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Phase behavior of the thermotropic melt of asymmetric V-shaped molecules
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The phase behavior of the monodisperse melt of V-shaped molecules composed of two rigid segments of
different lengths joined at their ends at an external angle α has been examined within the Landau–de Gennes
approach. Each rigid segment consists of a sequence of monomer units; the anisotropic interactions in the system
are assumed to be of the Maier-Saupe form. The coefficients of the Landau–de Gennes free-energy expansion
have been found from a microscopic model of V-shaped molecule. A single Landau point at which the system
undergoes direct continuous transition from isotropic to biaxial nematic phase is found for asymmetry parameter
φ = 1/3 or φ = 2/3, where φ is the number fraction of monomer units in one of the segments. Two Landau points
are found in a range 1/3 < φ < 2/3. Only isotropic and nematic states are found to be stable for 0 � φ < 1/3
and 2/3 < φ � 1. Regions of stability of isotropic, prolate uniaxial, and biaxial nematic phases are found for
φ = 1/3 and φ = 2/3. In addition, a stable oblate uniaxial phase is revealed if asymmetry parameter falls in
the range 1/3 < φ < 2/3. The region of stability of the biaxial nematic phase becomes smaller as parameter φ

increases from 1/3 to 1/2 (or decreases from 2/3 to 1/2). Coefficients of the gradient terms have been found;
for certain values of asymmetry parameter these coefficients can become negative in some ranges of angles.
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I. INTRODUCTION

The systems of V-shaped (bent-core, banana-like) com-
pounds [1–3] have recently attracted considerable attention be-
cause they exhibit a number of diverse phenomena, including
ferroelectric liquid crystalline phases [4], giant flexoelectric
effect [5], strong Cotton–Mouton effect [6]. Furthermore,
there are experimental evidences of formation of thermotropic
biaxial nematic phase [7–11] in systems of such molecules,
although some studies [12–14] indicate that the macroscopic
biaxial nematic phase still remains elusive. The biaxial nematic
phase, predicted by Freiser [15] in 1970, is of significant
interest, in particular, for development of electro-optical
devices [16–18].

The phase behavior of thermotropic melts of V-shaped
molecules has been extensively studied both by theoretical
methods [1,19–27] and simulations [20,28–34]. Teixeira et al.
[19] were apparently the first to consider the phase behavior of
V-shaped molecules composed of two hard spherocylinders
of length L and diameter D joined at an external angle
α by their ends. Having found the approximate analytical
expression for a second virial coefficient, they predicted within
the Onsager theory the stability of prolate uniaxial (N+

U), oblate
uniaxial (N−

U), and biaxial (NB) nematic phases as well as
direct isotropic-biaxial (I-NB) transition at the Landau point
for π − α ≈ 107.36◦ for aspect ratio L/D → ∞. The stable
phases revealed in Ref. [19] were found to be in agreement
with those established before for the biaxial particles of other
types, such as spheroplatelets [35] and ellipsoids [36]. Camp
et al. [20] calculated numerically a third-order virial coefficient
for the model of Ref. [19] and reported that allowance for this
coefficient results in decrease of angle value at the Landau
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point; however, it was found that even for L/D = 10 ratio more
virial coefficients of higher orders are required for accurate
description of the phase transition in this system since packing
fraction was found to be unphysically high. Luckhurst [21]
applied a molecular field theory to describe phase behavior
of the symmetric V-shaped molecules and found regions of
stability of isotropic, uniaxial nematic, and biaxial nematic
phases. The value of angle between arms of V-shaped molecule
at the Landau point has been found to be equal to ψ =
arccos(−1/3) ≈ 109.47◦. Mettout et al. [23] have used an
expansion of the orientational distribution function by the
Wigner rotational matrices to describe the phase behavior
of the molecules of Cs symmetry; the coefficients of this
expansion are the components of order parameter tensors.
Based on the phenomenological Landau theory they have
predicted the formation of a polar uniaxial nematic phase
of C∞v symmetry as well as polar biaxial nematic phase
with Cs symmetry. Lubensky and Radzihovsky [24] indicated
that vector and third-rank traceless symmetric tensor-order
parameters are required in addition to the traditional nematic
tensor-order parameter [37] to distinguish between various liq-
uid crystal phases that could be formed by V-shaped molecules,
including uniaxial and biaxial polar nematics as well as phases
with tetrahedratic symmetry. The additional order parameters
proposed in Ref. [24] are essential for the description of the
ordered chiral phases with point group symmetries D2 and
C2. The approach proposed in Ref. [23] has been extended
by Mettout [25] to construct a phenomenological theory of
V-shaped molecules based on use of two second-rank order
parameter tensor; the formation of the biaxial nematic phase
with C2h point group symmetry has been predicted.

No stable biaxial nematic phase was found in extensive
off-lattice Monte Carlo simulations of systems of V-shaped
particles that modeled by the hard spherocylinders [20,30],
Gay-Berne particles with fixed [28,29] and fluctuating [38]
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angle between particles, soft spheres [22], and rigidly con-
nected Lennard–Jones spheres [31]. Later, the isotropic,
uniaxial nematic, biaxial nematic, and biaxial antiferroelectric
hexagonal crystal phases have been revealed by Józefowicz
and Longa [39] in MC study of the model of V-shaped particles
with rigid and with fluctuating angle between the sufficiently
long Gay-Berne arms.

Bates and Luckhurst [32] extended the Lebwohl-Lasher
(LL) model [40] to study by Monte Carlo simulations on the
lattice the phase behavior of V-shaped molecules composed of
two distinct rods of type A and B joined at a fixed angle. For the
symmetric V-shaped molecules, the anisotropic interactions
εab (a,b = A,B) for each rod was considered to be the same
(εAA = εAB = εBB), in the asymmetric case the anisotropic
interactions for a pair of rods of one type was assumed to be
different from the rods of another type (εAA �= εBB , εAB =√

εAAεBB). In the symmetric case the direct isotropic-biaxial
nematic transition was found at angle ψ ≈ 109.47◦ between
rods. Two Landau points were observed in MC simulations
of asymmetric V-shaped molecules at increasing of difference
in magnitude εab (a,b = A,B) of anisotropic interactions of
rods of distinct types at fixed values of the interarm angle. The
model proposed in Ref. [32] has been further extended by Bates
[33] to consider the influence of flexibility of molecules on the
stability of nematic phases by including the bending potential
between rods in V-shaped molecule. It was found that increase
in flexibility of molecules leads to destabilization of the biaxial
nematic phase in favor of prolate nematic uniaxial phase.

The molecular dynamics simulation with use of full
atomistic potential was performed by Peláez and Wilson [41]
for ODBP-Ph-C7 molecules; these compounds were earlier
used in experimental studies [7,8] in which NB phase has been
observed. The biaxial nematic phase containing local ferro-
electric domains was found [41], although degree of biaxiality
was small; the omission of electrostatic charges from the model
led to a stable smectic phase instead of biaxial nematic phase.

It was suggested in Refs. [1,8] that local dipole moment
of V-shaped mesogens may play an important role in the
formation of the biaxial nematic state. Bates [34] extended
the model proposed in Ref. [32] to include dipole-dipole
interactions for symmetric V-shaped molecules, although only
in a simple approximation based on the relative orientation
of the two dipoles in neighboring sites of a lattice. By lattice
MC simulation it was found that the strong dipolar interaction
has widened the range of angles for which the I-NB transition
is observed so that the Landau point transforms to a line of
the Landau points. Grzybowski and Longa [26] have studied
within low-density approximation of the density functional
theory models of bent-core molecules composed of two and
three ellipsoids interacting via Gay-Berne interactions; the
dipole-dipole interactions with the dipoles chosen parallel
to C2 symmetry axis of molecule have been also taken into
account. In the absence of dipole-dipole interactions the single
Landau point is determined at angles ≈ 107◦ and ≈ 89◦ for
two- and three-part model of bent-core molecule, respectively.
The Landau point is found to shift toward lower angles with
increasing dipole-dipole interaction strength for both models.
For three-part model bicritical point changes to a line of
Landau points if the dipole-dipole interaction is strong enough;
contrary to the MC simulation of LL model [34] no line of

direct I-NB transitions has been found in the two-part model
of V-shaped mesogen. Within molecular field theory for polar
biaxial nematics formed by V-shaped particles To et al. [42]
found that increase in dipole strength results in increase of
stability of nematic biaxial phase; for a sufficiently high dipole
strength the line of the first-order I-NB transitions appears
instead of the Landau point.

Starting from the microscopic model of a symmetric
V-shaped molecule of C2v symmetry the authors of Ref. [27]
have found within the Landau–de Gennes approach the phase
diagram of the melt composed of such molecules. Only
anisotropic interactions of the Maier-Saupe form have been
taken into account. The phase diagram contains the regions of
stability of isotropic, prolate uniaxial, oblate uniaxial nematic,
and biaxial nematic phases; regions of stability of the biaxial
nematic states are found to be located in the vicinities of
two Landau points that correspond to the following values
of an external angle α between arms of V-shaped molecules:
α∗

1 ≈ 0.39π ≈ 70.53◦ and α∗
2 ≈ 0.61π ≈ 109.47◦.

Most of the papers cited above have studied the systems of
symmetric V-shaped molecules: the exceptions are the works
by Bates and Luckhurst [32], who introduced asymmetry via
an anisotropy in interactions of arms of different types and
Mettout et al. [23] who considered a model of the thermotropic
liquid crystal polymer composed of hydroxybenzoic acid
and hydroxynaphthoic acid. The objective of this paper
is to consider the phase behavior of V-shaped molecules
with asymmetry in architecture. For this purpose the model
of symmetric V-shaped molecule proposed earlier [27] is
extended to include rigid arms of different lengths; as distinct
from the symmetric case this model of V-shaped molecule
is characterized by Cs symmetry. The phase behavior of the
thermotropic melt of asymmetric V-shaped molecules will be
considered within the Landau theory of phase transitions [43]
that is widely applied for description of systems composed of
biaxial particles [35,44–52]. A peculiarity of the present work
is that the coefficients of the Landau–de Gennes free-energy
expansion are found explicitly from a microscopic model of
V-shaped molecules. The possibility to calculate explicitly the
coefficients of the Landau–de Gennes free-energy expansion
for a specific model enables one to avoid difficulties of
dealing with a great number of topologically distinct phase
diagrams that can be derived from the coefficients that appear
in phenomenological Landau theories of biaxial nematics
[45–51,53]. For instance, the expansion of the Landau free
energy in powers of single nematic tensor order parameter up
to the sixth order for a system of biaxial molecules may contain
six phenomenological coefficients [47,49], while expansion in
powers of two tensor-order parameters up to the fourth order
depends on 14 phenomenological coefficients [50,51].

The additional advantage of using a specific model of liquid
crystalline molecule is that it enables one to find within the
Landau–de Gennes approach the coefficients of gradient terms
[37]. The latter are related to the elastic constants of molecule
which, in turn, are of special interest due to recent observation
of nematic twist bend (NTB) phase in systems of achiral liquid
crystal dimers [54–56] and rigid bent-core molecules [57]; the
molecules in this phase are arranged on a conical helix so that
director precesses on this helix and forms a fixed cone angle
with the helix axis. The existence of this phase was predicted
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FIG. 1. Sketch of V-shaped molecule composed of two rigid rods
joined at an external angle α. Rods consist of N1 and N2 = N − N1

numbers of monomer units.

by Meyer [58]; it was found by Memmer [28] in computer
simulation of Gay-Berne bent-core particles. To date, a number
of approaches based on different physical mechanisms have
been proposed to describe the formation of NTB phase [58–67].
One of these approaches [60] rests on the assumption that
the bend elastic constant of V-shaped molecule could become
negative, which leads to the formation of a modulated phase of
a system. Our calculations, although restricted by the gradient
terms of the lowest orders, indicate that for the model under
consideration the coefficients of gradient terms and related
elastic constants can indeed be negative for some range of
angles between arms of V-shaped molecule.

The paper is organized as follows. Section II contains
the description of the model. The phase diagram of the
melt and discussion of results are presented in the Sec. III.
Section IV contains the calculation of the coefficients of
the lowest-order gradient terms in the Landau–de Gennes
free-energy expansion for the model of V-shaped particles.
The summary of the main results is given in Sec. V; some
mathematical details are presented in the Appendix.

II. MODEL

We consider a melt of � monodisperse V-shaped molecules
in a volume V . Each molecule consist of two rod-like segments
joined at their ends at an external angle α as shown in
Fig. 1. Rigid segments are assumed to be composed of N1

and N2 monomer units; the bond that connects two successive
monomer units in any segment is of fixed length b.

The conformation of a molecule is specified by the positions
of the monomer units {rj }, j = 1, . . . ,N , where N is the total
number of units in molecule (N1 + N2 = N ). The statistical
weight of the conformation {rj } of molecule is given by [27]

W
({rj }; α

) = 1

V

⎧⎨
⎩

N1−1∏
j=2

δ(uj+1 − uj )

⎫⎬
⎭δ(|uN1 | − b)

4πb2

× δ

[
cos(α) − (uN1+1uN1 )

b2

]
δ(|uN1+1| − b)

4πb2

×
⎧⎨
⎩

N1+N2−1∏
j=N1+1

δ(uj+1 − uj )

⎫⎬
⎭, (1)

where the vector uj Eq. (1), directed along the bond between
the j − 1th and j th monomers, is defined by expression: uj =
(rj − rj−1). To characterize the asymmetry in lengths of arms

of V-shaped molecule we introduce parameter φ = N1/N =
1 − N2/N , which is a number fraction of monomer units in the
one of rigid segments. For the values of asymmetry parameter
φ = 0 or φ = 1 as well as for angle values α = 0 or α = π

the molecule assumes rod-like conformation characterized by
D∞h symmetry; if φ = 1/2 and α �= 0,π , the symmetry of
molecule is C2v , while if φ �= 1/2 and α �= 0,π , the molecule
possesses Cs symmetry.

The anisotropic interactions that facilitate the liquid crys-
talline ordering of V-shaped molecules are of the Maier–Saupe
(MS) form [68,69],

HMS

({
r(k)
j

}) = − U

2ρ0

�∑
k1=1

�∑
k2=1

N∑
j1=1

N∑
j2=1

P2

[
u(k1)

j1
u(k2)

j2

b2

]

= −ρ0U

3

∑
α

∑
β

∫
drŜαβ (r)Ŝβα(r), U = ωT,

(2)

where P2(x) is the second-order Legendre polynomial and the
Maier–Saupe parameter, ω, is assumed to be positive. The
monomer number density is defined by ρ0 = M/V , where to-
tal number of monomer units in a system is M = �N . The
microscopic nematic-order parameter density Eq. (2) is given
by

Ŝαβ (r) = 1

ρ0

�∑
k=1

N∑
j=1

δ
[
r − r(k)

j

]3

2

[(
uk

j

)
α

b

(
uk

j

)
β

b
− δαβ

3

]
,

(3)

where α,β = x,y,z, and r(k)
j is the position of j th unit in kth

macromolecule that consist of N = N1 + N2 units.
The Landau free-energy expansion for the model defined

by Eqs. (1) and (2) is written as follows:

F
MT

= − ω

3V

∑
α

∑
β

∫
dxSαβ (x)Sβα(x) − S({Sαβ}), (4)

where the components Sαβ(x) of tensor nematic-order param-
eter are thermally averaged densities defined above [Eq. (3)]
and functional S({Sαβ}) is given by the following Legendre
transform:

S({Sαβ}) = 1

M

∑
α

∑
β

∫
dxhαβ(x)Sαβ(x) − F ({hαβ})

T
,

Sαβ(x) = M

T

δF ({hαβ})
δhαβ(x)

. (5)

Here F ({hαβ}) Eq. (5) is a free energy of a single ideal molecule
that is subjected to a conjugated field hαβ(x),

F ({hαβ}) = − T

N
ln Q({hαβ}), (6)

and corresponding partition function is of the form

Q({hαβ}) = 1

Q0

∫
dr1 . . . drNW ({rj }; α)

× exp

{
−

∫
dxhαβ(x)Ŝαβ(x; N )

}
,
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Ŝαβ(x; N ) = 1

ρ0

N∑
j=1

δ
(
r − rj

)3

2

[
(uj )α

b

(uj )β
b

− δαβ

3

]
,

Q0 = Q({0}). (7)

Next we assume that nematic ordering is global and can be
described by space-independent-order parameter

Sαβ = 1

V

∫
dxSαβ (x). (8)

With this in mind, the Landau–de Gennes free-energy expan-
sion of the melt in powers of the rotational invariants, tr(S2)
and tr(S3), of tensor Eq. (8) can be written as follows [47]:

N
F

MT
= (γ2 − ωN/3)tr(S2) + γ3tr(S3) + γ4[tr(S2)]2

+ γ5tr(S2)tr(S3) + γ
(1)
6 [tr(S2)]3 + γ

(2)
6 [tr(S3)]2.

(9)

Coefficients of expansion Eq. (9) that depend upon angle α

between arms of V-shaped molecule (Fig. 1) and asymmetry
parameter φ, are given in Appendix A. The procedure of
derivation of the expansion Eq. (9) that was given earlier
in Ref. [27] is also described briefly in Appendix A. The
rotational invariants, tr(S2) and tr(S3), can be written as

tr(S2) = (1/2)(3x2 + y2),
(10)

tr(S3) = (3/4)x(x2 − y2),

where the following parametrization [47] of the eigenvalues
of S tensor Eq. (8) has been used:

λ1 = −(x + y)/2, λ2 = −(x − y)/2, λ3 = x. (11)

All eigenvalues Eqs. (11) vanish if melt is in the isotropic phase
so that x = 0, y = 0. Uniaxial nematic phase is realized if two
of three eigenvalues Eqs. (11) are equal and distinct from zero.
If, additionally, the eigenvalue that differs from two others
is the largest one so that λi = λj �= 0, λi = λj < λk , (i �=
j �= k), the melt is in prolate uniaxial (N+

U) phase; conversely,
if λi = λj > λk , the melt is in oblate uniaxial (N−

U) nematic
phase. Since tr(S) = 0 the distinct eigenvalue is positive for N+

U
state and negative for N−

U phase. For the nematic uniaxial state
x �= 0, and y can attain one of the following values: 0, 3x, or
−3x, where alignment along the x, y, and z axis corresponds
to y = 3x, y = −3x, and y = 0 values, respectively. The
biaxial nematic state corresponds to three different eigenvalues
Eqs. (11).

Substitutions of Eq. (10) for Eq. (9) yields

N
F

MT
= F (x,y,ω̃)

= A(x,ω̃) + B(x,ω̃)y2 + C(x)y4 + Dy6, (12)

where rescaled MS parameter, ω̃, is given by ω̃ = ωN and the
following notation has been used:

A(x,ω̃) = 3

2

(
γ2 − ω̃

3

)
x2 + 3

4
γ3x

3 + 9

4
γ4x

4 + 9

8
γ5x

5

+
(

27

8
γ

(1)
6 + 9

16
γ

(2)
6

)
x6, (13)

B(x,ω̃) = 1

2
γ2 − ω̃

6
− 3

4
γ3x + 3

2
γ4x

2 − 3

4
γ5x

3

+
(

27

8
γ

(1)
6 − 9

8
γ

(2)
6

)
x4, (14)

C(x) = 1

4
γ4 − 3

8
γ5x +

(
9

8
γ

(1)
6 + 9

16
γ

(2)
6

)
x2, (15)

D = 1

8
γ

(1)
6 . (16)

As found earlier [27], the phase diagram of the model
of symmetric (φ = 1/2) V-shaped molecules contains the
regions of stability of isotropic, prolate and oblate uniaxial,
and biaxial nematic phases. The biaxial nematic state is found
to be stable in narrow regions located in the vicinity of two
Landau points characterized by (α∗

1 , ω̃∗) and (α∗
2 , ω̃∗) in α − ω̃

plane. Here ω̃∗ = 15, α∗
1 ≈ 1.23096 ≈ 0.39π ≈ 70.53◦, and

α∗
2 ≈ 1.91063 ≈ 0.61π ≈ 109.47◦. The I-N+

U transition takes
place for 0 � α < α∗

1 or α∗
2 < α � π while the I-N−

U transition
occurs for α values in the range α∗

1 < α < α∗
2 . As will be shown

in the next section, the phase behavior of the melt of V-shaped
molecules is strongly affected by the asymmetry in the lengths
of arms of molecules.

III. PHASE DIAGRAMS

Since the coefficients Eqs. (A3)–(A8) of the Landau–de
Gennes expansion are not altered by change of variables φ →
(1 − φ), the phase diagrams for asymmetry parameter φ and
1 − φ are the same; hence, we will restrict our consideration to
the case 0 � φ � 1/2 only. Moreover, because the substitution
α → π − α also does not alter Eqs. (A3)–(A8), the phase
diagrams are to be symmetric with respect to α = π/2. The
coefficients of the even orders Eqs. (A3), (A5), (A7), and (A8)
are found to be positive in the range α ∈ [0,π ] for all possible
values of asymmetry parameter φ ∈ [0,1]. The coefficients
of the third Eq. (A4) and fifth Eq. (A6) orders vanish if the
following condition holds true:

sin2(α) = 2

9

1

φ(1 − φ)
, α ∈ [0,π ]. (17)

This equation has real solutions for 1/3 � φ � 2/3; if φ =
1/3 or φ = 2/3 the only solution is α = π/2, while if
1/3 < φ < 2/3 there are two values of angle α, α∗

1 (φ) and
α∗

2 (φ), at which the odd order coefficients vanish. The solutions
of Eq. (17) are shown in Fig. 2 as function of asymmetry
parameter φ. For a given value of parameter φ the coefficients
of the third Eq. (A4) and fifth Eq. (A6) orders are negative
if 0 � α < α∗

1 (φ) or α∗
2 (φ) < α � π , while they are positive

for α∗
1 (φ) < α < α∗

2 (φ). According to Fig. 2 the odd-order
coefficients are always negative if asymmetry parameter falls
in 0 � φ < 1/3 or 2/3 < φ � 1 ranges. As also indicated in
Fig. 2, the solutions α∗

1 and α∗
2 of Eq. (17) are symmetric about

value φ = 1/2.
To find the isotropic-nematic boundary we have to equate

the free energies of isotropic and uniaxial nematic states and
take into account for the stability condition

A(x,ω̃) = 0,
∂

∂x
A(x,ω̃) = 0,

∂2A(x,ω̃)

∂x2
> 0, (18)
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FIG. 2. Plots of values of the solutions α∗
1 and α∗

2 of Eq. (17) as
function of asymmetry parameter.

where function A(x,ω̃) is defined above [Eq. (13)]. In turn, the
boundaries of the isotropic-biaxial nematic transition can be
found from the following set of equations:

∂F (x,y,ω̃)

∂x
= 0,

∂F (x,y,ω̃)

∂y
= 0,

F (x,y,ω̃) = 0, (19)

provided that the matrix of second derivatives of function
F (x,y,ω̃) with respect to x and y variables is positive defi-
nite. The boundaries of the uniaxial nematic-biaxial nematic
transition can be found from solution of equations

∂F (x,y,ω̃)

∂x
= 0,

∂F (x,y,ω̃)

∂y
= 0,

∂

∂u
A(u,ω̃) = 0, F (x,y,ω̃) = A(u,ω̃), (20)

provided that the stability conditions are fulfilled.
The behavior of order parameter jump at isotropic-nematic

transition, xIN, is described by the following equation:(
9
4γ

(2)
6 + 27

2 γ
(1)
6

)
x3 + 27

8 γ5x
2 + 9

2γ4x + 3
4γ3 = 0, (21)

which can be derived from Eqs. (18). The solutions of Eq. (21)
are shown in Fig. 3 for a number of different values of
asymmetry parameter. As it follows from Fig. 3, the value xIN is
positive while asymmetry parameter remains in range φ < 1/3
(φ > 2/3). For φ = 1/3 (φ = 2/3) the order parameter jump
vanishes at single point α = π/2; if asymmetry parameter
falls within 1/3 < φ � 1/2 or 1/2 � φ < 2/3 ranges this
happens at two points α∗

1 (φ) and α∗
2 (φ). The value of xIN

becomes negative in interval α∗
1 (φ) < α < α∗

2 (φ) if φ belongs
to 1/3 < φ � 1/2 or 1/2 � φ < 2/3 ranges.

The phase diagram of melt under consideration is shown
in Fig. 4(a) for several φ values from interval 0 � φ < 1/3.
At these values of asymmetry parameter the V-shaped chain
is effectively of rodlike shape (regardless of the angle α

value) so there is only isotopic-prolate uniaxial nematic (I-N+
U)

transition. However, the temperature of the I-N+
U transition

decreases (ω̃ ∼ 1/T ) and the region of stability of isotropic
phase becomes larger for 0 < α < π as asymmetry parameter
grows in range 0 � φ < 1/3. As indicated in Fig. 4(b) all
eigenvalues Eqs. (11) plotted for φ = 0.3 value and special

FIG. 3. Order parameter jump at I-N transition. The positions of
points α∗

1 and α∗
2 are indicated by filled circles for each curve that

contains such points. There is only one point α∗
1 = α∗

2 for curve with
φ = 1/3.

value of rescaled MS parameter ω̃ = 10 vanish in isotropic
phase while in N+

U phase the eigenvalue that is distinct from
two other is the largest one.

Phase diagrams of melt of V-shaped molecules for a
number of values of asymmetry parameter φ that belong to the
range 1/3 � φ < 1/2 are shown in Fig. 5. The phase diagram
for case φ = 1/3 [Fig. 5(a)] contains the regions of stability of
isotropic, prolate uniaxial nematic, and biaxial nematic phases.
The single Landau point (defined by conditions γ2 − ω̃/3 = 0
and γ3 = 0) at which the direct continuous transition takes
place from isotropic state to biaxial nematic state is located in
(α,ω̃) plane at α = α∗

1 = α∗
2 = π/2, ω̃ = 15. For the value of

asymmetry parameter φ = 0.335, the phase diagram changes
qualitatively: the region of stability of oblate nematic uniaxial
phase (N−

U) appears [Fig. 5(b)]. As shown in this figure the
N−

U phase is bounded from above by nematic biaxial phase.
As far as we know this kind of topology of phase diagram for
systems constituted by biaxial molecules was first conjectured
by Mulder [70], who considered within the Onsager approach
the phase behavior of spheroplatelet particles (see Fig. 6 in
Ref. [70]). Upon further increase of asymmetry parameter, the
region of stability of N−

U phase becomes larger as is shown in
Fig. 5(c). At the same time the regions of stability of biaxial
nematic phase located above α∗

1 and α∗
2 Landau points become

smaller. The increase of φ parameter up to φ = 0.4 [Fig. 5(d)]
results in further separating of α∗

1 (φ) and α∗
2 (φ) Landau points;

the regions occupied by the biaxial nematic phase are greatly
reduced while stability region of oblate uniaxial nematic phase
N−

U increases sharply. The temperature of I-N−
U transition that

takes place between the Landau points increases as φ varies
in the range 1/3 < φ � 1/2 and decreases if φ increases
within range 1/2 � φ < 2/3. In turn, the temperature of
I-N+

U transition decreases as parameter α grows in the range
0 � α < α∗

1 (φ) and increases if parameter α grows in the range
α∗

2 (φ) < α � π . The comparison of phase diagrams presented
in Figs. 5(a)–5(d) leads to the conclusion that stability region
of the biaxial nematic phase is markedly larger for asymmetric
V-shaped molecules (in particular, for φ = 1/3 or φ = 2/3)
than for more symmetric V-shaped molecules (as φ tends to
1/2).
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FIG. 4. (a) Lines of the first order I-N+
U phase transitions for φ < 1/3. The isotropic (I) and prolate uniaxial nematic (N+

U) phases are
stable below and above of each curve, respectively. (b) Plots of eigenvalues Eqs. (11) for φ = 0.3 and ω̃ = 10 with λ1 > λ2 = λ3. The vertical
dash-dot lines correspond to the boundaries of isotropic phase where all eigenvalues vanish.

The ordering of V-shaped molecules can be characterized
by vectors

a = φv1 − (1 − φ)v2√
1 − 2φ(1 − φ)[1 − cos(α)]

,

b = φv1 + (1 − φ)v2√
1 − 2φ(1 − φ)[1 + cos(α)]

,

c = a × b, (22)

where v1 and v2 are the unit vectors directed along the first
and second arms of V-shaped molecule, respectively [(v1v2) =
− cos(α)]. For φ �= 1

2 , the vectors Eqs. (22) correspond to
a skew coordinate system, where vector a is parallel to the
line that connects the free ends of V-shaped molecule, while
vector b is directed along the median drawn from the vertex at
the internal angle between arms. For φ = 1

2 set of vectors
Eqs. (22) represent an orthogonal coordinate system used

FIG. 5. Phase diagram of melt of V-shaped molecules for different values of the asymmetry parameter: φ = 1/3 (a), φ = 0.335
(b), φ = 0.34 (c), and φ = 0.4 (d). The solid line represents a first-order transition, while the dashed lines correspond to a second-order
transition. The Landau points are indicated by the filled circles.
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FIG. 6. (a) Plots of eigenvalues Eqs. (11) for φ = 1/3 and ω̃ = 18 with λ1 > λ2 > λ3. (b) Plots of eigenvalues Eqs. (11) for φ = 0.335 and
ω̃ = 16 in oblate uniaxial and biaxial nematic phases. For both figures the vertical dash-dot lines correspond to the boundaries of the biaxial
phase where two of three eigenvalues become identical.

earlier [20,27,71] to describe ordering of symmetric V-shaped
molecules. It is expected that for 0 � α < α∗

1 (φ) the directions
of vectors a are correlated in N+

U state in phase diagrams shown
in Fig. 5, while vectors b become oriented in N+

U state if
α∗

2 (φ) < α � π . If angle α falls in the range α∗
1 (φ) < α <

α∗
2 (φ), molecules form stacks in the N−

U phase; the symmetry
plane of V-shaped molecules are orthogonal to vector c, while
neither a nor b vectors are correlated. In the regions of stability
of the biaxial nematic state all the vectors are correlated.

The plots of eigenvalues Eqs. (11) as function of angle α

for several special values of asymmetry parameter are shown
in Fig. 6. As indicated in Fig. 6(a) for φ = 1/3 and value
of rescaled MS parameter ω̃ = 18, there are three distinct
eigenvalues in NB phase while two of them become equal in
prolate uniaxial phase. Another kind of behavior of eigenvalues
in NB phase is shown in Fig. 6(b) for φ = 0.335 and ω̃ = 16.
This is because for φ = 0.335 the biaxial nematic phases are
located between prolate and oblate uniaxial nematic phases
[see Fig. 5(b)] as distinct from case φ = 1/3 where region
of stability of NB phase is found between prolate uniaxial
nematic phases. As shown in Fig. 6(b) two of three eigenvalues
Eqs. (11) coincide in the uniaxial phases.

IV. COEFFICIENTS OF THE GRADIENT TERMS

In this section we calculate the coefficients of the lowest-
order gradient terms for the proposed model of asymmetric
V-shaped molecule and elastic constants related to these
coefficients. For this purpose we have to take into account the
spatial dependence of tensor field S(r) so that the Landau–de
Gennes free energy is written as

N
F

MT
=

∞∑
n=2

1

n!
Fn{[S(r)]}, (23)

where Fn is the nth-order contribution. To the lowest orders in
∇S the second-order contribution into the Landau–de Gennes

free energy assumes the form [37]

F2 = 1

V

∫
dr

∑
α

∑
β

{
ASαβ(r)Sβα(r) + L1

∑
γ

∂Sβγ (r)

∂rα

× ∂Sβγ (r)

∂rα

+ L2

∑
γ

∂Sαγ (r)

∂rα

∂Sβγ (r)

∂rβ

}
, (24)

where α,β,γ = x,y,z. Using the Fourier representation,

S̃αβ(q) =
∫

drSαβ (r) exp (iqr),

Sαβ(r) = 1

V

∑
q

S̃αβ(q) exp (−iqr), (25)

the second-order contribution, Eq. (24), can be rewritten as

F2 = 1

V 2

∑
q

∑
α

∑
β

{
[A + L1q

2]S̃αβ(q)S̃αβ(−q)

+L2

∑
γ

qαqβS̃αγ (q)S̃βγ (−q)

}
. (26)

Since S(r) is a symmetric and traceless tensor, Sxx , Syy , Sxy ,
Sxz, and Syz can be chosen as independent components. If we
also take q to be directed along z axis, Eq. (26) reduces to

F2 = 1

V 2

∑
q

{[
A +

(
L1 + L2

2

)
q2

]

×
∑

α

∑
β

S̃αβ(q)S̃βα(−q) + L2

2
q2R1(q, − q)

}
, (27)

where we denote

R1(q, − q) = S̃xx(q)S̃yy(−q) + S̃xx(−q)S̃yy(q)

− 2S̃xy(q)S̃xy(−q). (28)

On the other hand, the second-order contribution to the Landau
free energy derived from the microscopic model described
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FIG. 7. Plots of rescaled elastic constants (L1)/(Nb)2 (a) and (L2)/(Nb)2 (b) as function of an external angle α of V-shaped molecule
(0 � α < π ) for several values of asymmetry parameter.

above in Sec. II reads as [27]

F2 = 1

V 2

∑
q

∑
(αiβi )

{
N [K̃ (−1)(q, − q)](α1β1)(α2β2) − 2ω̃

3
δα1α2δβ1β2

}
S̃α1β1 (q)S̃α2β2 (−q), (29)

where (αiβi) pairs take values (xx),(yy),(xy),(xz),(yz), and K̃ (−1)(q, − q) is the matrix inverse to the matrix K̃(q, − q). The
elements of matrix K̃(q, − q) are the Fourier transforms of the pair correlation functions of orientational densities of an ideal
V-shaped molecule defined by Eq. (A1) at n = 2.

The calculation of an expansion of elements of matrices K̃(q, − q) and K̃ (−1)(q, − q) up to the q2 order (|q| = q) are described
in Appendix B. By substituting Eqs. (B5) into Eq. (29), we find that the second-order contribution, Eq. (29), can be rewritten as

F2 = 1

V 2

∑
q

{[
2γ2 + C

(2)
0 (qbN )2 − 2ω̃

3

] ∑
α

∑
β

S̃αβ(q)S̃βα(−q) + C
(2)
1 (qbN )2R1(q, − q)

}
, (30)

where coefficient γ2 is given by Eq. (A3), while coefficients C
(2)
i = C

(2)
i (α) are as follows:

C
(2)
0 = 1

42[d(α,φ)]2
[5(1 − 4ξ + 2ξ 2) + 14ξ 2P1 + 20ξ (1 − 2ξ )P2 + 16P3ξ

2],

C
(2)
1 = 1

63[d(α,φ)]2
[5(1 − 4ξ + 2ξ 2) + 21ξ 2P1 + 20ξ (1 − 2ξ )P2 + 9P3ξ

2], (31)

where Pn ≡ Pn[cos(α)] is the nth order Legendre polynomial, and where the following notation has been used:

d(α,φ) = 1 − 2ξ (1 − P2), ξ = φ(1 − φ). (32)

Comparison of Eqs. (27) and (30) yields the following results for coefficients used in Eq. (27):

A = 10

3d(α,φ)
− 2ω̃

3
,

L1 = 5

126

[
1 − 4ξ + 2ξ 2 + 4ξ (1 − 2ξ )P2 + 6ξ 2P3

[d(α,φ)]2

]
(Nb)2,

L2 = 2

63

[
5(1 − 4ξ + 2ξ 2) + 21ξ 2P1 + 20ξ (1 − 2ξ )P2 + 9P3ξ

2

[d(α,φ)]2

]
(Nb)2. (33)

For rod case (α = 0 or α = π or ξ = 0) we find A = 10/3 − 2ω̃/3, C
(2)
0 = 5/42, and C

(2)
0 = 10/63, so that L1 = 5/126 and

L2 = 10/63, which is in agreement with results of Shimada, Doi, and Okano [72] (please note that our definition of microscopic
orientational order parameter Eq. (3) differs from the one used in Ref. [72] by factor 3/2).

The behavior of the rescaled coefficients L1/(Nb)2 and L2/(Nb)2 are shown in Fig. 7 as function of angle α. It follows from
Fig. 7 that for small values of asymmetry parameter (φ = 1/6 or φ = 1/4), the functions Li/(Nb)2 (i = 1,2) are positive in the
range 0 � α < π . As asymmetry parameter grows, these functions may become negative in some ranges of angle α; the more
symmetric V-shaped molecule is, the wider is the range of negative values of the coefficients L1 and L2 (Fig. 7). Equation (27)
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can be written as [73]

F2 = 1

V 2

∑
q

{
3

2

[
A +

(
L1 + 2L2

3

)
q2

]
S̃+(q)S̃+(−q) + 1

2
[A + L1q

2][S̃−(q)S̃−(−q) + 4S̃xy(q)S̃xy(−q)]

+ 2

[
A +

(
L1 + L2

2

)
q2

]
[S̃xz(q)S̃xz(−q) + S̃yz(q)S̃yz(−q)]

}
, (34)

where S̃±(q) = S̃xx(q) ± S̃yy(q). If, for example, coefficient
L1 becomes negative [Fig. 7(a)], the quadratic Eq. (34) ceases
to be positive definite and the isotropic system could lose its
stability at some nonzero wave vector with respect to formation
of a modulated state. However, to correctly describe this case,
one has to take into account the expansion of second–fourth
contributions into the Landau–de Gennes free energy at least
up to q4. Since only the lowest orders of ∇S terms were
considered, the Frank elastic constants Ki (K1 (splay), K2

(twist), and K3 (bend)) are proportional to L1 and L2: K1 =
K3 ∼ (2L1 + L2), K2 ∼ 2L1 [74]; hence, for this model of
V-shaped molecule, the K3 constant may become negative for
some ranges of angle α.

V. CONCLUSION

The phase behavior of a thermotropic melt of asymmetric
V-shaped molecules has been inspected within the Landau–de
Gennes approach. The coefficients of the Landau-de Gennes
free-energy expansion have been found from microscopic
model of V-shaped molecule, that is assumed to be composed
of two rigid segments of different lengths joined at their
ends at an external angle α; each segment consists of a
sequence of monomer units. The asymmetry of molecules is
characterized by parameter φ, which is the number fraction
of monomer units in one of the two segments. No regions
of stability of oblate uniaxial or biaxial nematic phases have
been found for 0 � φ < 1/3 and 2/3 < φ � π ranges; only
the I-N+

U transition takes place if asymmetry parameter falls
in these ranges, the temperature of I-N+

U transition decreases
for 0 < α < π as parameter φ increases in 0 � φ < 1/3 or
decreases in 2/3 < φ � π ranges. For φ = 1/3 or φ = 2/3,
there is a single Landau point in (α-ω̃) plane located at
α = π/2, ω̃ = 15, at which direct continuous transition from
isotropic to biaxial nematic state occurs. The stable isotropic,
prolate uniaxial, and biaxial nematic phases are found for
φ = 1/3 and φ = 2/3 values. There are two Landau points
α∗

1 (φ) and α∗
2 (φ) if the asymmetry parameter varies in the

range 1/3 < φ < 2/3. The difference |α∗
1 (φ) − α∗

2 (φ)| grows
as asymmetry parameter φ increases in range 1/3 < φ � 1/2
(or decreases in range 1/2 � φ < 2/3) and attains maximal
value at φ = 1/2. In addition to I, N+

U, and NB phases, a stable
oblate uniaxial N−

U phase is revealed if asymmetry parameter
varies in range 1/3 < φ < 2/3. The temperature of I-N−

U
transition increases as φ varies in the range 1/3 < φ � 1/2 and
decreases if φ falls within range 1/2 � φ < 2/3. The regions
of stability of the biaxial nematic phase become considerably
smaller as value of asymmetry parameter increases from 1/3
to 1/2 (or decreases from 2/3 to 1/2).

Despite the obvious drawback of using only the anisotropic
interactions, the model predicts that asymmetry in lengths

of arms has strong effect on the phase behavior of a melt
of V-shaped molecules. Molecular asymmetry is responsible
for the shift in angles that correspond to the Landau points;
for special values of asymmetry parameter there is only one
Landau point, while strong asymmetry in lengths of arms of
V-shaped molecule results in disappearance of the Landau
points and regions of stability of the biaxial nematic phase.

Coefficients of the lowest-orders gradient terms have been
found that enables us to determine the dependence of the
related elastic constants on the asymmetry parameter and angle
between arms of a V-shaped molecule. It was found that for
more symmetric molecule the coefficients of the gradient terms
L1 and L2 Eq. (33) can become negative for some ranges of
angle α. The value of the bend elastic constant K3 (that is
proportional to (2L1 + L2) if only the lowest gradient terms are
considered) also can pass through zero and become negative
as angle α varies in range [0,π ). This result is consistent with
the key assumption of Dozov’s theory [60] of mechanism of
formation of NTB phase. However, it should be stressed that
to describe with this model the transition into NTB phase one
has to find the expansion of second–fourth contributions into
the Landau–de Gennes free energy at least up to q4; note that
such an expansion will correspond to taking into account of
the gradient terms of higher orders like (∇S)4. We hope that
this will be a subject of further study.

APPENDIX A: COEFFICIENTS OF THE
LANDAU–DE GENNES EXPANSION

The procedure of finding of the Landau–de Gennes expan-
sion of the model at hand can be divided into several steps. At
the first step, one is supposed to expand the partition function
Eq. (7) in the functional power series of fields hαβ(x) and to
calculate the coefficients of the expansion. These coefficients
are the correlation function of nematic densities defined by

K
(n)
(α1β1)...(αnβn)(r1, . . . ,rn) = 1

N
Ŝα1β1 (r1; N ) . . . Ŝαnβn

(rn; N ),

(A1)

where nematic density Ŝαβ(r; N ) for the individual chain is
defined by Eq. (7). The overline in Eq. (A1) denotes the
averaging over conformations of molecules

(. . .) =
∫

dr1 . . . rNW ({rj }; α)(. . .)∫
dr1 . . . rNW ({rj }; α)

, (A2)

where statistical weight of conformation {rj } is given by
Eq. (1). At the second step, the expansion of free energy of a
single molecule Eq. (6) in the functional power series of fields
hαβ(x) is to be found; the coefficients of this expansion are
the irreducible correlators of nematic densities derived from
the correlation functions Eq. (A1). Finally, one has to perform
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a Legendre transform [75] as prescribed by Eqs. (5). For the space-independent-order parameter Eq. (8) this procedure yields the
following coefficients of the Landau–de Gennes expansion of free energy of a melt Eq. (9):

γ2 = 5

3d(α,φ)
, (A3)

γ3 = −100

63

[
1 − 3ξ (1 − P2)

[d(α,φ)]3

]
, (A4)

γ4 = 25

441[d(α,φ)]5

{
5

2
+ d(α,φ)

[
29

2
− 73(1 − P2)ξ + (

98P2
2 − 76P2 − 36P4 + 14

)
ξ 2

]}
, (A5)

γ5 = 1000(3ξ (1− P2) −1)

33 957[d(α,φ)]7

{[
−8

3
(1− P2)

(
539P2

2 − 298P2 − 234P4 − 7
)]

ξ 3 +
[

12 449

9
P2

2 − 16 378

9
P2 − 284P4 + 6485

9

]
ξ 2

− 1

27

[
13 201P2

2 − 26 822P2 + 126P4 + 13 495

1 − P2

]
ξ + 2

81

[
3484P2

2 − 6758P2 + 3337 − 63P4

(1 − P2)2

]}
, (A6)

γ
(1)
6 = 500

305 918 613[d(α,φ)]9

{
−360 150ξ 3[d(α,φ)]3P6 + 6 115 824ξ 4[d(α,φ)]2P4

2 − 9ξ 2d(α,φ)117 975

+ d(α,φ)(330 748 + 36
(
77 077P2

2 − 40 319P2 + 994
)
ξ 2 + 2(981 541P2 − 1 089 586)ξ )]P4

+ 196 625

8
+ d(α,φ)

[
5 485 447

8
+ 176(P2 − 1)

(
343 343P2

4 − 427 427P2
3 + 188 169P2

2 − 40 124P2 + 5537
)
ξ 5

+ 22
(
5 290 285P2

4 − 12 023 500P2
3 + 9 438 582P2

2 − 2 402 644P2 − 24 731
)
ξ 4 + 11

(
7 685 435P2

3 − 15 898 365P2
2

+ 10 527 657P2 − 2 458 787
)
ξ 3 + 11

2

(
6 031 355P2

2 − 9 615 130P2 + 4 318 049
)
ξ 2 + 28 606 985

4
(P2 − 1)ξ

]}
, (A7)

γ
(2)
6 = 1000

101 972 871
[
d(α,φ)

]9

{
29 400ξ 3[d(α,φ)]3P6 − 45ξ 2d(α,φ)[(6985 − 7056(1 − P2)ξ 2

+ 2(51 601P2 − 49 837)ξ )d(α,φ) + 9438]P4+
[

617 595

4
+ (258 720(5P2 − 3)(1 − P2)2) ξ 5

+ 660(P2 − 1)
(
28 028P2

3 − 37 174P2
2 + 6297P2 + 3633

)
ξ 4 + 330

(
P2

(
52 205P2

2 − 103 355P2 + 67 053
) − 15 511

)
ξ 3

+ 330

(
P2(21 362P2 − 35 259) + 32 273

2

)
ξ 2 − 3 323 925

2
(1 − P2)ξ

]
d(α,φ) + 39 325

4

}
, (A8)

where d(α,φ) and ξ are given by Eqs. (32). The Legendre polynomials Pn = Pn[cos(α)] (n = 2,4,6) are given by the following
expressions [76]:

P2[cos(α)] = [3 cos2(α) − 1]/2,

P4[cos(α)] = [35 cos4(α) − 30 cos2(α) + 3]/8,

P6[cos(α)] = [231 cos6(α) − 315 cos4(α) + 105 cos2(α) − 5]/16. (A9)

For the case of symmetric V-shaped chains (φ = 1/2) the coefficients Eqs. (A3)–(A8) coincide with those given earlier in
Ref. [27].

APPENDIX B: CALCULATION OF EXPANSION OF PAIR CORRELATION FUNCTION

The expression for the second-order correlation function Eq. (29) can be written as follows:

K̃(α1β1)(α2β2)(q, − q)

= 1

N

1

4π

∞∑
l=0

Pl[cos(α)]
l∑

m=−l

{ N1∑
j1=1

N1∑
j2=1

∫
d�1Y

∗
lm(θ1,φ1)Tα1β1 (θ1,φ1)Tα2β2 (θ1,φ1) exp [iqb|j2 − j1| cos(θ1)]

×
∫

d�2Ylm(θ2,φ2) + 2
N1∑

j1=1

N1+N2∑
j2=N1

∫
d�1Y

∗
lm(θ1,φ1)Tα1β1 (θ1,φ1) exp [iqb(N1 − j1) cos(θ1)]
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×
∫

d�2Ylm(θ2,φ2)Tα2β2 (θ2,φ2) exp [iqb(j2 − N1) cos(θ2)] +
N1+N2∑
j1=N1

N1+N2∑
j2=N1

∫
d�1Y

∗
lm(θ1,φ1)

×
∫

d�2Ylm(θ2,φ2)Tα1β1 (θ2,φ2)Tα2β2 (θ2,φ2) exp [iqb|j2 − j1| cos(θ2)]

}
. (B1)

In Eq. (B1), d� = sin(θ )dθdφ, Ylm(θ,φ) is the spherical harmonics [77], Y ∗
lm(θ,φ) is the conjugated one, and the following

notation has been used:

Tαβ(θ,φ) = 1
2 (3ζαζβ − δαβ), α,β = x,y,z,

ζx = sin(θ ) cos(φ), ζy = sin(θ ) sin(φ), ζz = cos(θ ). (B2)

After replacement of the summations in Eq. (B1) with an integrals the expansion of function K̃(α1β1)(α2β2)(q, − q) yields in the
lowest order

K̃(α1β1)(α2β2)(q, − q) = A(α1β1)(α2β2) + (qb)2B(α1β1)(α2β2) + . . . , (B3)

where q = |q| and the following notations have been used:

A(xx)(xx) = −2A(xx)(yy) = A(yy)(yy) = 4

3
A(xy)(xy)

= 4

3
A(xz)(xz) = 4

3
A(yz)(yz) = a,

B(xx)(xx) = B(yy)(yy) = b1 + b2, B(xx)(yy) = b1 − 1

4
b2,

B(xy)(xy) = 5

8
b2, B(xz)(xz) = B(yz)(yz) = 9

4
b1 + b2,

a = N

5
[1 − 2ξ (1 − P2)],

b1 = N3

900

[
−(2ξ 2 + 1 − 4ξ ) − 6ξ 2P1 + 4ξ (2ξ − 1)P2

]
,

b2 = N3

350

[
−(2ξ 2 + 1 − 4ξ ) + 4ξ (2ξ − 1)P2 − 6ξ 2P3

]
, (B4)

where only nonzero elements of matrix Eq. (B3) are presented in Eqs. (B4). In turn, to the lowest order in q2 the elements of
matrix K̃ (−1)(q, − q) Eq. (29) are given by(

K̃ (−1)(q, − q)
)

(α1β1)(α2β2) = Â(α1β1)(α2β2) + (qb)2B̂(α1β1)(α2β2) + . . . ,

Â(xx)(xx) = 2Â(xx)(yy) = 2Â(yy)(xx) = Â(yy)(yy)

= Â(xy)(xy) = Â(xz)(xz) = Â(yz)(yz) = 4

3a
,

B̂(xx)(xx) = B̂(yy)(yy) = B̂(xz)(xz) = B̂(yz)(yz) = −4(9b1 + 4b2)

9a2
,

B̂(xx)(yy) = B̂(yy)(xx) = − (36b1 + 11b2)

9a2
, B̂(xy)(xy) = −10b2

9a2
. (B5)
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