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Modeling intra- and intermolecular correlations for linear and branched polymers
using a modified test-chain self-consistent field theory
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A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and intermolecular
correlations of linear and branched polymers in various solutions and melts. The key to the test-chain SCFT is to
break the the translational symmetry by fixing a monomer at the origin of a coordinate. This theory successfully
describes the crossover from self-avoiding walk at short distances to screened random walk at long distances in
a semidilute solution or melt. The calculations indicated that branching enhances the swelling of polymers in
melts and influences stretching at short distances. The test-chain SCFT calculations show good agreement with
experiments and classic polymer theories. We highlight that the theory presented here provides a solution to
interpret the polymer conformation and behavior under various conditions within the framework of one theory.
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I. INTRODUCTION

The conformational properties of polymers are of renewed
interest with the progress in synthesizing branched polymers
with complex architectures [1–12]. Such novel synthesis can
strictly control the number of branches and the polymerization
degree, e.g., molecules of multiple-armed star [4] and end-
branched [5] structures.

Conformations within a single polymer molecule can be
strongly influenced by enthalpic interactions, steric repulsions,
and conformational entropy, particularly for polymers with
a high number of arms emanating from one or multiple
branching points. In this case, crowding can lead to stretching
of arms near the branch points, resulting in overall swelling
of the polymer. The single-molecule conformation can in
turn influence how this molecule interacts with surrounding
molecules. These intramolecular correlations influence inter-
penetration and miscibility in the case of blends but can also
be expected to influence entanglements and chain dynamics.

The characterization of the correlations in polymer homo-
geneous solutions and melts has been widely studied using
scattering techniques [13–16]. In recent years small-angle
neutron scattering (SANS) has extended to polymer micelles,
gel networks, and inhomogeneous systems, e.g., copolymers
in solution or in blends and polymer blends containing
novel nonlinear architectures [17]. In the interpretation of
SANS experiments, Gaussian chain conformations for melts
are commonly assumed for branched polymers [16,18–20],
neglecting the possibility of swelling due to steric crowding.

The polymer conformation is not always Gaussian. In
semidilute polymer solutions in good solvent, the polymer
conformations undergo a crossover from self-avoiding walk
(SAW) to random walk statistics at a length scale correspond-
ing to the blob size ξ [21,22]. In the Daoud and Cotton
[23] model for star polymers, the blob size increases with
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increasing distance from the core to the outside, behaving as
an unswollen core and a swollen regime near the core, up to
the concentration blob size ξ when the internal concentration
matches the solution concentration.

Several molecular simulation studies have been carried out
showing the swelling of nonlinear polymers. A molecular
dynamics simulation performed by Grest et al. [24] indicated
that the conformation of arms in a star polymer follows SAW.
Recent Monte Carlo simulations [25–27] showed that the
backbone of a highly branched comb stiffens and stretches
as the side branches become longer and more closely spaced,
in general agreement with scaling expectations. Yethiraj [28]
performed Monte Carlo simulations for highly branched
polymers and concluded that increasing the number or the
length of branches without changing the backbone length
will increase the stiffness of the backbone significantly, but
increasing the side-chain stiffness does not always increase
the stiffness of the backbone. A simulation of star polymers
in a good solvent [29] also showed that the intramolecular
density distribution corresponds to SAW statistics for arm
conformation. These excellent simulation works consistently
demonstrated that the nonlinear structure can result in swelling
and stretching of both polymer backbones and side branches
due to crowding effects.

Theories of the conformation of polymer melts and blends
have been widely developed. For long-chain polymers, coarse-
grained descriptions of the conformations have been successful
not only for polymers of varying architectures in the bulk,
but also for polymers at interfaces [22,30–35]. In particular,
for self-consistent field theory (SCFT), the Gaussian chain
model is extended to account for the influence of surrounding
chains by a self-consistent mean field. SCFT has enjoyed
wide success in explaining the compositional distributions of
a wide variety of homogeneous and inhomogeneous polymers
[36–39]. However, one drawback of conventional SCFT is
that correlations between monomers are only accounted for
by the mean field. For highly crowded branched polymers, the
correlations become more significant, and it would be desirable
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FIG. 1. Schematic of linear and branched architectures [5].

to break through the limit of the conventional SCFT to account
for such correlations, even in homogeneous systems.

A well-developed method in the study of polymeric bulk
thermodynamics is the polymer reference interaction site
model (PRISM) theory [40–45]. The PRISM theory solves
the liquid polymer system by calculating an integral equation
(the PRISM equation) to obtain the intermolecular correlation
function. PRISM theory is a general method capable of solving
polymeric systems regardless of their architecture. Grayce
et al. [43] performed PRISM calculations and found swelling
of star polymers in both solutions and melts. The stretching
of arms was found near the branch point because of the
long-range excluded volume effect crowding around the core
region. Later, Patil et al. [46] studied star and comb polymer
melts applying PRISM. Their results indicated that swelling
was enhanced with more compact arms or branches. For a
long-branched comb with a small number of branches, packing
and swelling behaved as a linear chain of the same length as its
backbone. However, upon increasing the number while short-
ening the length of branches, the intermolecular correlation of
a highly branched comb was found to be significantly different
from the linear chain, exhibiting enhanced swelling similarly
to that of a star polymer melt.

In this paper, a test-chain self-consistent field theory
algorithm is presented to study the conformations of linear and
branched polymers in solutions and melts. The SCFT is applied
with an excluded volume potential and extends the theory to
an algorithm capturing intra- and intermolecular correlations
due to the steric and entropic driving force. Note that a similar
but more restricted approach was implemented in a lattice
model by Scheutjens and Fleers [47] for a homopolymer by
fixing the joint of a star polymer as a grafted monomer at a
boundary and calculating the intramolecular density profile
in dilute solutions [48,49]. The current study focuses on the
swelling of linear and star-branched polymers with the scaling
analysis for solutions and melts. The polymers tested are the
architecturally symmetric star and linear molecules shown in
Fig. 1. We found that the branching can stretch the polymer
at short distances from the core and result in an overall
swelling conformation of polymers in melts. The calculation
of the modified SCFT showed good agreement with many
experiments and computations.

II. THEORY AND FORMALISM

A. Scaling theory

Edwards [50] showed that in a semidilute solution,
monomers are screened by intermolecular interactions beyond
the correlation length, ξE = √

12vρbb, where b is the statistical
segment length, ρb is the bulk density, and the excluded volume

parameter v is positive for repulsive monomer interaction. De
Gennes [22] commented that the Edwards correlation length
does not reveal the swelling effect of polymers in solutions.
The scaling theory for the intramolecular density distributions
and the distance from one monomer of a SAW molecule is
derived below. We focus on the scaling of the density profile
and the excluded volume v. The symbol ∼= in the derivation
represents a full scaling expression with every variable, and
the symbol ∼ denotes a scaling relation between two variables.

The scaling law of the monomer density distribution in a
single linear chain as a function of the distance from a given
monomer can be written

ρ̄(r) ∼= cr̄α, (1)

where ρ̄ = ρ(r̄)b3 and r̄ = r/b are the dimensionless
monomer density and distance, respectively. c is independent
of r̄ and the degree of polymerization N but a function of the
dimensionless excluded volume v̄ = vb−3. The scaling expo-
nent α depends on the single-chain conformation. Particularly,
α = −1 for an ideal Gaussian chain, and α = − 4

3 for a swollen
chain obeying SAW statistics, which is Edwards’ law [51]. The
dimensionless size of the molecule, R̄, scales as

R̄ ∼= v̄βNγ . (2)

For a single chain with infinite dilute concentration that
completely has SAW (i.e., α = −4/3), β = 1/5 and γ = 3/5,
respectively.

The integral of ρ̄(r) over the range of chain length scale R̄

is the degree of polymerization N of the chain,

N =
∫ R̄

0
ρ̄(r̄)dr̄3 ∼=

∫ R̄

0
4πcr̄ (α+2)dr̄, (3)

which gives

c ∼= NR̄−(α+3), (4)

where the dimensionless size of molecule R̄ must satisfy

R̄ ∼= (v̄)βN
1

(α+3) (5)

to guarantee that c is independent of N . Substitute Eq. (5)
into Eq. (4) to obtain the general form of the dimensionless
prefactor c′ as a function of v′:

c ∼= (v̄)−β(α+3). (6)

Therefore, Eq. (1) can be written as

ρ̄(r̄) ∼= (v̄)−β(α+3)r̄α (7)

within the length scale of molecule R̄. Equation (7) shows the
general scaling law for a single chain with a finite excluded
volume. For v̄ → 0, the intramolecular density profile of
the molecule is expected to be the Gaussian random walk.
Otherwise Eq. (7) diverges.

The crossover from SAW to random walk occurs when the
intermolecular density begins is equal to dimensionless bulk
density ρ̄b = ρbb

3. The real-chain correlation length ξ̄real is
thus defined at a distance where ρ̄(ξ ) = ρ̄b. The general form
of the correlation length ξ can be written

ξ̄ ∼= (v̄)
β(α+3)

α ρ̄(ξ )
1
α . (8)
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The screening length ξreal for a Flory real chain is given as

ξ̄real
∼= (ρ̄b)−

3
4 (v̄)−

1
4 b, (9)

and Eq. (6) reads

c ∼= (v̄)−
1
3 , (10)

which is consistent with de Gennes’ derivation [22].

B. Test-chain formalism

The general idea of using SCFT to study the polymer bulk
properties originated from the analytical single-chain problem
proposed by Edwards [50,51], which involves one chain with a
fixed end. The numerical solutions of SCFT basically followed
the representation by Helfand for solving inhomogeneous
polymer systems. A single chain consisting of N sites with unit
Gaussian step length b is first considered. A density propagator
called Green’s function in a potential Ŵ observing site t at
position r and site t ′ at position r′ can be defined as the path
integral over all the polymer configurations,

G(r,r′; t,t ′)

=
∫
DR(t)P (R)exp(−W (R))δ(R(t) − r)δ(R(t ′) − r′)∫

DR(t)P (R)δ(R(t) − r)
,

(11)

where R(t) is the configuration of the chain as a function of the
monomer index t . P (R(t)) is the Gaussian statistics satisfying
the Wiener distribution. (The energy unit kBT is chosen.) For
a chain labeled α,

P (Rα(t)) ∝ exp

[
− 3

2b2

∫ N

0
dt

∣∣∣∣dRα(t)

dt

∣∣∣∣
2]

, (12)

and the compressible homogeneous interaction energy in terms
of the excluded volume effect Ŵ is given as a functional,

Ŵ [ρ̂(r)] = v

2

∫
drρ̂(r)2, (13)

where ρ̂(r) is the microscopic density operator defined as

ρ̂(r) =
n∑

α=1

∫ N

0
dtδ(r − Rα(t)). (14)

The canonical partition function of the system containing
n chains is given by

Z =
∫ n∏

α=1

DRα(t)P (Rα)exp(−Ŵ )

= Z0

∫
DρDμQn

0 exp

[−v

2

∫
drρ(r)2 +

∫
drμ(r)ρ(r)

]
,

(15)

where Z0 = V n/n! (V is the volume of the system). Q0 is the
single-chain partition function in an external field μ. The free
energy functional is

F [ρ,μ] =
∫

dr
[
v

2
ρ(r)2 − μ(r)ρ(r)

]
− n ln Q0[μ]. (16)

Equation (15) can be written in terms of the Green’s
function defined by Eq. (11):

Z =
∫∫

dr′dr′′G(r′,r′′; N,0)

=
∫∫∫

drdr′dr′′G(r′,r; t,0)G(r,r′′; N,t). (17)

The above integrals are simplified by defining the weight
function,

q(r; t) =
∫

dr′G(r′,r; t,0) (18)

and

q†(r; t) =
∫

dr′′G(r,r′′; N,t), (19)

which represent the statistical weight for a chain of t sites
starting at the origin to the chain end at r and the statistical
weight of N − t sites starting at r to the opposite direction,
respectively.

The weight functions q and q† satisfy the modified diffusion
equation

∂q(r)

∂t
= b2

6
∇2q(r) − μ(r)q(r), (20)

where μ(r) = vρ(r) is the self-consistent mean-field potential
by saddle-point approximation, satisfying [36]

∂F [ρ,μ]

∂ρ
= ∂F [ρ,μ]

∂μ
= 0. (21)

The monomer density ρ(r) is thus given by

ρ(r) = −∂lnQ0[μ]

∂μ
, (22)

and it can be evaluated by

ρ(r) = N
∫ N

0 dtq(r; t)q†(r; t)∫ ∞
0 d3rq(r; N )q†(r; N )

, (23)

where N is the normalization constant. The integrand of the
numerator is the unnormalized density distribution at r. The
denominator guarantees that the probability of finding one
segment over the volume is 1.

The Laplacian in Eq. (20) is reduced to be radius r

dependent only because of the spherical symmetry, which is
given as

∂q(r; t))

∂t
= b2

6

(
∂2q(r; t)

∂r2
+ 2

r

∂q(r; t)

∂r

)
− μ(r)q(r; t),

(24)

with boundary conditions q(r < 0; t) = q†(r < 0; t) = 0 and
∂q

∂r
|rmax = ∂q†

∂r
|rmax = 0, where rmax represents the radius of the

system.
Define qfix(r; t ; tfix) and q†fix(r; t ; tfix) as the statistical

weight functions of the molecule by fixing the site tfix. The
initial conditions are qfix(r; 0; tfix) = 1 and q†fix(r; N ; tfix) = 1.
However, when t = tfix, the diffusion along monomers by
Eq. (20) is reset to solve qfix(r; t > tfix; tfix) and q†fix(r; t <

tfix; tfix). The reset initial conditions at tfix must satisfy
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qfix(r; t = tfix; tfix) = δ(r) and q†fix(r; t = tfix; tfix) = δ(r), re-
spectively. Similarly, define qfree(r; t ; tfix) and q†free(r; t ; tfix)
to represent the statistical weights of one of the free polymers
around the fixed chain in the system. The initial conditions for
the free molecule are qfree(r; 0; tfix) = 1 and q†free(r; N ; tfix) =
1.

In bulk polymers, considering multiple chains by fixing tfix

of one molecule, the complete SCF potential is therefore

μ(r; tfix) = v(ρfix(r; tfix) + ρfree(r; tfix)), (25)

where ρfix is the intramolecular density of the chain selected
to hold tfix at the origin, and ρfree is the density distribution
of all free molecules The intramolecular monomer density
distribution of the fixed chain from site tfix is thus written as

ρfix(r; tfix) =
∫ N

0 dt qfix(r; t ; tfix)q†fix(r; t ; tfix)

4π
∫ rmax

0 dr qfix(r; N ; tfix)q†fix(r; N ; tfix)r2
,

(26)

and the intermolecular density ρfree(r; tfix) is

ρfree(r; tfix)

= ρbV

N

∫ N

0 dt qfree(r; t ; tfix)q†free(r; t ; tfix)

4π
∫ rmax

0 dr qfree(r; N ; tfix)q†free(r; N ; tfix)r2
,

(27)

where ρb is the bulk monomer density.
The calculation of the density propagators of a branched

structure is referenced by Fredrickson [37]. Taking a three-
arm structure, with the arms labeled 1, 2, and 3 as an
example, tfix is located on arm 3. q1(r; t ; tfix) diffuses from
the end of arm 1, and q1†(r; t ; tfix) diffuses towards the
end of arm 1. q2 and q3 diffuse from the end of arms
2 and 3, respectively. At tjoint, q1†(r; tjoint; tfix) is given as
q1†(r; tjoint; tfix) = q2(r; tjoint; tfix)q3(r; tjoint; tfix). A brief illus-
tration of propagating q and q† is given in Fig. 2.

The SCF calculation is iterated by solving Eqs. (24)–(27),
including two sets of modified diffusion equations to solve the
fixed- and free-chain statistical weight functions. The segment
length b is set to be 1 to keep the results in dimensionless units.
The Crank-Nicolson algorithm is used to solve the differential

FIG. 2. Illustration to calculate the local density probability of a
three-arm structure. In this example, the molecule is fixed at tfix. As
q3 is solved from the end of the chain and reaches tfix, q3 is reset to
an initial condition, q3(r; t = tfix; tfix) = δ(r).

equations, and the Picard algorithm is applied in the SCF
iteration by updating μi . A mixing ratio λ = 0.05 (λ ∈ (0,1]) is
applied to update μi in terms of μi = (1 − λ)μi−1 + λvρi(r).

Minimize ε =
∑

j |μi
j −μi−1

j |∑
j |μi

j |
until the tolerance of the conver-

gence εt < 10−7 is satisfied, where i is the index of the ith
iteration and j is the index of the spatial grids.

III. RESULTS AND DISCUSSION

A. Dilute solution of linear and star polymers

A single linear chain of N = 50 in a dilute solution is
studied using test-chain SCFT. Equations (7) and (8) indicate
that the molecular weight N does not influence the scaling of
the density and ξ . The resolution of the discretization grids is
�r = 0.02b unless otherwise specified. The excluded volume
parameter v̄ ranges from 0 to 100. v̄ is dependent on the
compressibility [33]. In Fig. 3(a), the monomer density profiles
show the real-chain scaling of −4/3 if v̄ is sufficiently large as
a result of the center of the molecule’s being fixed at the origin.
The density profiles when v̄ � 0.1 show less steep slopes,
indicating that the weak excluded volume effect does not
exhibit swelling. The plot for v̄ = 0 is very close to v̄ = 0.01
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ρ(
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v=0.01
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v=1
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v=100
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v=10
v=100

-4/3
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(b)

Joint

End

-1

-1

FIG. 3. Intramolecular density profiles of a linear single molecule
for different values of excluded volume v̄ on log-log scales.
(a) Intramolecular density profiles of a linear molecule from the
center. (b) Intramolecular density profiles of a linear molecule from
the end. The length of the molecule N = 50.
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Joint
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FIG. 4. Intramolecular density profiles of a 4-star polymer with
Narm = 25 for different values of excluded volume v̄ calculated (a)
from the joint and (b) from the end.

and indistinguishable from this scale, reflecting a Gaussian
conformation with a slope close to 1. In the cases of v̄ � 1,
the density profiles indicate that the polymer conformation
becomes swollen and the slope of the single-chain density
profile is very close to −4/3 within the range of the plot when
v̄ = 10. Another feature of the strong excluded volume is that
the slope changes at the length scale of R, which is likely due to
weaker correlations farther from the center of mass. For r̄ → 0,
the molecule should always be SAW because a monomer with a
finite excluded volume does not interact with other monomers.
However, due to the finite grid size, this limit is not captured
by the calculation. The density profiles from the held-end
monomer of the same linear chain is plotted in Fig. 3(b). The
scaling exponent is analogous to that of holding the center. Its
slope, close to −4/3, indicates the swelling of the molecule
in a dilute solution for v̄ � 10, and the slope close to −1 for
v̄ � 0.1 indicates the Gaussian conformation. The magnitude
of the density from the end monomer scales as 1/2 compared to
the density from the center [Fig. 3(a)] because the
accumulative density from the end is only half that
from the center.

A further study of star molecules in dilute solutions is
performed using the model of a 4-star with the arm length
Narm = 25 and N = 100. Density profiles results analogous
to those in the case of a single linear molecule from the joint
and the end are shown in Figs. 4(a) and 4(b), respectively. For

0.1 1 10
r

0.01

0.1

1

10

ρ(
r)

4-star,N=100
8-star,N=200
16-star,N=400

0.1 1 10
r

0.01

0.1

1

ρ(
r)

4-star,N=100
8-star,N=200
16-star,N=400

(a)

(b)

Joint

End

-1

-4/3

-1

-4/3

-4/3

FIG. 5. Density distributions of f -star Narm = 25 and v̄ = 0.1
under a dilution solution condition calculating from (a) the joint and
(b) the end, respectively. Narm = 25, Nstar = 100.

v̄ = 0, the density profile is also indistinguishable from the plot
of v̄ = 0.01. The slope of ρ(r) from the joint, similar to that of
a linear molecule, implies that the conformation is similar to a
SAW when v̄ � 1. Figure 4(b) shows that the molecule density
from the held end behaves completely as a SAW when v̄ = 10
until the monomers are near the joint at a length scale of R.
Thus, a small increase in density is present at long distances
from the center. The scaling exponent of the SCFT agrees with
the scaling theory for linear polymer solutions [22] and Monte
Carlo simulations of star polymers demonstrated in Ref. [29].

A series of f -stars with identical arm lengths Narm = 25
were computed. The density distributions are shown in Fig. 5.
The density profiles from the joint of an f -star shown
in Fig. 5(a) are similar to the profiles of the 4-star. The
scaling exponent of the density profiles when v̄ = 0.1 is
intermediate between −4/3 and −1, reflecting partial swelling.
This indicates that the number of arms does not impact the local
swelling of a polymer in dilute solutions. However, the number
of arms has an influence at long distances. For example,
Fig. 5(b) shows the density profiles from the ends of a polymer
with an increased number of arms. The scaling exponent of
the density of the 16-star increases and then plateaus with a
slope close to 0 where the end monomer sees the accumulative
density of the joint. This shows a good agreement with SANS
results on the size of star polymers [52].
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B. End-to-end distance distribution

The end-to-end distance can be generated straightforwardly
in the test-chain SCFT algorithm by holding one chain end
fixed. In SCFT, the distributions of the distance between
two ends can be written in terms of q(r; N ; 0), which is the
statistical weight, by holding the end 0 and diffuse to the other
end N . Thus, the three-dimensional normalized end-to-end
distance distribution is

P (r) = q(r; N ; 0)

4π
∫ ∞

0 q(r; N ; 0)r2dr
. (28)

The SCFT result reduces to an exact Gaussian chain with-
out the mean field. When the excluded volume effect is
applied, the distribution function becomes a real-chain type
and is comparable with the des Cloizeaux form [53],

P (r) ∼=
(

r√
〈R2〉

)σ

exp

(
− G

(
r√
〈R2〉

)τ)
, (29)

where the exponents and prefactors can be estimated [54,55]
as

P (r)≈0.278〈R2〉−3/2 r√
〈R2〉

0.28
exp

(
−1.206

(
r√
〈R2〉

)2.43)

(30)

for a Flory real chain. The mean square end-to-end distance
〈R2〉 is given by

〈R2〉 = 4π

∫ ∞

0
P (r)r4dr. (31)

Figure 6 provides the SCFT results of the monomer end-
to-end distribution profiles of the linear (N = 100) and 4-star
(N = 100) molecule in dilute solutions. As shown in Fig. 6(a),
with increasing v̄, the linear chain becomes non-Gaussian and
narrowly distributed. The des Cloizeaux plot is close to the
SCFT plot with v̄ = 1. The end-to-end distribution profiles
for strong repulsive polymers v̄ � 10 show that the ends are
distant close to

√
〈R2〉. However, the same calculation for a

4-star with v̄ = 100 in Fig. 6(b) shows that the end-to-end
distribution is wider than a linear chain having the same degree
of polymerization.

C. Semidilute solution and polymer melts

1. Density distribution functions

The test-chain SCFT can help us to understand the con-
formations of linear and nonlinear polymers in a semidilute
or concentrated solution as well. As the density becomes
finite, chains are screened due to intermolecular interactions.
Equation (9) nicely captures a crossover in the scaling
exponent from self-avoiding to random walk, indicating that
the intermolecular interaction dominates at long distances. The
SCFT calculations are performed in a linear solution with
a finite density. The degree of polymerization of the linear
molecule is N = 50 and the reduced average bulk monomer
density ρ̄b = ρbb

3, which is defined by the total number of
monomers over the volume, is variable. The excluded volume
parameter v̄ is variable as well.

The intra- and intermolecular density profiles of linear
polymers in semidilute solutions (ρ̄b = 0.2) as a function
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FIG. 6. Single-chain end-to-end distribution function of (a) a
linear molecule (N = 50) and (b) a 4-star (N = 100) by SCFT as
a function of the reduced distance x = r√

〈R2〉
. The Gaussian model

is also provided for comparison.

of the excluded volume parameters v̄ from the joint and
end are shown in Fig. 7. The intramolecular density profiles
show different scaling exponents in the low-r̄ regime at
approximately r̄ � 2 in the figure. They cross over at r̄ ≈ 3 and
merge at r̄ � 5 in the range of the plot. A “correlation hole” is
obtained in the plot of the intermolecular concentration profile.
For v̄ = 100, fewer monomers approach the short-distance
regime (r̄ ≈ 1) for the strong repulsion due to the monomer
excluded volume.

Figure 8(a) shows the intramolecular densities of a linear
polymer with N = 50, ρ̄b = 0.2, and varying excluded vol-
umes. In homogeneous solutions, the overlap concentration
is c∗ ∼= N−4/5b−3 for chains in SAW. The bulk density of
ρ̄b = 0.2 in Fig. 8(a) refers to a concentration above the limit
of the semidilute solution because c∗ is ∼O(10−2)b−3. Again,
the calculations show that the monomer density decreases as
the strength of the monomer exclusion v̄ increases.

For solutions with a small excluded volume (e.g., v̄ < 0.01),
the molecule behaves as a Gaussian random walk. This is
the same as the single-chain conformation in dilute solutions.
Moreover, increasing v̄ from 0.01 to 1, a partially screened
regime can be obtained [Fig. 8(a)]. Although the complete
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FIG. 7. Density profiles of a linear polymer with N = 50 and
ρ̄b = 0.2 in melts. The thin solid, dashed, and dash-dotted lines
correspond to the total, intramolecular, and intermolecular density
profiles with v̄ = 1, respectively. The thick solid, dashed, and dash-
dotted lines are the total, intramolecular, and intermolecular density
profiles with v̄ = 100, respectively.
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FIG. 8. Intramolecular density profiles for linear polymers in
various solutions. (a) ρ̄b = 0.2; v̄ varies from 0.01 to 100. The slope
of the density profile on the log-log scales is between −4/3 and −1
at r̄ ≈ 0.1. (b) v̄ = 1; ρ̄b varies from 0.02 to 2.

SAW scaling exponent, −4/3, within the blob [22] is not
captured by the test-chain SCFT, the calculation is still
expected to yield SAW at r̄ → 0. In the current resolution
(�r̄ = 0.02), at short distances from the origin where r̄ ≈ 0.1,
the density profile has a transitional exponent between −4/3
and −1 and the profiles merge to the Gaussian random walk
exponent, −1, at long distances. However, the random walk
regime is vanishing as v̄ approaches 100. In particular, the
intramolecular density profile of v̄ = 100 does not show a
random walk slope of −1 but a higher density in the bulk
on log-log scales. This is due to the strong repulsion among
monomers. If the bulk concentration is increased while fixing
the excluded volume, as shown in Fig. 8(b), the screening
of the molecules can therefore still be captured at a higher
concentration. When r̄ goes to 0, the intramolecular density
profiles will merge regardless of the value of the bulk densities.

2. Scaling analysis

In this section, we discuss the scaling of the excluded
volume in the intramolecular density profile at short distances,
ρ̄(r̄) ∼ r̄αv̄−β(α+3). The plot of ρ̄(r̄)/r̄α vs v̄ is shown in
Fig. 9(a) at distances r̄ < 0.1. The bulk density remains
constant, ρ̄b = 0.2. When v̄ � 0.01, α = −1, and when v̄ �
1, α = −4/3, according to the discussion of Fig. 8(a). In
particular, two regimes for ρ̄(r̄)/r̄α vs v̄ at log-log scales
are identified. When v̄ � 0.01, ρ̄(r̄)/r̄α is independent of
v̄. However, when v̄ > 1, the scaling relationship between
the monomer density and the distance shows that ρ̄(r̄)/r̄α ∼
(v̄)−1/3, which is consistent with Eq. (10) as a SAW chain. The
two regimes cross over within the range 0.01 < v̄ < 1.

The scaling analysis based on expressions from Eq. (1)
to Eq. (10) primarily assumes that at short distances, the
intramolecular density profile in a melt is the same as it is in
dilute solutions. This assumption is true at r̄ � 0.1 in the SCFT
calculations above, because the total monomer density at short
distances is dominated by the intramolecular density (Fig. 7).
However, significant differences are seen at long distances in
melts with strong excluded volumes when comparing Fig. 3(a)
and Fig. 8(a). As shown in Fig. 9(b), we found that ξ̄ also
crosses over at approximately v̄ = 1 but the slope for v̄ > 1
is −1/8. This is only half the expected scaling exponent,
ξ̄ ∼ v̄−1/4, according to Eq. (9). Applying the intramolecular
density profiles in dilute solutions, shown by the crosses in
Fig. 9(b), the plot of ξ̄ vs v̄ shows the scaling exponent
of ξ̄ ∼ v̄−1/4. The inset in Fig. 9(b) shows the difference in
the screening lengths determined from intramolecular density
profiles in a dilute solution vs a melt. In the inset, a difference
in conformation is shown in the regime ρ̄(r) ≈ ρ̄b between
the dilute and the semidilute solutions. In particular, the single
chain must maintain SAW at ξ̄ , but the chain conformation of
the semidilute solution with ρ̄b = 0.2 becomes non-SAW at
much shorter distances than ξ̄ . The existence of both SAW
and Gaussian random walk within ξ̄ by SCFT leads to a
weaker scaling exponent, −1/8, than the scaling theory, −1/4.
Moreover, the crossover from weak v dependence to strong v

dependence in Fig. 9 is consistent with the expected criteria of
observing SAW using the z parameter,

z = 3

2π

3/2 v

b3
N1/2 ≈ v

b3
N1/2, (32)
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FIG. 9. Scaling analysis of the monomer density and correlation
lengths versus the excluded volume in concentrated solutions and
melts of linear polymers. (a) Scaling dependence of the scaled
monomer density ρ̄(r̄)/r̄α on the excluded volume v̄ at r̄ = 0.1 in
solutions with ρ̄b = 0.2 and N = 50. (b) Scaling dependence of
correlation lengths ξ̄ on v̄ in solutions. Circles are obtained from the
intramolecular densities of solutions in Fig. 8(a). Crosses are obtained
assuming that the intramolecular density profile in a melt is the same
as in the dilute solution (Fig. 3). Inset in (b): The way to obtain ξ̄ ,
where ρ(ξ̄ ) = ρ̄b, from the intramolecular density profiles. Dashed
line: v̄ = 10, ρ̄b = 0.2. Solid line: a dilute solution with v̄ = 10.

where the actual excluded volume, v ≈ b3, is the limit of
observing SAW at a given N .

3. Swelling of star polymers in semidilute solutions and melts

Homogeneous melts composed of 4-star (N = 100)
molecules with different ρ̄b and v̄ are studied. In general,
the behavior of the star-polymer conformation is found to be
similar to that of the linear ones with N = 50 (a linear is
equivalent to a 2-star from the center as shown in Fig. 1).
Figures 10(a) and 10(b) compare the intramolecular density
profiles by varying v̄ and ρ̄b, respectively. The density
distribution of the 4-star melts are expected to merge to SAW at
r̄ → 0. For v̄ < 10, the observed exponents at short distances
in the figure, r̄ < 0.1, are all less steep than that for v̄ = 10.
Moreover, the distance where crossover occurs decreases as
its density increases, as shown in Fig. 10(b). For instance, in
the case of ρ̄b = 10 and v̄ = 1, the polymers hardly show any

0.1 1 10
r

0.01

0.1

1

10

100

ρ(
r)

v=0.1
v=1
v=10

0.1 1 10
r

0.01

0.1

1

10

100

ρ(
r)

ρb=0.02

ρb=2

ρb=10

-4/3

-4/3

-1

(a)

(b)

FIG. 10. Density profiles from the joint of 4-star chains with
N = 100. (a) ρ̄b = 0.2 and v̄ varies. (b) v̄ = 1 and ρ̄b varies.

SAW. On the contrary, the intramolecular density of the star
solution with ρ̄b = 0.02 is close to that of a dilute solution
exhibiting an exponent close to SAW.

D. Structure factors of polymers in solutions and melts

The test-chain SCFT can be used to calculate the radial
distribution function by holding every monomer each time
and averaging by the degree of polymerization. The radial
distribution for the intramolecular correlation ω(r) and the
intermolecular correlation g(r) of a polymer melt can be
written directly as

ω(r) = 1

N

N∑
tfix=0

ρfix(r; tfix) (33)

and

g(r) = 1

Nρb

N∑
tfix=0

ρfree(r; tfix). (34)

Given a polymer melt with ρb and degree of polymerization
N , the total structure factor is composed of both intra- and
intermolecular contributions,

S(k) = ρbNω(k) + ρ2
bh(k), (35)
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FIG. 11. Intramolecular ω(k) and intermolecular h(k) structure
factors of 4-star molecules (Nstar = 100). The Gaussian chain is also
shown in (a) for comparison.

where ω(k) is the intramolecular structure factor and h(k)
is the intermolecular contribution. ω(k) and h(k) are three-
dimensional Fourier transforms of pair correlation functions
in a spherical coordinate system, ω(r) and h(r) = g(r) − 1.
The dimensionless structure factors are written as

ω(k̄) = 4π

∫ ∞

0
dr

r̄sin(k̄r̄)

k̄
ω(r̄) (36)

and

h(k̄) = 4π

∫ ∞

0
dr̄

r̄sin(k̄r̄)

k̄
(g(r̄) − 1), (37)

where k̄ = kb.
ω(k̄) of the 4-star molecule of the Gaussian, in a good

dilute solution, in a semidilute solution with ρ̄b = 0.2, and in
a melt with ρ̄b = 10, respectively, are shown in Fig. 11(a).
In homogeneous melts, (e.g., ρ̄b = 10), ω(k̄) is similar to the
profile of a Gaussian chain. ω(k̄) in a semidilute solution is
intermediate between that in the dilute solution and that in
the ideal chain, reflecting a partially swollen conformation.
In Fig. 11(b), the intermolecular structure factors h(k̄) in four
typical 4-star solutions are shown. In the case of ρ̄b = 10,
h(k̄) is almost 0, indicating the absence of intermolecular
correlations in high-density melts. Figure 12 shows the total
static structure factors of the 4-star molecules in different

0 2 4 6
k

0

5

10

S
(k

)

v=0.1, ρb=0.2

v=0.1, ρb=2

v=1, ρb=0.02

v=1, ρb=0.2

v=1, ρb=10

FIG. 12. Static structure factors of 4-star polymers with Nstar =
100 in different solutions.

solutions. The peaks at low k̄ in the case of v̄ = 1 and ρ̄b = 10
correspond to melts with a high bulk density and strong
contribution of intermolecular structure factors, ρ2

bh(k̄). The
result shows that a peak in S(k̄) depends only on ρ̄b, and not on
v̄. This theoretical prediction has not been observed in SANS
experiments for homogeneous polymer melts or blends, and
it remains an interesting question to explain the results of the
test-chain SCFT S(k) at high densities.

IV. CONCLUSION

A test-chain SCFT is presented to study polymer confor-
mations of linear and branched polymers under various con-
ditions. The results of linear polymers are in good agreement
with classic polymer theory and simulation results [52,56]. We
summarize our findings as follows.

(i) The density profile of polymers from dilute solutions to
melts strongly depends on the excluded volume, v̄. In dilute
solutions, the conformation of a linear polymer is Gaussian
when v̄ < 0.1. The conformation is smoothly swollen with
increasing v. When v̄ > 1, the conformation can be identified
as SAW. The conformations of branched polymers exhibit
analogous behaviors.

(ii) The calculations successfully capture a crossover
regime from SAW to Gaussian in semidilute solutions and
melts at a correlation length that decreases as v̄ increases. The
Gaussian regime is vanishing as v̄ approaches 100. Moreover,
the correlation length where the crossover occurs decreases as
its density increases.

(iii) Branching enhances the swelling of polymers under
all conditions, especially in the regimes close to the branching
point.

Finally, we emphasize that the test-chain theory is not
limited to any particular cases in this work. It is rather a uni-
versal means to modeling a broad variety of polymer systems
[18,57–61]. The algorithm presented here is to generalize a
solution to model polymers with various architectures within
the framework of one theory. This theory can be used to
describe the polymer conformation and behaviors in many
other complex environments with a broad range of polymer
concentrations [17,60,62–65].
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