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Flow and evolution of ice-sucrose crystal mushes

Andrew J. Gilbert*

Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom

Felix K. Oppong† and Robert S. Farr‡

Unilever R&D Colworth Science Park, MK44 1LQ, Bedford, United Kingdom
(Received 4 November 2016; published 11 April 2017)

We study the rheology of suspensions of ice crystals at moderate to high volume fractions in a sucrose solution
in which they are partially soluble, a model system for a wide class of crystal mushes or slurries. Under step
changes in shear rate, the viscosity changes to a relaxed value over several minutes, in a manner well fitted by
a single exponential. The behavior of the relaxed viscosity is power-law shear thinning with shear rate, with an
exponent of −1.76 ± 0.25, so that shear stress falls with increasing shear rate. On longer time scales, the crystals
ripen (leading to a falling viscosity) so that the mean radius increases with time to the power 0.14 ± 0.07. We
speculate that this unusually small exponent is due to the interaction of classical ripening dynamics with abrasion
or breakup under flow. We compare the rheological behavior to mechanistic models based on flow-induced
aggregation and breakup of crystal clusters, finding that the exponents can be predicted from liquid phase
sintering and breakup by brittle fracture.
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I. INTRODUCTION

The flow of crystal suspensions in which the crystals are
soluble in the liquid phase (termed hereafter “mushes”) is
important in both nature and engineering. Examples from earth
and planetary sciences involving this class of material include
magmatic emplacement, lava flows [1–3], the formation of sea
ice [4], and cryogenic eruptions [5–7]. In an artificial setting,
they can occur in frozen foods [8,9], slurry-ice refrigerant
systems [10], metal casting [11,12], slurry explosives [13],
solution mining [14], and evaporative mineral and sugar
refinement.

Our aims in this paper are to understand the rheology of
high-volume-fraction ice suspensions (in a sucrose solution),
as a model system for mushes in general, and to develop
a constitutive model to explain the rheology, based on the
physics of the interacting crystals.

Mushes consist of a suspension of hard, partially soluble
crystals in a carrier liquid (which we term the “serum
phase”), the latter being usually Newtonian in rheology.
However, additional complexity arises because the crystals
have attractive or adhesive interactions resulting from van
der Waals forces [15] but more characteristically from their
tendency to undergo liquid-phase sintering into clusters when
they touch [16]. The importance of such attractive interactions
will depend on the size and solubility of the crystals and the
diffusivity of molecules in the serum, so one can anticipate
a spectrum of behaviors from approximately hard particle
suspension rheology to cases where sintering dominates.

As well as aggregation and sintering, soluble crystals will
undergo ripening [17–19], driven by the minimization of
interfacial energy as the larger crystals grow at the expense
of the smaller. The mean crystal size will therefore gradually
increase throughout any experiment.
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These phenomena lead to complex rheological properties:
Mushes are typically shear thinning at low solid volume
fraction φ and can develop a yield stress and exhibit pseudo-
plastic behavior [6,9,20]. The time-dependent nature of cluster
formation and of sintering can also lead to strong history
dependence in the rheology. For example, if left unsheared,
a mush will often solidify [9] and in general one would expect
it to display thixotropic behavior [21] under changes in shear
rate [6].

The flow of a suspension of hard particles with no
interactions other than hydrodynamics was first studied by
Einstein [22], who showed that spheres at a volume fraction
φ � 1 enhance the viscosity by a factor (1 + Bφ), where
B is a pure number, termed the “intrinsic viscosity” or
Einstein coefficient. For spheres this is 2.5, but it is larger
for other shapes [23]. At higher volume fractions (particularly
above φ = 0.2), the viscosity increases more strongly than the
Einstein result [24] and will in general diverge at a maximum
volume fraction φm, which may be related to random close [25]
or loose [26] packing, or result from a dynamic process of
dilatancy [27] or jamming [28]. For the volume fractions
of interest in this paper, a widely used approximation for
the suspension viscosity η in terms of the continuous phase
viscosity η0 is from Krieger and Dougherty [29]:

η = η0

(
1 − φ

φm

)−Bφm

, (1)

where for subspherical particles of roughly equal size, one
would use B = 2.5 and φm ≈ 0.64. Lower values of φm might
be due to frictional interactions, leading to divergence at
loose packing or lower packing density due to significant
departure from sphericity [30,31]. Higher values may arise
from polydispersity [32,33].

When attractive forces between particles are present,
shear thinning and other non-Newtonian behavior can result.
For very dilute suspensions, aggregation leads to fractal
flocs [34,35], which can ultimately percolate to form a gel.
Before gelation, such suspensions are weakly shear thinning,
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while afterward the gels are viscoelastic solids [36] with
properties that scale with φ. At higher volume fractions (the
subject of this paper), there is no universal theory of attractive
particle rheology and flow properties depend on the details of
the interparticle interactions. Strongly cohesive suspensions
can display steep shear thinning and nonmonotonic flow
curves [37,38].

When making rheological measurements on such systems,
pseudoplasticity introduces problems in simple geometries.
Using a parallel plate or Couette flow cell will lead to
flow instabilities such as shear banding [39], while capillary
rheometers may be subject to plug flow [40]. These phenomena
leave the majority of the volume undeformed, so one is only
probing the flow in thin layers of the fluid. Moreover, with a
history-dependent mush, the unsheared regions are likely to
solidify, exacerbating the problem. In this paper, we therefore
use a more complex geometry to ensure bulk deformation of
the material. This consists of a cylindrical vessel with a rotating
impeller for which we measure both the rotation rate ω and
the applied torque T .

A second problem arises from the particle size of the
suspension: For reliable measurements, the flow geometry
should ensure that the gaps through which the suspension is
forced to flow are large compared to a crystal (or cluster),
so that most of the viscous dissipation occurs in the bulk of
the fluid rather than in locally jammed regions in confined
spaces [41]. This, together with the size of the crystals and the
values of the interesting shear rates, mean that we are not able
to guarantee that the Reynolds number Re of the flow is small.

All these considerations mean that calibration of the
rheological apparatus is nontrivial, and for our case will rely
on some specific assumptions about the rheology, which we
are then able to test post hoc.

II. OUTLINE AND KEY ASSUMPTIONS

Throughout this paper, we suppose that under constant root-
mean-square shear rate γ̇rms, the viscosity has a power law
dependence on this shear rate and the mean crystal radius R,
with a volume-fraction-dependent prefactor:

η ∝ γ̇ ns

rms Rnr . (2)

Here, ns and nr are exponents which we obtain in Sec. V D.
We hypothesize that this behavior arises from crystal clusters
dynamically formed and broken up in the flow. At high shear
rates, we anticipate that the clusters will be broken down,
and there will be a crossover to Newtonian behavior with the
Krieger-Dougherty value for the viscosity.

We also suppose that crystal ripening will occur and lead
to a power-law dependence of crystal radius on time t and
potentially also on root-mean-square shear rate (again with a
volume-fraction-dependent prefactor):

R(γ̇rms,t) ∝ tpt γ̇ ps

rms, (3)

where pt and ps are exponents we find in Sec. V C.
Together, Eqs. (2) and (3) imply that the observed viscosity

in experiments at constant volume fraction φ, as a function of
time and constant shear rate, will have the following form:

η(γ̇rms,t) ∝ tnr ·pt γ̇ nr ·ps+ns

rms . (4)

These exponent combinations are determined in Secs. V A
and V C. The value for ns can be obtained more easily from
experiments where the shear rate is suddenly changed (see
Sec. V B).

The viscometer employed was first calibrated over a range
of Reynolds numbers, using Newtonian fluids and hard sphere
suspensions of known viscosity, similar to the crystal mushes
we are ultimately interested in. The calibration (Sec. IV)
allows one to deduce viscosity from T and ω (and thus power
dissipation) and also to attribute to the flow root-mean-square
values of shear rate γ̇rms and shear stress τrms.

In general, this calibration, performed for Newtonian fluids,
cannot be used for non-Newtonian fluids. This is because the
material, being subject to different shear rates at different
locations, will also have a spatially dependent viscosity. The
resulting flow pattern will not correspond to any of the velocity
fields covered by the Newtonian calibration.

There is, however, a class of nontrivial rheologies to which
the calibration does apply: Suppose that following a sudden
change in shear rate, the viscosity is initially unchanged,
but then relaxes thixotropically towards a new viscosity
corresponding to the new shear rate. If this relaxation happens
on a time scale that is long compared to a rotation time of the
viscometer, then the viscosity will remain spatially uniform
even as it changes slowly with time, and the Newtonian
calibration can be used to deduce the viscosity even as it relaxes
to the new steady-state value.

The hallmark of this behavior is that if the rotation rate
is changed suddenly, the torque T will change discontin-
uously, but the calculated viscosity should be essentially
continuous (although its first derivative with time may be
discontinuous). Furthermore, only a relatively small fraction
of the ultimate change in viscosity should occur on a time
scale of a single rotation of the impeller. As we see in
Sec. V B, this is indeed observed for the crystal mushes studied
here.

Microstructurally, we interpret this rheological behavior in
the following way: If the dissipated power in the flow is coming
primarily from the deformation of the Newtonian serum, then
high values of crystal mush viscosity arise from the presence
of crystal clusters [2], which are built up and break down
dynamically in the flow. A sudden change in shear rate does
not immediately affect the cluster statistics, so it only acts
through a proportional change in the local flow rates in the
serum phase, and hence gives an instantaneously Newtonian
behavior of the suspension. Only over the course of several
inverse shear rates does the aggregation and breakup dynamics
converge to a different distribution of cluster sizes and shapes
(and thus a relaxed viscosity). Although both aggregation and
breakup are likely to occur more quickly at higher shear rates,
it is to be expected that breakup will increase more quickly than
aggregation, so that cluster size and hence viscosity will fall
with increasing shear rate. The relaxed viscosity will therefore
be shear thinning, a conclusion borne out by our results in
Secs. V A and V B.

A further complication is that even at constant rotation rate,
the viscosity falls gradually over time, which we interpret to
be due to the slow growth by ripening of the crystals. Data on
ripening are obtained by optical microscopy on samples taken
from the suspension and presented in Sec. V C.
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Finally, in Sec. VI, we make simple theoretical predictions
for the relaxed viscosity as a function of crystal size and
suspension shear rate, based on theories of adhesive contact
or sintering and fracture of crystal contacts, together with
aggregation and breakup dynamics. To do this, we argue that
at relatively high volume fractions and in the regime where
viscosity is dominated by clustering, the root mean square
shear stress τrms in the suspension is

τrms ∝ Fmax

R2
, (5)

where Fmax is the force required to break an adhesive contact
between two crystals, and the dimensionless prefactor depends
only weakly on volume fraction.

This allows us to predict values for ns and nr in terms of
theories for adhesion, liquid phase sintering, and fracture, and
compare these to the experimentally measured values. The
comparison of theory to experiment is shown in Fig. 16, and
we find good agreement with a simple liquid phase sintering
model and the evaporation-condensation theory of Kingery
and Berg [42].

III. MATERIALS AND METHODS

The rheological apparatus used was a custom-made vis-
cometer, developed by the engineering workshop at Unilever
Research Colworth, and referred to hereafter as a “stirred pot”
(Fig. 1). It consists of a jacketed cylindrical vessel of inner
radius Rpot = 0.04 m and depth Hpot = 0.135 m, maintained at
a set temperature of � = −10◦C by pumping propylene glycol
solution through the jacket and a circulating, refrigerating
Haake F8/C35 water bath. The impeller is an anchor geometry
(see Fig. 1), which rotates at a chosen angular frequency ω,
while torque T is recorded. We chose rotation rates in the range
200 to 400 rpm (ω = 20.9 to 41.9 rad s−1). In experiments with

FIG. 1. (a) Image of “stirred pot” viscometer, with the anchor
geometry impeller in the raised position. Scale bar is 10 cm. (b) Line
drawing of the anchor and stirred pot showing dimensions of the
anchor paddles and stirred pot.

TABLE I. Formulations of ice-sucrose suspensions, along with
the ice volume fraction expected for each suspension at −10◦C.

Sucrose (wt%) Water (wt%) φ (ice) at −10◦C

55.0 45.0 0
41.7 58.3 0.33
37.1 62.9 0.42
32.5 67.5 0.51
28.8 70.2 0.57

no change in rotation rate, data are collected every 300 s over
a run of several hours. In runs where we impose a step change
in rotation rate, data were collected every 2 s to observe the
transients arising from this change.

All experiments on ice-sucrose mushes were conducted at
fixed temperature � = −10◦C ±0.2◦C, so the ice volume frac-
tion φ is determined by the sucrose concentration only, and the
unfrozen serum phase has a fixed composition and therefore
viscosity at this temperature. The sucrose concentrations used
are shown in Table I, including a sucrose solution for which
no crystals formed, hence for which φ = 0, which is precisely
the composition of the serum phase in the ice-containing
samples at this temperature. This zero-ice formulation, being
Newtonian, was used for one of the calibration experiments.
Sucrose solutions were prepared by adding boiled water to
granulated sucrose and then cooling overnight to +5◦C, before
pouring into the stirred pot, which had been previously cooled
to −10◦C.

The remaining calibration experiments were conducted at
a range of different � and used 90% and 99.5% glycerol
(ρ = 1260 kg m−3, from Sigma-Aldrich), either alone or as
the serum phase in a suspension of silica spheres of R =
100 μm (with a range of 50 150 μm) and density 1800 kg m−3

(see Fig. 2; also from Sigma-Aldrich). These suspensions
are predicted to be Newtonian and behave according to the
Krieger-Dougherty relation, Eq. (1). The viscosities of the
glycerol without silica spheres, and the sucrose solution
without ice, were measured using an Anton Paar MCR501
rheometer.

FIG. 2. Image of the silica spheres added to the glycerol. Scale
bar 100 μm.
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In experiments where samples were extracted for image
analysis, the stirrer was briefly stopped (≈ 1 min), a small
portion of the sample was removed, and the temperature was
checked. The torque was not affected by the stoppages and
returned to its previous value after being switched back on.
The images were produced using a Leica DMLM microscope
and Leica DFC490 camera, and the slides were kept cool
using a Linkam cold stage with the temperature regulated at
−10◦C using a Landa RMB water bath. The crystals were then
analyzed using ImageJ software to get values of crystal radius
and aspect ratio. Two lines were drawn on an images of each
crystals, one of maximum length and a second perpendicular
to that. Using the ellipse function in ImageJ, the aspect ratio of
the crystal can be measured. In order to measure crystal radius,
the shorter line was removed and the perimeter function was
used.

IV. CALIBRATION

The aim of our calibration is to be able to deduce viscosity
η from torque T and rotation rate ω. In order to do this,
we have performed a series of calibration experiments using
Newtonian suspensions where viscosity is known, ω is set, and
T is measured. This allows us to come up with an equation to
predict suspension viscosity from the measured parameters of
the system.

First, we define a Reynolds number for our system as

Re ≡ ρR2
potω

η
, (6)

where ρ is the suspension density.
We cannot assume the experiments are performed at low Re,

with a laminar flow, so the measurement equipment must be
calibrated for a range of Reynolds numbers. In practice, for our
experimental data set, we encounter a (calculated) range from
2 < Re < 30. More specifically, we use three rotation rates,
ω = 20.9, 30.4, and 41.9 s−1, and the Reynolds numbers found
in each span the approximate ranges 2 < Re < 5, 10 < Re <

15, and 20 < Re < 30 respectively. The calibration in this
section covers the range 0.5 < Re < 350. The key assumption,
when we later use this calibration to determine mush viscosity,
is that this viscosity is spatially uniform in the stirred pot, even
if the material is thixotropic and (on longer time scales) shear
thinning. The experimental justification for this assumption is
provided in Sec. V B.

The stirred pot was calibrated using 99.5% glycerol at
different temperatures, either alone or as the liquid phase
in a suspension of 100 μm radii silica spheres at +18, +20
and +25◦C (see Fig. 2) and 90% glycerol at +21◦C with no
spheres. A second calibration set was performed using 55%
sucrose solution in water (with no silica spheres) at −10◦C, a
temperature and sucrose concentration where no ice is present
(these systems are all Newtonian or predicted to be so from
Krieger-Dougherty). A third calibration set was performed
using golden syrup (Tate and Lyle Ltd) at +25◦C; this set
was performed to observe the limiting behavior at low Re.
The viscosities of the glycerol and sucrose solutions were
measured, while viscosities of the silica sphere suspensions
were deduced from these values and the Krieger-Dougherty
relation for spheres, Eq. (1), using B = 2.5 and maximum

packing fraction φm = 0.64. The viscosity of golden syrup is
45 Pa s at +25◦C [43].

The glycerol and silica sphere suspensions were placed in
the stirred pot, and the torque T and temperature � were
recorded as a function of time t at different angular velocities
ω. The silica sphere suspension volume fractions used were 0,
0.42, and 0.51. For each run, measurements were taken over a
time of 30 min and were seen to be steady during that time.

The purpose of the calibration is to allow us to deduce
the viscosity of a fluid in the stirred pot from the torque and
rotation rate. Consider therefore the time-average power P

dissipated by viscous flow in the stirred pot. Let 〈·〉 denote an
average over both space (within the pot) and time (over a few
rotations), while γ̇ is the local, instantaneous shear rate in the
suspension. Then we note

P = T ω = Vpot〈ηγ̇ 2〉 = Vpotηγ̇ 2
rms, (7)

where the volume occupied by the suspension is

Vpot ≈ πR2
potHpot, (8)

and we have defined γ̇rms ≡ 〈γ̇ 2〉1/2. We have also used
the assumption that the viscosity is uniform and constant
(over a few rotation times at least) to bring η outside the
spatiotemporal average.

For small Re � 1 (creeping flow) we would expect
γ̇rms ∝ ω. However, for larger Re 	 1, there may be a more
complicated dependence. In general we take

γ̇rms = f (Re)ω (9)

for some function f (Re) to be determined. The function
f represents is a correction to the low-Reynolds-number
behavior, where it is a constant. For our system, f does not
vary by a large amount, and most of the change in γ̇rms arises
simply from the linear factor of ω in Eq. (9).

From Eqs. (7) and (9) we find

f 2 = T

Vpotωη
, (10)

so that Eqs. (6) and (10) allow us to plot f 2 as a function of
Re for the calibration experiments, as shown in Fig. 3.

At low Re, f 2 must tend to a constant, while at higher Re,
we find f 2 ∝ Re

1
2 (approximately). We therefore fit f 2 to the

following form:

f 2 = (C0 + C1 Re)
1
2 . (11)

Plotting up the data in Fig. 3, we find that a good fit can be
obtained with C0 = 3 and C1 = 0.66. Rearranging and solving
the quadratic equation allows us to deduce a (spatially uniform)
viscosity for the later experiments from known and measured
quantities of T and ω:

η ≈ T χ

0.33Vpotω

[
1 +

(
1 + 3χ2

0.332

) 1
2
]−1

, (12)

where χ is a nondimensional quantity given as

χ ≡ T

Vpotρω2R2
pot

. (13)
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FIG. 3. Calibration curve showing how f 2 varies as a function of
Re for the various calibration experiments that have been performed.
The curve is from Eq. (11) using C0 = 3 and C1 = 0.66. This spans
the values of Reynolds numbers from our experiments, which are
calculated as 2 < Re < 30.

We will also want to calculate values for γ̇rms, which from
Eq. (7) can be obtained from

γ̇rms =
(

T ω

Vpotη

)1/2

. (14)

Last, we define a root-mean-square stress

τrms ≡ ηγ̇rms. (15)

V. RESULTS FOR CRYSTAL MUSHES

A. Viscosity under constant rotation rate

Figures 4(a) and 4(b) show two typical profiles of torque
and viscosity [deduced from Eq. (12)] as a function of time
for ω = 41.9 rad s−1 and φice = 0.42 and φice = 0.51.

In Fig. 4(a) the measured torque starts low, as the stirred
pot contains only a sucrose solution at +5◦C and no ice. The
increase in torque (and viscosity) up to t ≈ 5000 s represents
both the cooling of the solution and the buildup of ice volume
fraction. After this, both the temperature and ice content have
reached steady-state values, and it is the rheology from this
time onwards that is the subject of the present paper.

Figure 4(b) shows the calculated η(t) for ice mushes
with φice = 0.42 and 0.51, as well as the viscosity of the
sucrose solution serum phase at this temperature (φ = 0) and
the predicted value of the viscosity of a Krieger-Dougherty
suspension in the same serum phase at volume fractions
φ = 0.42 and 0.51. In all cases, the mush viscosity is higher
than the Krieger-Dougherty predictions for hard, nonattractive
spheres.

The gradual decline of both torque and hence viscosity
over the remainder of the experiment is due to the increase
of crystal size through ripening. The decline of viscosity with
time follows an approximate power law, while there is strong
decrease of viscosity with increasing rotation rate ω, shown in
Fig. 5. Between runs at different ice volume fractions we see
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N
m
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φ
ice

 = 0.42

φ
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 = 0.51

102 103 104

t (s)
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η 
(P

a 
s)

 

φ
ice

 = 0.42

φ
ice

 = 0.51

φ = 0 (serum)
φ = 0.42+serum
φ = 0.51+serum

(a)

(b)

FIG. 4. (a) Variation in the torque profile as a function of time, for
experiments where φice = 0.42 and φice = 0.51 at ω = 41.9 rad s−1.
(b) Profiles showing the change in viscosity over time as the solution
crystallizes. The black curve shows the change in viscosity for
φice = 0.42, while the gray curve shows the data for φice = 0.51,
both stirred at ω = 41.9 rad s−1. The dash-dotted lines show the
expected viscosity for a sample with the same φ of hard spheres in
equivalent serum. The dashed line shows the viscosity of the serum.
The ice-sucrose suspension has a mean crystal size R = 100 μm at
t = 13 200 s. In these runs data were collected every 300 s.

an increase in viscosity with increasing φ; however, all runs
reach peak T (and hence η) at the same t . This is expected
to be a result of clusters aggregating more efficiently under
low shear conditions (due to the reduced force to break them
up) and the increasingly tortuous routes the serum must flow

102 103 104
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T
 (

N
m

)

ω = 20.9 rad s-1

ω = 31.4 rad s-1

ω = 41.9 rad s-1
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ω = 20.9 rad s-1

ω = 31.4 rad s-1

ω = 41.9 rad s-1

φ = 0 (serum)
φ = 0.42+serum

(a)

(b)

FIG. 5. (a) Profiles showing how torque varies through time for
different values of ω for a suspension with φice = 0.42. (b) Profiles
showing how viscosity varies for the φice = 0.42 samples with varied
angular velocities. These experiments show the shear thinning nature
of the ice-sucrose suspension. All shear rates show that the viscosity
is greater than the suspension viscosity expected from Eq. (1).

042606-5



GILBERT, OPPONG, AND FARR PHYSICAL REVIEW E 95, 042606 (2017)

ln η

ln t

A
B

C

lnγrms
.

FIG. 6. Schematic of experimental procedure at constant rotation
rate: Several experiments (A, B, and C in the figure) are performed at
constant rotation rate over a period of time. This leads to changing γ̇rms

over time t , and so the combined set of data points for time, viscosity
η, and shear rate γ̇rms (the latter two obtained from calibration) fall
on a plane (up to experimental error) and are fitted to the power law
of Eq. (4) using bivariate linear regression.

around the clusters. Shear thinning behavior is seen at higher
ω as higher shear rates disrupt clusters, limiting the degree of
aggregation that is possible and hence why high ω runs show
viscosities closer to the Krieger-Dougherty prediction.

From these results, we observe that for the entirety of our
run (postcrystallization peak) the viscosity is substantially
larger than the Krieger-Dougherty result of noninteracting
spheres (dash-dotted lines on Figs. 4 and 5). The viscosities
decline with a power law, suggesting that the suspension
viscosity may eventually drop to that of the Krieger-Dougherty
value and level off. With decreasing ω, the time this leveling
off takes is increased.

Ultimately, we are interested in the exponents ns and nr in
Eq. (2). However, in a given experiment at constant rotation
rate, both R and γ̇rms are changing (the latter because the
viscosity changes as the crystals grow in size). We therefore
use Eq. (4) to obtain the combinations of exponents nrpt and
nrps + ns . Because both t and γ̇rms are changing, we need
to perform a multivariate linear regression on runs at several
different rotation rates to obtain the requisite combinations
of exponents. The linear regression is shown schematically in
Fig. 6, and the results are shown in Table II.

Since in these experiments, when conducted at different
shear rates, the samples have undergone differing histories,
we do not obtain a simple measurement of the shear thinning
exponent ns alone. This can be seen in Eq. (4), where it is only

the combination of exponents that is accessible. To remedy
this, we look in the next subsection at experiments where a
sample is sheared at a constant initial rate ωi , and then at a
consistent time in the experiment the shear rate is stepped to a
new value ωf .

B. Viscosity after a step change in rotation rate

In Sec. IV, for our calibration to be correct, our mushes
are expected to see an instantaneously Newtonian response of
the suspension to changes in shear rate. This is followed by
a thixotropic relaxation period as the clusters reorganize and
adapt to their new shear environment. A series of experiments
have been run to observe this behavior. Samples are prepared
in the same way as for the continuous experiments and placed
in the stirred pot, set at ωi = 31.4 rad s−1 and � = −10◦C.
Then, at t = 14 400 sω is rapidly raised or lowered to a new
rotation rate ωf . The suspension is then allowed to relax with
no further changes in ω. The impeller takes around 10 s to get
up to the correct speed when the setpoint is changed and, as
Fig. 7 shows, the relaxation time scale is considerably greater
than 10 s.

The results of the experiments show that although T

changes discontinuously, η changes continuously (albeit iner-
tia of the experimental apparatus is a potentially confounding
effect). The viscosity displays a shear-thinning and thixotropic
response [see Figs. 7 and 8(a)–8(d) for an increase in ω], with
a relaxation time scale trelax ≈ 300 s much greater than the
time for a single rotation of the impeller. From analyzing the
instantaneous T , η, and γ̇rms at t = 14 400 s and extrapolating
to that time for the relaxed response, we can calculate η,
γ̇rms and τrms at the step point for both values of ω. Plotting
these data points in Figs. 9(a) and 9(b), we evaluate ns from
Eq. (2) at t = 14 400 s. Since R is constant, nr can be
disregarded in this calculation and we find an average value of
ns = −1.76 ± 0.25.

The uncertainty in ns is quite large, due to the scatter of the
data and the limited range of rotation rates (and therefore γ̇rms)
employed. The accessible shear rate range is limited by the
current impeller geometry: Lower rotation rates lead to rapid
clotting of the material and the formation of icy plugs, which
give unusable datasets, while higher rotation rates can lead to
air entrainment or spillage of material from the stirred pot.
Despite this scatter, the data in Fig. 9 do not appear to support
a relationship more complex than a single power law (which is
also the result of our theoretical analysis). The effect of scatter
and limited range of shear rates is that the true value of ns is

TABLE II. Experimental values for combinations of exponents [see Eqs. (3) and (4) in the text] for mushes under constant rotation rate ω

(but varying γ̇rms). The results are obtained from multivariate linear regression, fitting either ln η or ln R to a linear function of ln t and ln γ̇rms.
Several experiments at differing but constant ω are used for each regression analysis. We observe in the last column a nonmonotonic behavior
of our exponents with φ. The standard deviations are from multiple experiments. Some quantities are not measured in particular experiments;
these are denoted “n.m.”

φ (ice) Values of ω / rad s−1 pt ps (nrpt ) (nrps + ns)

0.42 20.9, 31.4, 41.9 0.14 ± 0.07 −0.01 ± 0.19 −0.25 ± 0.20 −1.72 ± 0.20.
0.51 20.9, 31.4, 41.9 n.m. n.m. −0.24 ± 0.20 −1.25 ± 0.20.
0.57 20.9, 31.4 n.m. n.m. −0.19 ± 0.20 −1.51 ± 0.20.
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FIG. 7. Exponential decay of �η (gray points) as a function of
time before and after a step change in rotation rate, where �η is the
difference between the calculated viscosity and the relaxed viscosity
at the new shear rate, extrapolated back to the time the rotation rate
was changed. For this experiment φice = 0.42, ωi = 31.4 rad s−1,
and ωf = 41.9 rad s−1, with the step change in ω occurring at
t = 14 400 s. The black dashed curve is the best fit exponential
with the form �η = �η0 exp(−t/trelax), and from this trelax can be
determined.

likely to be slightly more negative than our estimate from the
regression line in Fig. 9.

We can calculate the time scale of thixotropic relaxation
trelax by fitting an exponential curve to the relaxation period
where the long-term trend has been removed. This is shown in
Fig. 7 and average values of trelax = 370 s for both values of
φice are found in Table III.
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FIG. 9. (a) Plot showing the measured viscosity and root-mean-
square shear rate at t = 14 400 s. The lines are best-fit lines, with
prefactors related to φ and the exponents given as ns = −1.76
± 0.23 for φice = 0.42 and ns = −1.76 ± 0.27 for φice = 0.51. (b)
Plot showing the root-mean-square shear stress vs root-mean-square
shear rate at t = 14 400 s. Both lines have a gradient of −0.75. For
both plots, error bars are the size of the markers.

C. Crystal radius and shape

The size and shape of the ice crystals produced were
measured at various times during each run. The average radius
R of the ice crystals increases with time t , as seen in Figs. 10(a)
and 10(b).

At a fixed T , one might expect R to increase as a power of
time t and also to depend on ice volume fraction and perhaps
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FIG. 8. Measured and calculated properties and how they evolve through a step change in ω. For this experiment φice = 0.42, ωi =
31.4 rad s−1, and ωf = 41.9 rad s−1, with the step change at t = 14 400 s. (a) The measured torque changes discontinuously, with a sudden
sharp increase when ω is dropped, before relaxing to below the original value. (b) η [calculated from Eq. (12)] changes more continuously and
shows a thixotropic relaxation following the change in ω. Rectangle denotes portion which is shown in detail in Fig. 7. (c) γ̇rms shows a jump
before steadying. This value is calculated from Eq. (14). (d) Overall root-mean-square stress shows a small decrease due to the change in ω,
calculated from Eq. (15). In this experiment data are logged every 2 s.
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TABLE III. Experimental values for the thixotropic viscosity
relaxation time trelax calculated from the fitted exponential decay.
Results are from experiments where the rotation rate starts at ωi ,
and at a time t = 14 400 s is suddenly changed to a new value ωf .
Errors are from the fitting of an exponential decay function to a single
experimental run and do not include the additional scatter that would
arise between replicates.

φice ωi / rad s−1 ωf / rad s−1 trelax/s

0.42 31.4 20.9 204 ± 6
0.42 31.4 26.2 354 ± 5
0.42 31.4 36.7 554 ± 9
0.42 31.4 41.9 622 ± 13
0.51 31.4 20.9 400 ± 10
0.51 31.4 26.2 391 ± 7
0.51 31.4 36.7 182 ± 8
0.51 31.4 41.9 243 ± 13

shear rate, as shown in Eq. (3). We believe that the secular
increase in crystal size throughout an experiment at constant
ω accounts for the slow decline in torque and (calculated)
viscosity.

At zero shear rate, if crystals grow by Ostwald ripening [17],
driven by the Laplace pressure of the ice-liquid interfacial
energy σ and limited by the interdiffusivity of solute and
solvent through the liquid, then one would expect the ripening
exponent pt = 1/3. This scaling has been observed not only in
the dilute limit where Lifshitz-Slyozov-Wagner (LSW [18,19])
theory applies but also in more concentrated systems [44]. One
would expect shear to accelerate the ripening by introducing
mixing in addition to diffusion, but the only mechanism
which would lead to a change of exponent pt is if interfacial
attachment kinetics can limit ripening, rather than diffusion,
resulting in a value of pt = 1/2 [19]. Mixing from shear might
push a system into this regime from the diffusion-limited case.

However, from imaging the crystals in the mushes studied
here, we observe for a range of conditions (see Fig. 11) that
R ∝ t0.2 at fixed ω, and depends only weakly on rotation rate.
In order to obtain the exponents pt and ps in Eq. (3), we again
note that at constant ω, the shear rate will vary with time, so
we need to perform bivariate regression analysis using a range
of steady values of ω and fitting ln R to a linear combination
of ln t and ln γ̇rms.

The results, shown in Table II, are that ps is small (indeed
consistent with being zero), while pt takes the unexpectedly
low value pt = 0.14 ± 0.07. (Figure 11 shows a best-fit line
with exponent = 0.2 for all crystal sizes, but this includes
some data that were excluded from the bivariate regression
analysis since we only have different ω experiments for φ =
0.42.) A low value for the exponent pt (relative to theories of
ripening) has also been seen previously in cryogenic ripening
under shear [45], where ice has been observed crystallizing
within a NaCl solution at different temperatures and shear
rates. However, to our knowledge, no theory has predicted this
exponent for ripening crystal systems.

As well as size, we measured the aspect ratios of crystals
sampled from the stirred pot. The shape of the crystals does not
change significantly with time, with the aspect ratio remaining

FIG. 10. Images of ice crystals after different residence times
within the stirred pot, in a φice = 0.42 suspension, with ω =
31.4 rad s−1. (a) After t = 4230 s (corresponding to the time of
peak torque). (b) After t = 83 000 s. Scale bar for each is 200 μm.
Insets are shown for one crystal, at the same scale, with the lines
showing principal axes from which aspect ratio and long axis length
are measured.
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R ∝ t0.2

FIG. 11. Changes in crystal radius as a function of time in the
stirred pot. Solid line is best-fit power law, with slope 0.2. Error bars
show 95% confidence intervals, calculated using a bootstrap method.
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FIG. 12. Aspect ratio of ice crystals as a function of time in the
stirred pot. Error bars show 95% confidence intervals, calculated
using a bootstrap method.

around 1.6, as shown in Fig. 12 (the same result as observed
by Ref. [45]).

In some images of ice, however, the crystals appeared to be
abraded, had rough surfaces, and were often misshapen (this
can be seen in Fig. 13). Abrasion and breaking of partially
sintered grains might be expected to occur under a high
shear rate, so these processes are a possible cause for the
unexpectedly small growth exponent pt we observed.

D. Values and consistency of the exponents

From the results in Tables II and Fig. 9(a), we deduce the
four exponents that are predicted in Eqs. (2)–(4) using the step
change experiments for ns and the constant ω experiments for
pt , ps , and nrpt to obtain

ns = −1.76 ± 0.25, (16)

nr = −1.8 ± 1.3, (17)

FIG. 13. Image of crystals in φice = 0.42 at ω = 31.4 rad s−1,
at t = 25 000 s. There are numerous misshapen grains, with some
showing instances of abrasion and damage. Scale bar is 200 μm.

pt = 0.14 ± 0.07, (18)

ps = −0.01 ± 0.19. (19)

We also have an independent test of these exponents because
we measure nrps + ns , but we have not used this in deriving
Eqs. (16)–(19). We find, from these equations, nrps + ns =
−1.78 ± 0.34. This is consistent with the measured value in
Table II of −1.49 ± 0.12.

VI. THEORETICAL MODELS

A. Stress arising from dynamic clusters

In this section, we relate our observed rheology to the
microstructural physics of the mushes.

At moderate to high volume fractions, the presence of even
simple hard particles substantially increases the viscosity of
a suspension over that of the serum. For our systems, the
introduction of adhesive forces leads to a further large increase
in viscosity, as seen in Fig. 5. There are two complementary
ways to view this: through power dissipation and through force
networks.

In the view based on power dissipation, for hard particles,
this power is generated exclusively in the solvent. This remains
essentially true if there are adhesive contacts, as long as they
are brittle, so they break at very small strains. The increased
viscosity arises from the tortuous paths and higher local shear
rates imposed upon the serum as it flows around the particles.
Even in the absence of adhesive forces, the flow must generate
some correlations in particle position [46]; otherwise a simple
self-consistent picture of particle pairs passing one another
would predict a logarithmic divergence of viscosity with
(φ − φm), in contrast to the much stronger divergence pre-
dicted in Eq. (1). The high viscosities associated with adhesive
forces must arise, in this picture, from the formation of
extended structures (clusters) of crystals in the flow, which
force even larger local strain rates on the serum phase.

The second picture is based on force networks. At high vol-
ume fractions, hydrodynamic forces become more localized
between neighboring particles, so to a good approximation
one can ignore the serum, replacing it with pairwise lubrication
forces between the crystals.

The key assumption we make in this section is that the
clusters formed in the flow are transient and in a quasisteady
state (ignoring the slow ripening dynamics). That is to say,
they form and break up over a time scale on the order of
an inverse shear rate. More specifically, we suppose that any
bond which forms between a pair of crystals survives only for
a time tbond ∼ γ̇ −1

rms before being ruptured. This means that if
there are clusters present, a typical tensional force between
crystal pairs, in the extensional direction of the flow, is on the
order of the rupture force Fmax of the adhesive bond that is
present. We assume that this sets the scale for all interparticle
forces (extensional or compressive) in the flow.

Let the ith component of the pair force between particles m

and n be F
[m,n]
i , where the j th component of the vector joining

their centers is r
[m,n]
j , and let the representative volume of the

suspension under consideration be V . The mean stress tensor
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in the suspension, with components τi,j , will be given by [47]

τi,j = 1

2V

∑
m,n

F
[m,n]
i r

[m,n]
j . (20)

Since contact forces are only possible between near
neighbors, the number of pairs of particles per unit volume
between which a nonzero force obtains will scale as R−3

(with a prefactor that depends slightly on volume fraction
near φm). For moderate-to-high volume fractions, the length
of each vector r[m,n] will be close to 2R and by assumption the
forces are of typical magnitude Fmax, the rupture force of an
adhesive bond. So from Eq. (20), we arrive at an estimate for
the root-mean-square shear stress in the system:

τrms ∝ FmaxR
−2, (21)

where the constant of proportionality is dimensionless, of order
unity, and depends only weakly on volume fraction near φm.

We expect Eq. (21) to hold while there is a substantial
amount of (transient) adhesive clusters in the flow. At suf-
ficiently high shear rates, it is possible that breakup is so
effective that all adhesive bonds are broken in a time much
less than γ̇ −1

rms, so there are effectively no clusters. As this state
is approached, there will be a crossover to the hard particle
(Krieger-Dougherty) viscosity.

The problem now reduces to finding the maximum force
required to separate two crystals after they are brought into
contact. We expect this to depend in a power-law manner
on the crystal radius R and the contact time tbond ∼ γ̇ −1

rms.
Substituting such a power law behavior into Eq. (21) and
comparing to Eq. (2) allows us to relate the exponents (which
will be predicted by the various theories that follow) to ns

and nr :

Fmax ∝ γ̇ ns+1
rms Rnr+2. (22)

In the following subsection, we present some theories from
the literature for the bond strength Fmax in terms of tbond

and R.

B. Theory for adhesive spheres

Johnson-Kendall-Roberts (JKR) theory [48] describes the
contact mechanics between two elastic spheres of radius R

when there is a reversible, adhesive interfacial energy per unit
area σsurf between them if they touch. The resulting expression
for the maximum force to separate them is

Fmax = 3π

2
σsurfR. (23)

From Eq. (22), this leads to predicted exponents ns = nr =
−1.

Direct measurements of adhesive force have been per-
formed on micromanipulated ice particles in air and sucrose
solution [49]. These results are broadly consistent with JKR
theory, but display a time dependence not present in the theory.

C. Theory for sintering then brittle fracture

Suppose two crystals have sintered together to form a neck
of radius xsint with no elastic stresses present [Fig. 14(a)].

xsint
xsint

x(b)(a)

xcr

h=0
F=0 F>0

h>0

FIG. 14. (a) Geometry of two spheres of radius R which have
come into contact and formed a sintered neck, of radius xsint. The
applied tensional force F is zero. (b) Geometry when a tensional
force is applied. The sphere centers have moved apart a distance h

and the neck begins to fail, opening up an annular mode I crack of
thickness xcr so that the radius of the sintered contact disk reduces to
x = xsint − xcr.

Eventually, this neck will break by brittle fracture (mode I
loading [50]) when a tensional force Fmax is applied.

Consider the situation when a smaller force F < Fmax is
applied, under which the neck may open up an annular crack
so that the new radius of the contact disk is x < xsint [see
Fig. 14(b)]. The energy per unit area of the new surface created
is σcr, which for a brittle fracture will be similar to the ice-water
or ice-vacuum surface energy, but for ductile fracture will be
larger due to plastic deformation near the crack tip.

If we consider the scaling behavior, neglecting numerical
factors of order unity, then the energy of the new surface
created is

Usurf ∼ σcr
(
x2

sint − x2). (24)

Under the action of the force, the center-to-center distance
increases by h. The elastic deformation of the spheres is
localized to a roughly isotropic region of radius x around
the center of symmetry of the pair [51]. Thus the deformed
volume is of order x3 and the strain of order h/x. The elastic
energy stored is then

Uel ∼ Yxh2, (25)

where Y is the elastic modulus of the crystals.
The total energy of the system (surface, elastic, and the

work done by the applied force) is thus

Utot ∼ Usurf + Uel − Fh. (26)

For an imposed force F the system will choose h and x to
minimize Utot, under the constraint that x cannot exceed xsint

(and by definition x � 0).
Let us define some nondimensional parameters of the

system:

x̃ ≡ Yx

σcr
, h̃ ≡ Yh

σcr
, F̃ ≡ YF

σ 2
cr

, (27)

�Ũ ≡ Y 2
(
Utot − σcrx

2
sint

)
σ 3

cr

,
(28)

so that from Eq. (26) the nondimensionalized total energy is

�Ũ = −x̃2 + h̃2x̃ − F̃ h̃. (29)

Consider the behavior of the system when the force F is
imposed. The starting condition is x = xsint and h = 0. The
system will then follow a path downhill in �Ũ in the space of
(x̃,h̃). This means [see Fig. 15] that provided the separatrix of
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FIG. 15. Contour plots of the nondimensionalized total energy
�Ũ [see Eq. (29)] of two sintered spheres being pulled apart by
a nondimensionalized force F̃ . The initial conditions are shown by
the gray circle and correspond in this example to (x̃,h̃) = (3/2,0).
The contour through the saddle point is shown in gray and is the
separatrix for two different behaviors of the system. Solid contours
have values of �Ũ greater than the saddle-point value, and dashed
curves have values less than this. The system will follow a path of
decreasing �Ũ , but is restricted to x̃ � 3/2 at all times. (a) F̃ = 0.
The initial condition is already the minimum energy point (under the
constraint x̃ � 3/2). (b) F̃ = 1. This is less than the critical value,
and the minimum energy of the system is when x̃ takes its maximum
value of 3/2 and h̃ is greater than zero. (c) F̃ = 33/4, the critical value
in this example. The separatrix passes through the initial conditions.
(d) F̃ = 3, greater than the critical value. There is a path, always
downhill in total energy, in which x̃ → 0 and h̃ → ∞, so the neck
between the crystals breaks and they can separate to an arbitrarily
large distance.

Eq. (29), which is the contour passing through the saddle point,
lies to the left of the starting point, the minimum is achieved
when h is positive and x = xsint. However, when F increases
to the point that the separatrix passes the initial condition
[Fig. 15(d)], the system fails catastrophically and h → ∞ and
x → 0, so the neck breaks and the crystals separate to an
arbitrarily large distance.

The critical force for this to occur is Fmax, which can be
found as follows: Treating Eq. (29) as quantitative, the value
of �Ũ at the saddle point, where ∂�Ũ/∂x̃ = ∂�Ũ/∂h̃ = 0
is −(3/4)F̃ 4/3. The equation for the separatrix is therefore

−(3/4)F̃ 4/3 = −x̃2 + h̃2x̃ − F̃ h̃, (30)

and this curve intersects the x̃ axis at x̃ = (
√

3/2)F̃ 2/3. The
critical force occurs when this intersection coincides with the
initial condition x̃ = Yxsint/σcr, so restoring dimensions using
Eq. (27) we find (up to an unknown numerical prefactor) that

Fmax ∝ (
Yσcrx

3
sint

)1/2
. (31)

In order to complete this model, we need to know how the
radius xsint of the sintered junction between two crystals grows
with contact time. Although various mechanisms of sintering
are possible [16,42], including plastic flow, van der Waals
attraction, and vacancy diffusion in the crystal, it is likely that

bulk-diffusion-limited liquid-phase sintering is the dominant
process for a pair of molecularly rough [52] crystals brought
into contact when immersed in a solution of their melt. Even
for this process, various theories have been put forward in
the literature to describe the growth of the neck radius xsint

with contact time tbond (where, to reiterate, in the flow, we will
choose tbond = γ̇ −1

rms).
For liquid phase sintering, consider the surface mean

curvature κ near the neck region of the pair of sintering
crystals. Assuming a crystal has a roughly isotropic surface
energy σsurf and a latent heat of fusion Lf per unit volume, the
Gibbs-Thomson effect [53] states that if a flat crystal surface
has an (absolute) melting temperature �m, the melting point
of a curved crystal surface will be changed by an amount

δ�m = �m σsurf κ/Lf . (32)

For our systems, the crystals are not in contact with their
pure melt, but with a solution of sucrose, so that at some
temperature �, there will be a mass fraction ceq(�) of solute
that is in equilibrium with a flat crystal surface. This dissolution
curve must be found empirically. Assuming Eq. (32) applies
to the dissolution curve when there is solute present, a simple
graphical construction shows that at constant temperature,
curvature induces a change δc in the equilibrium solute mass
fraction in contact with ice [54]:

δc ≈ −�
dceq

d�

κσsurf

Lf

. (33)

For water-sucrose systems, thermal diffusion is much faster
than mass diffusion [55], so the system remains isothermal.
Surface curvature induces changes in water concentration in
the serum phase, and neck growth is driven by mass diffusion
down the resulting concentration gradients.

A naïve theory of sintering by dissolution and precipitation
posits, on geometrical grounds, that

κ ≈ R

x2
sint

, (34)

and furthermore that the concentration difference of Eq. (33)
operates over a length scale of order R. Therefore, the
prediction would be that dxsint/dtbond ≈ Dδc/R, where D is
the interdiffusivity of solute and solvent in the unfrozen serum
phase. This can be rearranged to give

xsint

R
≈

(
D�σsurf

R3Lf

∣∣∣∣ dc

d�

∣∣∣∣tbond

)β

, (35)

where β = 1/3. Substituting Eq. (35) into Eq. (31) and then
Eq. (22) leads to the predicted exponents

ns = −1 − 3β

2
, (36)

nr = −1

2
− 9β

2
. (37)

For β = 1/3, this leads to predictions of ns = −3/2 and nr =
−2.

In contrast, Courtney [56] argued that diffusion in the
narrowing (wedge-shaped) gap between the two spheres is
likely to be significantly hindered by the geometry, so that by
considering diffusive trajectories and the mass of material that
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FIG. 16. Plot showing how the experimentally derived values of
nr and ns compare to the theoretical values given in Table IV.

gets added to the neck, it is possible to conclude that the form
of Eq. (35) is correct, but with β = 1/5 or β = 1/6 (depending
on detailed assumptions of the time scales involved). Another
recent theory from Farr and Izzard [54] points out that Eq. (34)
is unlikely to be correct, as the narrowest region of the
neck may become significantly blunted. By considering a
teardrop-shaped solitary wave solution for the sintering of two
parallel sheets, the authors ultimately arrive at a prediction
again of the form of Eq. (35), but with β = 1/4.

Kingery and Berg [42] provide scalings for xsint for several
different sintering processes. For evaporation-condensation
they find

xsint ∝ R1/3t
1/3
bond, (38)

while for diffusion in the crystal

xsint ∝ R2/5t
1/5
bond. (39)

The predicted exponents for all of these mechanisms are
shown in Table IV and are compared to the exponents collected
from the experimental analysis (Sec. V D) in Fig. 16. The
models of JKR [48] and Courtney [56] can be ruled out as they
lie well outside the experimental uncertainties. We believe
that the vacancy-diffusion model of Kingery and Berg [42]
should also be eliminated, as self-diffusivity in ice at this
temperature (around 1.3 × 10−15 m2 s−1 [57]) is much lower
than the diffusivity of water in the serum phase (and further

the vacancy or interstitial fraction is low in ice crystals). We do
see agreement, within experimental uncertainties, between our
experimental dataset and the exponents found from the naïve
liquid phase sintering theory and the evaporation-condensation
model of Kingery and Berg [42].

The large error bars on the values of the rheological
exponents are mainly due to limitations on the size of the
shear rate range collected (as discussed above) and could
perhaps be reduced with different experimental apparatus.
It is also notable that there is dispute in the literature
about the theoretical exponents for neck growth, even when
considering the single mechanism of sintering by diffusion
through the liquid phase. It would be desirable to obtain
direct experimental data, from optical microscopy, on the
dynamics of neck growth between crystals. However, this is
experimentally challenging, as neck growth happens on a time
scale of order a reciprocal shear rate (longer than the time for
sample collection and transport to the microscope) and it is
not clear that the resolution of the current apparatus would
be sufficient. More theoretical or simulation work in this area
would therefore be desirable.

VII. CONCLUSIONS AND IMPLICATIONS

We have found that the viscosity of ice-sucrose mushes has
a power-law dependence on shear rate and crystal size. These
powers can be explained due to the formation of clusters of
crystals by liquid-phase sintering and breakup of these clusters
by brittle fracture under flow. We have observed under long
time scales the crystals ripen under shear, with a power of time
that is smaller than any published theory. We interpret this as
possibly due to abrasion or effects of cluster breakup on the
crystals.

We believe that the present work, on a model system with
subspherical, sintering crystals, represents a step towards un-
derstanding the rheology of a much broader class of materials
which are of great technological and social importance. This
class of material includes volcanic and cryogenic lavas, frazil
ice, frozen foods, and salt slurries.

The phenomenology of ice-sucrose systems should be
directly relevant to the behavior of cryogenic lavas, which
have been discovered widely throughout the moons and minor
planets beyond Mars, for example, Ceres [7], Ganymede [58],
Titan, Enceladus [6], Triton [59], and Pluto [60]. These lavas
have various ices present as crystal phases; therefore, one
would expect liquid-phase sintering as suggested here will

TABLE IV. Theoretical predictions for the exponents ns and nr in Eq. (2) from different literature sources, as analyzed in Sec. VI, compared
to the experimental exponents from this study.

Theoretical model ns nr

JKR adhesive spheres [48] −1 −1
Naïve theory of fracture and liquid-phase sintering −3/2 −2
Fracture and liquid-phase sintering by diffusion, short times (Courtney [56]) −13/10 −7/5
Fracture and liquid-phase sintering by diffusion, long times (Courtney [56]) −5/4 −5/4
Fracture and liquid-phase sintering (Farr and Izzard [54]) −11/8 −13/8
Fracture and sintering by evaporation-condensation (Kingery and Berg [42]) −3/2 −3/2
Fracture and sintering by vacancy diffusion (Kingery and Berg [42]) −13/10 −7/5
Experimental results −1.76 ± 0.25 −1.80 ± 1.30
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be relevant to the features produced by such flows [5]. These
results will be of more limited importance to the study of
terrestrial lavas, as in general the rheology of such flows can be
described by a modified Krieger-Dougherty relationship [3].

For large bodies of magma which contain reservoirs of crys-
tal mush, the situation is different. Liquid-phase sintering has
been predicted to occur in granitic mushes with a high degree
of partial melt and confirmed through dihedral angles between
quartz-feldspar and quartz-quartz grain junctions [61]. There
is also extensive evidence of solution-precipitation sintering
dynamics in olivine-basalt aggregates [62,63].

Knowing viscosity is of crucial importance in understand-
ing the behavior of magmatic hazards. Crystal-rich ignimbrites
(from highly voluminous, explosive eruptions) are observed
in the rock record [64], with the crystals expected to come
from a long-lived stored mush reservoir [65], which has
been triggered due to a change in the thermal state of the
reservoir [64]. Although the Krieger-Dougherty relationship
is often used in the literature to describe eruptible magmas
with φ ≈ 0.5–0.6 [64], the yield stress behavior just noted and
the shear rate and time dependence that we have uncovered in
the present work suggest that eruptibility of these magmas is

being overstated (and the viscosity vastly underestimated) by
the Krieger-Dougherty relation.

Moving beyond subspherical crystals, frazil ice forms
due to turbulent mixing of supercooled salt water, often in
polynyas near ice shelves [66]. The ice crystals formed are
needle shaped and often stick together in clots. We believe
the rheology of mushes of high-aspect-ratio crystals is both
of critical importance (since it applies to many magmatic
systems as well as frazil ice) but has received little study
in the literature. Such systems bring added complexity and
experimental challenges from the possibility for flow-induced
alignment.
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