quite difficult to occur. Due to this mechanism, the effect of
the nucleus on the crystallization time is less significant in
T < T ∗ as one can see in Fig. 7, although we found in the
present work that a much bigger nucleus stimulate the system
to crystallize. Because of the slow diffusion, it takes a long time
for atoms to rearrange themselves into the ordered structure.
Therefore, the crystallization time becomes a decreasing
function of temperature since the diffusion becomes slower
as the temperature is decreased. The slow dynamics is related
to the glass transition which is observed when the system is
heated from a temperature below T ∗ [29,30].

In the free energy landscape picture of nonequilibrium
systems [31], the crystallization is a first passage process
of a representation point from the supercooled liquid (SC)
basin through the gate (G) basin with crystalline nucleus to
the crystalline (X) basin. The higher temperature regime of
the TTT diagram is related to the transition rate from the G
basin to the X basin and the lower temperature regime of
the TTT diagram is related to the rate from the SC basin to
the G basin. Therefore from the detailed analysis of the TTT
diagram one can deduce information on the transition rates
which will help better understanding of the crystallization
process of supercooled liquids.
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