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Direct observation of coupling between orientation and flow fluctuations
in a nematic liquid crystal at equilibrium
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To demonstrate coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium,
we simultaneously observe the intensity change due to director fluctuations under a polarizing microscope and the
Brownian motion of a fluorescent particle trapped weakly by optical tweezers. The calculated cross-correlation
function of the particle position and the spatial gradient of the intensity is nonzero, clearly indicating the existence
of coupling.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) have long-range orien-
tational order, and the average direction of their rod-like
molecules is designated by the so-called director. One of the
most remarkable properties in NLCs is the coupling between
director and flow: a change in the director can induce flow and
vice versa. This coupling has been studied extensively from
both fundamental and applied perspectives [1–9]. However,
such investigations are typically confined to cases of large
director changes and macroscopic flows, that is, nonequilib-
rium states. Although coupling should exist between director
and flow fluctuations even at equilibrium, direct evidence is
yet to be found; director and flow fluctuations at equilibrium
are investigated separately at present. For example, changes
in director are observed mainly by means of dynamic light
scattering [10–13], and the results are fully explained by the
Ericksen-Leslie (EL) theory [10,11]. Such changes can also be
observed with a polarizing microscope [14,15]. This method
allows us to observe long-wavelength modes of director
fluctuation. In contrast, flow fluctuations are reflected in the
Brownian motion of particles dispersed in a liquid crystal.
The Brownian motion in liquid crystals is more complicated
than usual isotropic liquids. For example, it was found that the
local director distortion around a particle makes the Brownian
motion anomalous: The mean-squared displacement (MSD)
does not grow linearly with time [16].

In this paper, we demonstrate the existence of coupling
between director and flow fluctuations at equilibrium by
simultaneously observing the intensity changes due to director
fluctuation under polarizers and the Brownian motion of a
fluorescent particle trapped weakly by optical tweezers. In
the next section, the basic idea for the demonstration and the
experimental method are described. In Sec. III, experimental
results are presented and discussed. Section IV is devoted to
the conclusions.

*orihara@eng.hokudai.ac.jp

II. EXPERIMENTAL METHOD

Here, we explain our basic idea for directly observing
coupling between director and flow fluctuations. In general,
thermal fluctuations at equilibrium can be decomposed into
normal modes. As a simple case, we consider the coupling
between a bend director mode and a shear flow mode, as
shown in Fig. 1(a). The average direction of the director, �n0, is
in the y direction and the director tilts toward the x direction.
On the other hand, the flow velocity is in the x direction.
Both modes are changing sinusoidally in the y direction, that
is, the wavenumber vectors are both in the y direction. We
note that the phase difference between the tilt δnx(y) and
the velocity vx(y) is π/2, as shown in Fig. 1(a). At point P,
vx becomes maximum and δnx is zero, whereas the gradient
g(n)

y ≡ ∂δnx/∂y in the y direction becomes minimum. Taking
into account that the director motion should generate a flow,
this indicates vx ∝ ∂g(n)

y /∂t , which will be derived later from
the EL theory in Fourier space. Integration of this equation
yields x(t) − x(0) ∝ g(n)

y (t) − g(n)
y (0). Here, x can be regarded

as the position of a small particle put in the liquid crystal
for flows with low Reynolds number. Therefore, the cross-
correlation function 〈(x(t) − x(0))(g(n)

y (t) − g(n)
y (0))〉 becomes

nonzero if there is a coupling between the orientation and the
flow modes at equilibrium, through which we can demonstrate
the existence of the coupling. Experimentally, it is easy to
obtain x(t), but not g(n)

y (t); g(n)
y (t) or δnx(t) can be related

to the intensity of images under a polarizing microscope, as
described later.

We used a planar cell with polyimide alignment layers. The
gap was set to be 13 μm, which was determined according
to a condition described later. The sample used was a low-
birefringence nematic liquid crystal ZLI-2806 (Merck), which
was required also to satisfy the above condition. By combining
a polarizing microscope with a band-pass filter of 550 nm
and a fluorescent microscope, we simultaneously observed the
transmitted intensity change due to the director fluctuations
and the Brownian motion of a fluorescence polystyrene particle
with a diameter of 1 μm (Fluospheres, Invitrogen) dispersed in
the liquid crystal. The particle was weakly trapped with optical
tweezers (1064 nm, 10 mW) and observations were made at
three different heights. We captured 8192 images with a size of
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FIG. 1. (a) Coupling between bend deformation of δnx and shear
flow of vx , which both fluctuate sinusoidally with a wave number
along the y axis. At the point P, vx becomes maximum, whereas
the spatial gradient of δnx becomes minimum. (b) Twist deformation
along the z axis. The amplitude of the bend deformation in the x − y

plane depends on z: it is maximum at z = d/4 and 3d/4, whereas
it vanishes at z = d/2. It should be noted that the phases at z =
d/4 and 3d/4 are opposite, indicating that the corresponding flow
velocities are also opposite.

512 × 512 pixels (52 × 52 μm2) and a frame rate of 100 fps
for each run, and made a total of 15 runs. The temperature was
kept at 25◦C during the measurements.

A typical image is shown in Fig. 2. The particle is trapped
at the center by the optical tweezers, but the Brownian motion
can be observed. The spatial change in intensity is due to the
director fluctuations, and the temporal change can be seen
in a video in the Supplemental Material [17]. The observed
intensity fluctuation δI (x,y) is derived approximately in the
Appendix:

δI (x,y) = c
2

d
Im

[∫ d

0
δnx(x,y,z′) exp(i�qz′)dz′,

]
, (1)

where c is a constant having the same dimension with δI (x,y),
δnx(x,y,z) is the director fluctuation, d is the cell gap, and

FIG. 2. Typical image obtained by combining a polarizing micro-
scope and a fluorescence microscope. The angle between the polarizer
and analyzer, θ , is set to be 72◦. The spatial fluctuations of δnx are
represented by the intensity changes, and the temporal change can be
seen in a video [17]. A particle is trapped at the center.

�q = 2π/λ · �n; in this, the wavelength of light in vacuum
is λ, and the refractive index anisotropy is �n. The director
fluctuation δnx(x,y,z) can be expanded in a Fourier series as

δnx(x,y,z) =
∑

�q
δnx(qx,qy,qz) exp[i(qxx + qyy)] sin qzz,

(2)

where qz = mπ/d(m = 1,2, . . .), from the boundary con-
dition of δnx(x,y,z) = 0 at z = 0 and d. If we choose d =
2π/�q = λ/�n, we can obtain a simple relation from Eqs. (1)
and (2):

δI (qx,qy) = cδnx(qx,qy,�q), (3)

where δI (qx,qy) is the Fourier coefficient of δI (x,y). Using
qx, qy , and �q, the condition for the approximation used in
deriving Eq. (1) to be valid is qx,qy 	 �q. This condition
indicates that the mode related to δnx(qx,qy,�q) should be
the so-called mode 2 [10], in which the fluctuation δ�n is
perpendicular to the plane spanned by �n0 and �q. Equation (3)
means that we can observe director modes with qz = �q =
2π/d, that is, with just one wave in the z direction, as shown
in Fig. 1(b). As seen from Figs. 1(a) and 1(b), the observable
modes are a mixture of bend and twist deformations: there is a
bend deformation along the y direction and a twist deformation
along the z direction. For our low-birefringence liquid crystal
ZLI-2806 with �n = 0.0437, we have d(= λ/�n) ∼= 13μm
for the light wavelength of 550 nm used in the measurements.
For a typical liquid crystal 5CB, in contrast, d ∼= 3μm, which
is too small for our measurements, in which we use a 1-μm
particle. This is the reason we chose ZLI-2806. The constant
c will be determined in the next section.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

When we perform the Fourier transformation to obtain
δI (qx,qy), we mask the particle to avoid the effect of its
motion. In Fig. 3(a), we show the time correlation function
〈|δI (qx,qy,t) − δI (qx,qy,0)|2〉 at qx = 0 and several values of
qy . From the EL theory, the correlation function is given as
2〈|δI (qx,qy)|2〉(1 − exp[−t/τ (qx,qy)]), where τ (qx,qy) is the
relaxation time, which depends on the viscosity coefficients
and so on [10]. Figure 3(b) shows the inverse of 〈|δI (qx,qy)|2〉,
obtained from Fig. 3(a) by least-squares fitting, as a function
of q2

x at qy = 0 and as a function of q2
y at qx = 0. From the

equipartition theorem and Eq. (3), the inverse of the mean-
squared intensity fluctuation for mode 2 is given by

〈|δI (qx,qy)|2〉−1 = c−2〈|δnx(qx,qy)|2〉−1

= (c2kBT )−1V
{
K2

(
q2

x + �q2
) + K3q

2
y

}
,

(4)

where kB is the Boltzmann constant, V is the volume of the
observed region, and K2 and K3 are the twist and bend elastic
constants, respectively. From the slopes and the intersection
with the vertical axis in Fig. 3(b), the constant c was determined
using Eq. (4). The averaged value of c is 0.30 × 104, where
we used V = 3.6 × 10−14 m3, K2 = 7.9 pN, and K3 =
15.4 pN [18].
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FIG. 3. (a) Time correlation functions of image intensity at qx = 0 and several values of qy . (b) Inverse of 〈|δI (qx,qy)|2〉, obtained from
Fig. 3(a) by least-squares fitting, as a function of q2

x at qy = 0 and as a function of q2
y at qx = 0.

Next, we show the mean-squared displacements (MSDs) of
the particle along the x and y directions at a height of z = d/4.
After tuning the brightness and the contrast of the image in
Fig. 2, we obtained the position of the particle and calculated
its MSDs. As shown in Fig. 4, the MSD in the y or �n0 direction
is larger than that in the x direction because of the anisotropy
of diffusion [16]. Although both MSDs are slightly curved,
mainly because of the optical trap, we ignore this effect in the
following theoretical analyses.

Before presenting the experimentally obtained cross-
correlation function, we derive it theoretically based on EL
theory. For mode 2, the equations of motion for δnx(�q) and
vx(�q) [defined in the same way as δnx(�q) using Eq. (2)]
are [10,11]

γ1
∂δnx(�q)

∂t
= −K2(�q)δnx(�q) − iC2(�q)vx(�q), (5a)

ρ
∂vx(�q)

∂t
= iQ2(�q)

∂δnx(�q)

∂t
− P2(�q)vx(�q), (5b)

where K2(�q) is a function of the wave number and the Frank
elastic constants; C2(�q), Q2(�q), and P2(�q) are functions of
the wave number and the Leslie viscosity coefficients; γ1 is
the rotational viscosity coefficient; and ρ is the mass density.

M
SD

 (μ
m

2 )

Time (s)

x

y

FIG. 4. Mean-squared displacements (MSDs) obtained from
Fig. 2 in the x and y directions.

In our case, we can neglect the inertia term in Eq. (5b) so that
we obtain

vx(�q) = if (�q)
∂δnx(�q)

∂t
(6a)

with

f (�q) = Q2(�q)/P2(�q)

= 2α2qy

α4
(
q2

x + �q2
) + (−α2 + α4 + α5)q2

y

,

(6b)

where αi are the Leslie viscosity coefficients. Equation (6a)
corresponds to vx ∝ ∂gy/∂t , as shown before. Substituting
Eq. (6a) into Eq. (5a) yields a closed equation of motion
for δnx(�q), which has the same form as Eq. (5a) except
that γ1 is replaced by γ1 − f (�q)C2(�q). This means that the
viscosity should depend on �q when the coupling with the
flow is considered. This has in fact been observed in light-
scattering experiments [13], although this is indirect evidence
of coupling. We directly verify Eq. (6a) itself.

Assuming that the particle is trapped near �r = (0,0,zp), its
displacement during the time interval t can be rewritten using
Eq. (6a):

x(t) − x(0) =
∫ t

0
vx(x(τ ),y(τ ),z(τ ),τ )dτ

∼=
∫ t

0
vx(0,0,zp,τ )dτ

=
∫ t

0

∑
�q

vx(�q,τ ) sin qzzpdτ

=
∫ t

0

∑
�q

if (�q)
∂δnx(�q,τ )

∂τ
sin qzzpdτ

=
∑

�q
if (�q) sin qzzp(δnx(�q,t) − δnx(�q,0)),

(7)

where we have replaced vx(x(τ ),y(τ ),z(τ ),τ ) by vx(0,0,zp,τ )
because here we consider only long-wavelength modes.
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Equation (7) relates the particle displacement to the director re-
orientation. Next, we need the gradient g(n)

y = ∂δnx/∂y, which
was defined when we explained our basic idea. However,
instead we shall use gy ≡ c−1∂δI/∂y because the observable
is δI (x,y) in our experiments, and the constant c is introduced
to make a nondimensional c−1I . It is difficult to obtain gy

directly at the particle position because we cannot correctly
observe the intensity change due to the director fluctuations
near the particle, which is seriously affected by the fluorescent
light emitted by the particle. Therefore, we use the Fourier
coefficients of δI (x,y), in terms of which gy is expressed as

gy = c−1 ∂δI

∂y

∣∣∣∣
x=y=0

= c−1
∑
qx ,qy

iqyδI (qx,qy)

=
∑
qx ,qy

iqyδnx(qx,qy,�q), (8)

where we have used Eq. (3). Thus, we can calculate the cross-
correlation function from Eqs. (7) and (8):

〈(x(t) − x(0))(gy(t) − gy(0))〉
= sin �qzp

∑
qx ,qy

qyf (qx,qy,�q)〈|δnx(qy,qy,�q,t)

− δnx(qy,qy,�q,0)|2〉, (9)

where we have used the property that each mode
is independent, expressed as 〈δnx(�q1,t1)∗δnx(�q2,t2)〉 =
δ�q1,�q2〈δnx(�q1,t1)∗δnx(�q1,t2)〉. It is clear from Eq. (9) that, in
general, if the coupling coefficient f (�q) is nonzero (i.e., there
is coupling between the orientation and the flow), then we can
observe a nonzero cross-correlation function and vice versa.
Here, we note that Eq. (9) has a factor sin �qzp that depends
on the height of the particle. Since �q = 2π/d in our case,
this factor takes values of, for example, −1 at zp = 3d/4, 0 at
zp = d/2, and +1 at zp = d/4.

In Eq. (8), we are not allowed to sum overall qx and qy

because of the condition qx,qy 	 �q; instead, we include
only small qx and qy in the summation: qx = 2πmx/L and
qy = 2πmy/L, where mx and my are integers satisfying
−3 � mx,my � 3, and L(=52μm) is the size of the observed
area. The cross-correlation functions at the three heights
zp = 3d/4, d/2, and d/4 obtained from the approximated
gy are shown in Fig. 5. The cross-correlation functions at
zp = 3d/4 and zp = d/4 are nonzero and have opposite
signs, whereas the one at zp = d/2 is almost zero, as is
predicted from Eq. (9). The initial increase or decrease is
also explained by Eq. (9), in which the time dependence
of the cross-correlation function is fully determined by the
auto-correlation functions of the director fluctuations in our
case, in which the inertia is treated as negligible.

Last, we show the validity of Eq. (9) by calculating its right-
hand side from the experimentally obtained autocorrelation
functions. To do so, we need to numerically calculate f (�q),
given in Eq. (6b), but there are no available data on the Leslie
viscosity coefficients. Fortunately, however, f (�q) depends on
only the ratios of the viscosities, so we simply assume α2 :
α4 : α5 = −1 : 1 : 1. This may be allowed because, for typical
liquid crystals, α2 : α4 : α5 = −1 : 1.1 : 0.7 for MBBA [19]
and α2 : α4 : α5 = −1 : 0.8 : 0.8 for 5CB [20]. The calculated
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(0
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y(
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g y
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Time (s)

z=d/4

z=d/2
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FIG. 5. Cross-correlation functions 〈(x(t) − x(0))(gy(t)−gy(0))〉
obtained at z = d/4,d/2, and 3d/4. Solid lines are calculated from
Eq. (9).

cross-correlation functions are also shown in Fig. 5, where
the sum in Eq. (9) is taken over the same qx and qy used in
Eq. (8). We obtain satisfactory agreement despite some rough
approximations having been made. The discrepancy in the
long-time regime may be due to the optical trap.

Here, it should be noted that the above results are valid even
if we consider the director distortion around the particle, which
gives rise to the anomalous Brownian motion, as mentioned
in the introduction. The characteristic size of the distortion
may be equal to the cell thickness. In our analysis, however,
we used director fluctuations with wavelengths longer than
it. Therefore, the gradient gy in Eq. (8) doesn’t include the
information on the director distortion around the particle so
that the information should disappear in the cross-correlation
function though x has it. However, we would like to mention
that the direct coupling of the particle movement with the
director fluctuations through the anchoring on the particle
surface may be observed with another analyses.

IV. CONCLUDING REMARKS

We have successfully demonstrated the existence of cou-
pling between director orientation and flow fluctuations at
equilibrium by obtaining a nonzero cross-correlation function
of the spatial gradient of the intensity and the particle position.
The cross-correlation function was shown to depend on the
particle height, which was explained by the dependence of the
flow direction on the same quantity. These results were fully
understood in the context of EL theory.

In closing, we would like to point out that the coupling
might modify the Brownian motion of a particle in a NLC.
From Eq. (7), we can easily obtain

〈(x(t) − x(0))2〉 =
∑

�q
(f (�q) sin qzzp)2〈|δnx(�q,t)

− δnx(�q,0)|2〉. (10)

We note that the actual MSD is the sum of Eq. (10) and
the intrinsic MSD irrelevant to the coupling. The right-hand
side of Eq. (10) increases monotonically as a function of
time and becomes constant in the long-time regime, indicating
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that the actual MSD cannot follow the typical diffusion of
MSD ∝ t . In the present experiments, we were unable to detect
the anomalous diffusion because of the optical trap, which
made the MSD constant in the long-time regime. We intend to
clarify the effect of the director fluctuations on the Brownian
motion in future work.
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APPENDIX

Here, we derive Eq. (1). In our experiments, as shown in
Fig. 1(b), polarized light along the y axis is incident along the
−z axis (i.e., downward). We solve the Maxwell equations

rot �H = ε0ε
∂ �E
∂t

, (A1)

rot �E = −μ0
∂ �H
∂t

, (A2)

where ε0 and μ0 are the dielectric and magnetic permittivities,
respectively, of a vacuum, and ε is the relative dielectric
permittivity. For nematic liquid crystals, ε is a function of �n:

εαβ = ε⊥δαβ + �εnαnβ, (A3)

where �ε = ε‖ − ε⊥ with ε‖ and ε⊥ being the relative dielec-
tric permittivities parallel and perpendicular, respectively, to
the director.

First, we assume that the director depends only on the z

coordinate (i.e., �n(z)) and expresses the incident light as

Ey(z,t) = E0 exp(−iq‖z) exp(−iωt), (A4)

with

q‖ = ω/c · √
ε‖, (A5)

where c is the speed of light in a vacuum. The incident light is
scattered by the fluctuation δnx(z), generating the x component
of the electric field, Ex(z,t) = δEx(z) exp(−iωt). By using the
perturbation method with respect to δnx(z), we obtain δEx(z)
from Eqs. (A1)–(A3):

∂2δEx

∂z2
= −q2

⊥δEx − q2
0�εδnxE0 exp(−iq‖z), (A6)

where q⊥ = ω/c · √
ε⊥ and q0 = ω/c. If reflections at the

interfaces between the liquid crystal and the glass plates are
negligible, the above equation can be solved as

δEx(z) = i
q2

0

2q⊥
�εE0

{
exp(−iq⊥z)

∫ d

z

δnx(z′) exp[−i(q‖ − q⊥)z′]dz′

+ exp(iq⊥z)
∫ z

0
δnx(z′) exp[−i(q‖ + q⊥)z′]dz′

}
(0 � z � d). (A7)

We can put an analyzer at z = 0 without loss of generality. In this case, the electric field just after passing the analyzer shown in
Fig. 2 is given as

EA = E0 cos θ + δEx(0) sin θ. (A8)

Thus, the intensity related to the director fluctuation is obtained from |EA|2 by using Eq. (A7):

2Re[E0δEx(0)] sin θ cos θ = c′ 2

d
Im

[∫ d

0
δnx(z′) exp(i�qz′)dz′

]
, (A9)

with

c′ = q2
0d

4q⊥
�εE2

0 sin 2θ. (A10)

When the spatial change of the director in the x and y directions is smaller than that in the z direction (i.e., for the case that the
wavenumber along the x and y directions is smaller than that along the z direction), we can replace δnx(z′) by δnx(x,y,z′) in
Eq. (A9), resulting in Eq. (1).
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