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Criticality and mechanical enhancement in composite fiber networks
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Many biological materials consist of sparse networks of disordered fibers, embedded in a soft elastic matrix.
The interplay between rigid and soft elements in such composite networks leads to mechanical properties that
can go far beyond the sum of those of the constituents. Here we present lattice-based simulations to unravel
the microscopic origins of this mechanical synergy. We show that the competition between fiber stretching and
bending and elastic deformations of the matrix gives rise to distinct mechanical regimes, with phase transitions
between them that are characterized by critical behavior and diverging strain fluctuations and with different
mechanisms leading to mechanical enhancement.

DOI: 10.1103/PhysRevE.95.042503

I. INTRODUCTION

Many materials, ranging from textiles and paper to connec-
tive tissue and the cytoskeleton of living cells, have a micro-
scopic structure that consists of crosslinked fibers. Theoretical
progress in the last decades has led to a detailed understanding
of the physics of such fiber networks [1]. Because stiff fibers
resist not only stretching, but also bending, the mechanical
behavior of fiber networks differs significantly from that of
networks of flexible polymers. Different mechanical regimes
can be observed: at high densities fiber networks deform
affinely and the elasticity is governed by fiber stretching,
while at lower densities there is a crossover to a nonaffine,
bending-dominated regime [2–6].

Although experiments on model networks give support
to the existence of different mechanical regimes [7–9], the
current theories fall short in describing real biomaterials. An
important reason for this is that natural materials are almost
without exception composite materials that consist of mixtures
of elements of different rigidity: the cytoskeleton is a complex
network of (partially bundled) actin filaments, intermediate
filaments, and microtubules [10]; the extracellular matrix
consists of stiff collagen fibers in a matrix of more flexible
polymers [11]; and also many synthetic high-performance
materials are composites of soft and rigid fibers [12–16].
Recent experimental work has shown that networks of stiff
fibers embedded in an elastic matrix can have an elastic
modulus that significantly exceeds the sum of the moduli of
the two individual networks [17,18]. It was hypothesized that
this mechanical enhancement was caused by a suppression of
nonaffine deformation modes in the rigid fiber network due to
the reaction forces in the softer network. However, a theoretical
underpinning of this hypothesis was missing. Previous models
considered the effect of sparse rigid inclusions in a softer
base network [19–24]. These models indeed showed that the
interplay between stiff and soft components can strongly affect
the deformation modes and stiffness of a composite network.
However, there has been no systematic investigation of how
the mechanical response of a composite network depends on
the connectivity of the fiber network and on the stiffness of the
individual constituents. Here, we present a model that allows
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us to explore the mechanics of composite networks over a
large range of parameters and compositions, both for sparse
fiber networks and for highly connected fibers.

II. MODEL

We use numerical simulations to study the mechanics
of disordered composite networks, consisting of crosslinked
fibers embedded in a soft elastic matrix. Both the fibers and the
polymers that constitute the background matrix are arranged on
a two-dimensional (2D) triangular lattice with lattice spacing
l0, as shown in Fig. 1. The effects of connectivity are explored
by randomly removing segments of the fiber network with
a probability 1 − p, so that the average connectivity equals
z = 6p. Sequences of contiguous colinear fiber segments are
treated as elastic rods, characterized by a stretch modulus μ1

and a bending modulus κ1. Since fibers in biomaterials are
typically much softer with respect to bending than to stretching
[1], we will only consider the case that κ1 � μ1l

2
0 . Intersecting

fibers are assumed to be crosslinked with permanent but
freely hinged bonds. The background matrix is modelled as a
homogeneous network of undiluted central force springs with
stretch modulus μ2. The two networks are linked to each other
at each vertex of the lattice. To investigate the mechanical
response of the composite network, we calculate the linear
shear modulus G by applying a shear strain γ = 10−2 to the
network by translating the horizontal boundaries to which the
fibers and springs are attached. The network is then relaxed by
minimizing the total mechanical energy
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where l0 is the lattice spacing, �lij the extension of the segment
between vertices i and j , �θijk the angle between neighboring
bonds i–j and j–k, and g

(1)
ij = 1 if there is a fiber segment

between vertices i and j , while g
(1)
ij = 0 otherwise. The first

term represents the stretch energy of the fibers, the second term
the bending energy, and the third term the elastic energy of the
matrix. The first and third summations extend over all bonds
i–j , while the second summation extends only over colinear

2470-0045/2017/95(4)/042503(7) 042503-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.042503


VAN DOORN, LAGESCHAAR, SPRAKEL, AND VAN DER GUCHT PHYSICAL REVIEW E 95, 042503 (2017)

FIG. 1. Composite networks on a triangular lattice. A small
section of a deformed network of fibers in a soft matrix, with
κ1/(μ2l

2
0 ) = 10−6 and μ2/μ1 = 10−12 for (a) p = 0.65 and (b)

p = 0.45. Thick segments represent fiber segments, color-coded for
their bending energy (yellow: strongly bent, blue: weakly bent),
and thin segments represent the background matrix, color-coded for
stretching energy (yellow: strongly stretched; blue: weakly stretched).
Inset in (b) shows an example of a rigid rotation of a fiber cluster.

neighboring bonds. This energy can be expressed in terms of
the node displacements [6] using �lij = (uj − ui) · r̂ij with
r̂ij the unit vector along the i–j bond, and �θijk = (uk + ui −
2uj ) × r̂ij . The energy is minimized using lower upper (LU)
decomposition, giving the equilibrium nodal displacements.
The shear modulus is calculated as G = (2/A)(E/γ 2) where
A is the area of the network. In our simulations we use A =
4 × 104l2

0 . Results for other system sizes are shown in Fig. 7
in Appendix B.

III. RESULTS

A. Mechanical regimes

In Fig. 2, we show the shear modulus as a function of the
connectivity p for various values of the matrix stiffness μ2.
For μ2 = 0, G vanishes when the connectivity is lower than a
critical rigidity threshold. For fibers with no bending rigidity
(κ1 = 0, dashed line), this threshold is pcf ≈ 0.651, as given
by Maxwell’s criterion for isostatic networks of central force

FIG. 2. Elasticity of composite networks. Shear modulus G (in
units μ1/l0) as a function of the bond probability p for κ1/μ1l

2
0 =

10−6 and for a range of stiffnesses of the background matrix. The
black line corresponds to μ2 = 0 and the dashed line to μ2 = 0 and
κ1 = 0.

springs [25]. For nonzero κ1, however, the rigidity threshold
shifts discontinuously to a lower value, pb ≈ 0.442, which
is independent of κ1 for κ1 > 0 (black line). The results for
different values of the bending rigidity are shown in Fig. 6 in
Appendix A. In the presence of an elastic matrix with nonzero
stretch modulus μ2, the network is mechanically stable for any
value of p. However, features of the mechanical transitions at
pcf and pb can still be seen, as the shear modulus decreases very
steeply with decreasing p around these points (Fig. 2). This
suggests that both points mark a transition between distinct
mechanical regimes in the composite network.

To investigate the nature of these different regimes, we
examine both crossover regions in more detail. For low values
of μ2, the mechanical response of the composite network is
dominated by the fiber network for p sufficiently above pb. We
therefore expect that the crossover region at pcf is similar to the
one observed in single-component fiber networks. As shown
previously [6], in such networks the central force threshold
coincides with a transition from a stretching-dominated regime
for p > pcf to a bending-dominated regime for p < pcf. The
presence of an elastic matrix as embedding medium is expected
to affect this transition because fiber bending is a nonaffine
deformation mode, which inevitably leads to additional strain
in the medium. The elastic energy stored in the matrix due to
the bending of an embedded fiber increases proportionally to
the matrix stiffness μ2 [27]. We therefore expect the resistance
to bending to increase linearly with μ2. Indeed, we find that
we can collapse our data by introducing an effective bending
rigidity, which is the sum of the intrinsic bending rigidity and
a matrix-induced bending resistance (see Appendix C)

κeff = κ1 + μ2l
2
0 . (2)

This is shown in Fig. 3(a), where we plot the scaling form

G = μ1

l0
|�pcf|βGcf

±

(
κeff

μ1l
2
0

|�pcf|−α

)
(3)

with �pcf = p − pcf and with scaling exponents α = 3.0
and β = 1.4, in agreement with previous findings [6]. The
universal scaling functionGcf

± (x) consists of three branches that
characterize three different mechanical regimes. For x � 1,
Gcf

+ (x) ∼ const. and Gcf
− (x) ∼ x. This implies a stretching-

dominated regime with G ∼ μ1|�pcf|β above the transition
(�pcf > 0), and a bending-dominated regime with G ∼
κeff|�pcf|β−α below the transition (�pcf < 0). In the bending-
dominated regime, the shear modulus is governed by the
effective bending resistance of the fibers [Eq. (2)]: for very
soft matrices (μ2 < κ1l

−2
0 ) the response is dominated by the

intrinsic bending rigidity of the fibers, G ∼ κ1, while for stiffer
matrices (μ2 > κ1l

−2
0 ) the shear modulus is determined by the

induced bending rigidity due to the matrix: G ∼ μ2. Very
close to the critical threshold, we find a crossover regime with
anomalous scaling [6] G ∼ κ

β/α

eff μ
1−β/α

1 independent of �pcf,
as observed from the critical branch in Fig. 3(a).

At p = pb there is a second transition, now from a bending-
dominated regime to a matrix-dominated regime. Again, we
can capture the different regimes around this transition by a
scaling form

G = κ1

l3
0

|�pb|δGb
±

(
μ2l

2
0

κ1
|�pb|−γ

)
(4)
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FIG. 3. Mechanical regimes in composite networks. Scaling
analysis of the shear modulus in the vicinity of (a) the central force
isostatic point pcf and (b) the rigidity threshold pb, for a wide variety
of values of κ1 and μ2. Values of the critical exponents: α = 3.0, β =
1.4, γ = 4.5, δ = 3.0. (c) Mechanical phase diagram of composite
networks: S: stretching-dominated (G ∼ μ1), B: bending-dominated
(G ∼ κ1), M: matrix-dominated (G ∼ μ2), SB: stretch-bend coupled
(G ∼ μ1−x

1 κx
1 ), SM: stretch-matrix coupled (G ∼ μ1−x

1 μx
2), BM:

bend-matrix coupled (G ∼ κ
1−y

1 μ
y

2).

with �pb = p − pb and Gb
±(x) another universal scaling

function. The data are found to collapse with critical expo-
nents γ = 4.5 and δ = 3.0. Again, we see three branches,
corresponding to three different mechanical regimes. Above
the transition for x � 1 we find Gb

+(x) ∼ const and G ∼
κ1|�pb|δ , which corresponds to the rigidity percolation scaling
of a bending-dominated network [6]. Below the transition,
for x � 1 we find Gb

−(x) ∼ x and G ∼ μ2|�pb|δ−γ . In this
regime the fiber network is below its rigidity threshold, and
the composite network consists of an elastic matrix with
embedded, nonpercolating fiber clusters. Indeed, the scaling
that we find is very similar to the one found for a central
force network with rigid inclusions [28,29]. Very close to
the transition we again find an anomalous scaling regime
in which the modulus becomes independent of �pb and is
governed by both bending and matrix contributions, with
G ∼ κ

1−δ/γ

1 μ
δ/γ

2 . The different mechanical regimes that we
find for our composite network are summarized in the phase
diagram in Fig. 3(c), which clearly highlights the rich behavior
of composite networks.

It is well established that the mechanics of weakly
connected disordered networks are governed by nonaffine
deformation modes [1–6]. This raises the question whether the
different mechanical regimes that we observe originate from
a transition between different nonaffine modes. We examine
the the nonaffine fluctuations by calculating the mean-square

FIG. 4. Nonaffine deformations in composite networks. (a) Non-
affinity as a function of connectivity p for several values of μ2 (same
color coding as in Fig. 2). (b) Bending energy per unit area and
unit strain, Eb/Aγ 2, as a function of p and μ2. (c) Rigid body
rotations: mean-squared rotation angle of the end-to-end vector of
fibers, averaged over all fibers in the network 〈�φ2〉, compared to
that for the affinely deformed network as a function of p and μ2.
(d) Relative deformation energy of the background matrix, compared
to the affinely deformed network, E2/E

(aff)
2 , as a function of p and

μ2. The bending rigidity κ1 = 10−6μ2l
2
0 in all cases.

deviation from a uniform, affine strain field [30]


 = 1

γ 2l2
0

〈(u − u(aff))2〉. (5)

Here u and u(aff) are the actual displacement and the affine
displacement of a node, respectively. We find a strong, cusp-
like increase of the nonaffine fluctuations in the vicinity of
both pcf and pb, highlighting the critical state of the fiber
network at these points [Fig. 4(a)]. From Fig. 1 it is clear,
however, that the nature of the nonaffine modes is very different
in these two regimes. For p ≈ pcf, the deformation field is
characterized by large and heterogeneous bending fluctuations
[Figs. 1(a) and 4(b)]. This is in agreement with earlier work
[2–6], where the central force threshold was shown to mark a
transition from an affine, stretching-dominated regime for p >

pcf to a nonaffine, bending-dominated regime for p < pcf. By
contrast, the increase in 
 at p ≈ pb is not associated with
bending fluctuations [Fig. 1(b)], but can be ascribed to rigid
body motions of fibers or fiber clusters [insets of Figs. 1(b)
and 4(c)] that become more and more prominent as the
connectivity of the network decreases. At the rigidity threshold
pb, the fiber network becomes floppy and all the strain can be
accommodated by such rigid body motions without elastic
energy cost in the fiber network [6,26,31]. However, while the
nonaffine modes are soft modes for the fiber network, they lead
to additional deformations in the background matrix, so that
the elastic energy of the matrix is strongly increased in regions
where the nonaffine fluctuations are large [Fig. 4(d)]. This
means that the final deformation field in a composite network
is a compromise between energy stored in the fiber network
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FIG. 5. Mechanical enhancement in composites. (a) Enhancement of the shear modulus with respect to the summed moduli of the individual
networks, G/(G1 + G2) as a function of p and μ2 for κ1 = 10−6μ2l

2
0 . (b,c) Different energy contributions to the shear modulus [Eb (blue):

fiber bending; Es (red): fiber stretching; Em (green): matrix deformation] as a function of μ2 for (b) p = 0.65 and (c) p = 0.45. The black line
gives the total elastic energy and the dashed line the sum of the energies of the separate networks, so that the difference between the solid and
the dashed line represents the mechanical enhancement.

(which can be reduced by nonaffine modes) and energy stored
in the matrix (which is enhanced by nonaffine deformations).
As the matrix becomes stiffer, the nonaffine fluctuations are
increasingly suppressed (Fig. 4). The scaling of the nonaffine
fluctuations with μ2 and κ1 is discussed in Appendix B
(Fig. 7).

B. Mechanical enhancement

The main reason for the interest in composite materials is
that the interplay between the different components can lead to
highly synergistic properties, such as enhanced strength and
rigidity [12–18]. We therefore consider the enhancement of
the modulus of the composite network in comparison to the
sum of the moduli of the individual networks [Fig. 5(a)]. The
highest enhancement, with a modulus that exceeds those of
the individual networks by up to a factor 102, is observed in
the two crossover regions labeled SM and BM in Fig. 3(c).
We can understand the origin of the enhancement in these
regimes by considering the different contributions to the
modulus. At p ≈ pcf [Fig. 5(b)], the modulus is dominated by
bending contributions for small μ2. These bending modes are
suppressed by the elastic matrix when μ2 increases [Fig. 4(b)],
leading to a more affine deformation. However, this goes at
the cost of increased fiber stretching, and this increase in
stretching energy stiffens the network. As discussed above, at
p ≈ pb, the deformation of the fiber network is characterized
by floppy modes, in which large clusters of fibers undergo rigid
body motions without being strained. As the matrix becomes
stiffer, these rigid body motions are suppressed at the cost
of increased fiber bending [Figs. 4(b) and 4(c)]. Thus, while
the enhancement around pcf is caused by the suppression of
bending modes, the enhancement around pb is associated with
an increase in fiber bending [Fig. 5(c)].

IV. DISCUSSION

We reveal a very rich mechanical behavior of composite
networks. Small variations in composition can lead to large
differences in mechanical response. This may be an important
reason why composite structures are so abundant in biology,
where adaptiveness is often crucial. Indeed, it has been
argued that many biological networks have a connectivity
in the vicinity of a critical regime [9], where they are most
susceptible to small changes. Our results show that these are

also the regions where mechanical synergy is to be expected.
As Fig. 5(a) shows, a nontrivial crosstalk between the two
networks occurs only for specific compositions and stiffness
ratios between the two networks. For densely crosslinked fiber
networks (p > pcf), where the mechanics of the fiber network
is dominated by affine stretching modes even in the absence
of an elastic matrix, there is no enhancement. However,
for bending-dominated fiber networks (pb < p < pcf), there
is a significant range of matrix stiffnesses where strong
enhancement is expected to occur. Recent experiments report
the modulus of a mixture of two protein fiber networks with
varying composition [17]. The network of the stiffest fibers
was kept constant, while the stiffness of the soft background
matrix was varied over a large range. A significant mechanical
enhancement was found over approximately six decades in
modulus of the soft network, with a maximum enhancement
factor of approximately 3 with respect to the sum of the moduli
of the separate networks. These experiments correspond to a
vertical cross-section in Fig. 5(a), i.e., a variation in μ1 at
constant connectivity of the stiff network p. Even though the
precise value of p is not known for the experimental system,
it presumably lies between pb and pcf since the network was
argued to be in the bending-dominated regime. As shown in
Fig. 5(a), our model also predicts a modulus enhancement
in this regime over a range spanning approximately six
decades in μ1. The maximum enhancement of 3 found in the
experiment suggests that the network is significantly below
pcf, and that an even stronger enhancement may be obtained
for p values closer to the central force threshold.

While our focus has been on linear elasticity, we expect
that also the nonlinear response of composite networks will
differ greatly from that of single-component networks. Fiber
networks are known to become stiffer as the strain increases
[7] due to a transition from bending to stretching-dominated
elasticity [32]. Recent experiments have shown that this strain
stiffening can be suppressed completely when the fibers are
embedded in a soft elastic matrix [17]. Our results suggest
that this may be the result of a suppression of bending
modes already in the linear regime. Finally, the suppression
of nonaffine fluctuations by the background matrix leads
to a more homogeneous stress distribution in the network.
This should have large consequences for the nucleation and
propagation of cracks in the material, and may thus contribute
to the large increase in fracture strength found in double
network hydrogels [15,16].
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APPENDIX A: EFFECT OF THE FIBER
BENDING RIGIDITY

To investigate the effect of the fiber bending rigidity on
the shear modulus of composite networks, we repeat the
calculations of Fig. 2 for different values of κ1. The results
are shown in Fig. 6. For κ1 = 0, the single fiber network
becomes unstable at the central force isostatic threshold pcf =
0.651 [Fig. 6(a)]. For this case, our simulations of composite
networks are identical to previous findings for the so-called
superelastic problem [29], consisting of central force spring
networks, where a fraction p of the bonds have a stretch
modulus μ1 + μ2 and a fraction 1 − p of the bonds have a
stretch modulus μ2. For all κ1 > 0, the rigidity threshold is at
pb ≈ 0.442 [Figs. 6(b) to 6(f)]. We see evidence for a bending
to stretching transition at pcf when the bending modulus is
small, as a strong decrease of the shear modulus when p drops

FIG. 6. Elasticity of composite networks for different bending
rigidity. Shear modulus G (in units μ1/l0) as a function of the bond
probability p for a range of stiffnesses of the background matrix for
different values of κ1/μ1l

2
0 : (a) 0, (b) 10−8, (c) 10−4, (d) 10−2, (e) 1,

and (f) 102. The black line corresponds to μ2 = 0 and the dashed line
to μ2 = 0 and κ1 = 0. In each figure, the values of μ2/μ1 are (from
top to bottom): 10−2, 10−4, 10−6, 10−8, 10−10, 10−12.

FIG. 7. Nonaffine fluctuations in the two critical regions. (a) Peak
in 
 at p = pcf as a function of κeff/μ1, and (b) peak in 
 at p = pb

as a function of μ2/κeff, both for various lattice sizes.

below pcf. However, for κ1/μ1l
2
0 � 10−2, bending becomes

too costly so that this transition vanishes and the shear modulus
is stretching-dominated for all p > pb. The results of Fig. 6
have been used, together with those in Fig. 2, to characterize
the different mechanical regimes of composite networks as a
function of p, κ1, and μ2, as shown in Fig. 3.

APPENDIX B: MAGNITUDE OF THE
NONAFFINE FLUCTUATIONS

As shown in Fig. 4(a), the nonaffine fluctuations show
cusp-like peaks a both p = pcf and p = pb. The peak in

 at the central force isostatic point 
cf is due to nonaffine
bending fluctuations [Figs. 1(a) and 4(b). These fluctuations
are reduced as the effective bending rigidity κeff = κ1 + μ2l

2
0

increases. We find that 
cf ∼ (μ1/κeff)x with x = 0.53 ≈ 1 −
β/α [Fig. 7(a)]. The shear modulus at this point is determined
by the bending energy, so that Gcf ∼ κeff
cf ∼ κ

β/α

eff μ
1−β/α

1 .
Note that a deviation from the scaling of 
cf is observed for
small values of κeff, which we attribute to a finite-size effect:
the finite size of the lattice limits the maximum size of the
collective nonaffine modes. Indeed, we find that 
cf decreases
as the lattice size decreases [Fig. 7(a)]. The peak in 
 at the
bending rigidity threshold, 
b is determined by rigid rotations
of fiber clusters [Figs. 1(b) and 4(c)]. An increase of the matrix
stiffness suppresses these modes, so that 
b decreases as μ2

increases [Fig. 7(b)]. However, this suppression goes at the
cost of increased bending, so that the nonaffine fluctuations at
this point are determined by a compromise between matrix
stretching and fiber bending. We find that 
b ∼ (κeff/μ2)y

with y = 0.33 ≈ 1 − δ/γ , highlighting the critical state of
the network for μ2 → 0. The shear modulus at this point is
mainly determined by the elastic energy of the matrix, so that
Gb ∼ μ2
b ∼ μ

δ/γ

2 κ
1−δ/γ

1 . Again, we observe deviations from
the scaling of 
b for small lattice sizes and small μ2.

APPENDIX C: EFFECTIVE BENDING RIGIDITY
OF A FIBER IN AN ELASTIC MEDIUM

We consider an elastic rod of length L embedded in an
infinite 2D elastic medium. Here, we treat the matrix as
a continuous medium with shear modulus G2. A bending
deformation of the rod increases the total energy of the
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system [27]

E = κ1

2

∫ L

0

(
d2u

dx2

)2

dx + α2

2

∫ L

0
u2dx, (C1)

where u(x) is the transversal displacement of the rod as a
function of the axial coordinate along the rod, and where
the parameter α2 represents the effective spring constant of
the matrix, which is proportional to the shear modulus G2 as
discussed below. The first term represents the bending energy
of the rod and the second term represents the elastic energy due
to the deformation of the matrix. We assume that the length of
the rod does not change upon bending so that we can neglect
the stretching energy. We assume a deformation of the form

u(x) = u0 sin
(nπx

L

)
with n = 1,2, . . . . (C2)

Substitution in Eq. (C1) then gives

E = n4π4u2
0

4L3
[κ1 + α2(L/nπ )4]. (C3)

This can be interpreted as a the energy of a bent rod with an
effective bending rigidity κeff = κ1 + α2(L/nπ )4.

While for a three-dimensional medium, the effective spring
constant is related to the shear modulus of the medium as
α2 ≈ 4πG2/ ln(L/d) with a the diameter of the rod [27], for
a 2D medium we can derive [33] α2 ≈ 4πG2/L. Since the
shear modulus of a triangular spring network is equal to G2 =
1
4

√
3μ2/l0, we finally find

κeff = κ1 + Aμ2l
2
0 (C4)

with A =
√

3
n4π3 (L/l0)3. The prefactor A depends on the rod

length L and on the mode number n. Around the central force
isostatic point, the average fiber length is L = l0/(1 − pcf) ≈
2.8l0. Assuming that the dominant bending mode is the lowest
energy mode, n = 1, we find A ≈ 1.3, close to the value of
unity used to collapse the data in Fig. 3.
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