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In the literature, different theoretical models have been proposed to describe the properties of systems which
consist of magnetizable particles that are embedded into an elastomer matrix. It is well known that such magneto-
sensitive elastomers display a strong magneto-mechanical coupling when subjected to an external magnetic
field. Nevertheless, the predictions of available models often vary significantly since they are based on different
assumptions and approximations. Up to now the actual accuracy and the limits of applicability are widely
unknown. In the present work, we compare the results of a microscale continuum and a dipolar mean field
approach with regard to their predictions for the magnetostrictive response of magneto-sensitive elastomers and
reveal some fundamental relations between the relevant quantities in both theories. It turns out that there is a very
good agreement between both modeling strategies, especially for entirely random microstructures. In contrast, a
comparison of the finite-element results with a modified approach, which—similar to the continuum model—is
based on calculations with discrete particle distributions, reveals clear deviations. Our systematic analysis of the
differences shows to what extent the dipolar mean field approach is superior to other dipole models.
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I. INTRODUCTION

Magneto-sensitive elastomers (MSEs) represent a class of
composite materials that consist of micron-sized magnetizable
particles which are embedded into a nonmagnetizable polymer
matrix. Due to mutual interactions of the particles, MSEs are
able to change their effective material behavior reversibly if
subjected to an external magnetic field. Moreover, they show a
large magnetostrictive response: compared to pure ferromag-
netic materials, their field-induced deformation is increased
significantly, as described in Ref. [1]. This strong coupling
between the magnetic and mechanical fields facilitates a
variety of applications such as actuators and sensors [2,3],
valves [4], or tunable vibration absorbers [5,6], to name just a
few examples.

In the literature, a variety of different strategies for the
modeling of MSEs can be found. A direct calculation of macro-
scopic quantities from the energy of the system is often based
on the assumption that the magnetizable particles are point-like
dipoles. It allows one to determine the effective elastic moduli
as well as the magnetostrictive response of samples with
different discrete particle distributions [7–12]. Additionally, a
recent work shows that the application of a mean field approach
with continuous distribution functions is promising, especially
for the modeling of MSEs with chain-like microstructures [13].
To extend the applicability of such models to systems with
higher particle volume fractions, a multipole expansion as
presented in Refs. [14–17] for the simplified problem of only
two interacting particles is a possible solution. Continuum
approaches which have been developed for the modeling
of MSEs can basically be divided into two groups. On the
one hand, macroscale models often fit experimental data in
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order to describe the material behavior phenomenologically
without resolving the microstructure [18–23]. On the other
hand, microscale models as described in Refs. [24–30] allows
one to determine the local magnetic and mechanical fields
since particles and matrix are considered separately. Hence,
no limiting assumptions regarding the magnetization have
to be made. In these microscale continuum models, denoted
“full field approach” in the following, macroscopic quantities
are calculated by applying an appropriate homogenization
scheme.

Since the individual modeling strategies differ significantly
in fundamental assumptions, a comparison between different
approaches is a complex task which has to be accomplished
in order to identify their advantages and disadvantages as
well as the limits of applicability. The aim of this work is a
comprehensive comparison between the dipole interaction and
the full field technique. To this end, the approaches described
in Refs. [13,27] are applied and the average magnetostrictive
response of MSEs with different particle volume fractions is
calculated. Furthermore, comparisons with a modified dipole
model, which is based on an evaluation of discrete particle dis-
tributions, are carried out to illustrate the differences compared
to the mean field approach. The results are eventually used to
identify to what extent the considered modeling strategies are
an adequate tool to handle specific problems.

The work is structured as follows: short reviews of the
applied modeling strategies are given in Secs. II and III. In
Sec. IV, the mean field approach is adapted to two-dimensional
problems in order to allow for a detailed comparison with
the simulation results of the full field approach in Sec. V.
Moreover, finite element simulations for selected particle
distributions are opposed to the predictions of the discrete
dipolar-interaction model in this section. After a short discus-
sion of the results in Sec. VI, the paper is closed by concluding
remarks and an outlook to necessary future work.
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FIG. 1. Magnetization behavior of BASF CIP CC: comparison
of experimental data from Ref. [33] with the models according to
Eqs. (4) and (5).

II. THE FULL FIELD APPROACH

To resolve the local magnetic and mechanical fields, a
continuum formulation of the coupled magnetomechanical
boundary value problem is applied. Herein, the magne-
tizable particles and the nonmagnetizable polymer matrix
are considered separately, which allows us to capture the
influence of different microstructures. Macroscopic quantities
such as the effective magnetostrictive strain are calculated
by performing a numerical homogenization procedure as
described in Refs. [27,31]. In the following, the applied full
field approach is summarized: field equations that are relevant
for the simulations presented in Sec. V are introduced, whereas
additional relations including boundary and jump conditions
are omitted for brevity. For a detailed discussion of the
theoretical framework the reader is referred to Ref. [27].

In the stationary case, the magnetic part of the problem is
described by the following equations [32]:

∇ · B = 0, (1)

∇ × H = j . (2)

Here, the quantities B, H , and j denote the magnetic
induction, the magnetic field, and the vector of free current
density, respectively. If the relation B = ∇ × A is applied to
derive B from the magnetic vector potential A that satisfies
the Coulomb gauge condition, Eq. (1) is fulfilled automatically
and only Ampère’s law given by Eq. (2) remains to be solved.
Another field quantity which describes the magnetic state of
the material is the magnetization M. It links the magnetic
induction and the magnetic field via the equation

B = μ0(H + M), (3)

in which μ0 = 4π × 10−7 N A−2 is the permeability of
free space. While M = 0 holds within the nonmagnetizable
polymer matrix, the experimental data depicted in Fig. 1 show
that the magnetization behavior of the carbonyl iron particles
(CIPs) can be characterized by the nonlinear relation

M = M∞ tanh(δB), (4)

which connects the magnitude of the magnetization and
the magnetic induction. In Eq. (4), M∞ = 868 kA m−1 and

δ = 0.883 T−1 are the saturation magnetization and a scaling
parameter. Moreover, a linearization for small values of B

allows us to find the expression

M = M∞δB = μr − 1

μ0μr
B, (5)

in which μr = 27.61 is the relative magnetic permeability.
It relates to the magnetic susceptibility via χ = μr − 1. For
illustration purposes, the models according to Eqs. (4) and (5)
are also included in Fig. 1.

According to Refs. [34,35], the existence of magnetic fields
entails an additional body force density f m which has to be
considered in the mechanical part of the problem:

f m = j × B + (∇B)T · M. (6)

If f m is expressed as the divergence of a magnetic stress tensor
σ m = σ max + (B · M)1 + B ⊗ M in which the quantities
σ max and 1 denote the Maxwell stress and identity tensors, the
symmetric total stress tensor σ tot = σ m + σ can be introduced
as the sum of the magnetic and mechanical stresses. Hence,
the balance of linear momentum is given by the relation

∇ · σ tot + ρ f = 0 (7)

for the stationary magnetomechanical boundary value prob-
lem. Herein, ρ and f are the mass density and the mechanical
body force density, respectively. The mechanical behavior of
both constituents is assumed to be elastic: a finite deformation
framework for the modeling of MSEs within the full field
approach is presented in Refs. [25,33]. However, in Ref. [27]
it is shown that the regions where the strain is increased are
comparably small if materials with a moderate particle volume
fraction are considered. To this end, a linear elastic behavior
leading to the relation

σ tot = E

1 + ν
ε + Eν

(1 + ν)(1 − 2ν)
tr(ε)1 + σ max (8)

is applied. In Eq. (8), ε is the strain tensor, whereas the
material parameters E and ν represent Young’s modulus and
Poisson’s ratio of the individual constituents. Regarding the
simulation results, Ep = 210 GPa and νp = 0.3 have been
chosen to specify the comparably stiff iron particles and
Em = 200 kPa as well as νm = 0.49 are used to characterize
the quasi-incompressible polymer matrix.

To compare the results of the full field formulation and the
dipolar mean field approach that is presented in the following
section, effective field quantities 〈(·)〉 are calculated according
to the relation

〈(·)〉 = 1

Vs

∫
Vs

d3r (·). (9)

This can be accomplished by applying the homogeniza-
tion framework illustrated in Refs. [27,31]. Thus, periodic
boundary conditions are used to ensure the equivalence
of microscopic and macroscopic energies as described in
Ref. [36]. While, for accuracy, it is advantageous to resolve
the local magnetic and mechanical fields, a major drawback
of the full field approach is the high computation time that is
needed to generate the results. In the present work, this issue
is overcome by limiting the simulations to two dimensions.
Consequently, the magnetizable particles have to be considered
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FIG. 2. Distribution of the magnetization for randomly generated microstructures with a varying particle volume fraction φ in a magnetic
field of 1 T oriented in horizontal direction to the sample: the simulation results show that the probability to find a homogeneously magnetized
particle is higher in dilute systems—for larger values of φ, nearly all particles exhibit an inhomogeneous magnetization.

as infinitely long cylinders while any out-of-plane deformation
is prevented—a similar modeling strategy is described in
Ref. [37]. To allow for magnetostrictive strains in the finite
element calculations, a rectangular macroscopic body that is
magnetized homogeneously in the external magnetic field is
assumed. Additionally, the effective Maxwell stress outside the
material is prescribed as a macroscopic load. This approach
neglects perturbations of the macroscopic fields within the
sample and is similar to those used in Refs. [27,38,39].

Figure 2 depicts simulation results which have been
obtained for randomly generated particle distributions with
a volume fraction φ varying from 5 % to 20 %. Each pic-
ture shows the distribution of the magnetization within a
representative volume element if a macroscopic magnetic
induction 〈B〉 = 1 T is applied in the horizontal direction. The
periodic boundary conditions result in mutual interactions of
the magnetizable particles beyond the boundaries. It is visible
that there are many particles which can be considered as
homogeneously magnetized for dilute systems with φ = 5 %
and φ = 10 %. Here, the average distance between the particles
is comparably high. In contrast, their compact arrangement in
the representative volume elements with φ = 15 % and φ =
20 % entails an inhomogeneous magnetization. Accordingly,
an assumption of magnetic dipoles might not be considered
valid anymore.

For the comparisons in Sec. V, 20 different realizations of
such representative volume elements are evaluated in order
to determine the average behavior of MSEs with random
isotropic particle distributions of a specific volume fraction.
Additionally, the finite element results for the discrete particle
distributions depicted in Fig. 2 are compared with the predic-
tions of the modified dipole model. This allows us to highlight
the differences of the mean field and discrete approaches.

III. DIPOLAR MEAN FIELD APPROACH

In a previous work [13] we described our mean field
method in detail, so we only sketch it here briefly. Essentially
we introduce some additional simplifying approximations in
comparison to the full field approach.

First, the magnetic interactions among the incorporated
microparticles are described via mutually interacting magnetic
dipoles. This reduces the computational effort considerably
because we do not resolve the magnetization field inside the

inclusions explicitly. Formally, for each particle i ∈ [1,Np]
we sum up the original magnetization field M(r) into a single
dipole moment mi located in the particle center r i :

mi =
∫

vi

d3r M(r), (10)

where vi denotes particle volume. Thus, the dipole mi

represents the average magnetization of a particle, M i =
mi/vi . Approximation of the “true” electromagnetic field in
the sample by mutually interacting dipoles is well established
in the literature [7–12,40,41]. Commonly, each particle is
assigned the same dipole moment, which is obtained self-
consistently in the field generated by all the other identical
dipole moments, mi = m (∀ i). In previous works [11,13]
it has been emphasized that this assumption is only strictly
valid in the case of a homogeneous external field applied to an
ellipsoidal sample, where the particles are locally arranged in
such a way that all of them have an identical neighborhood. For
example, this is the case if the particles are ordered on a regular
lattice [7–12,40,41] or if an amorphous microstructure, i.e., a
random isotropic distribution, is assumed [13,41]. Assigning
all particles the same dipole moment was termed as the mean
field assumption in Ref. [41]. In contrast, in our previous
work [13] we characterize the spatial distribution of particles
or dipoles via a continuous dimensionless distribution function
�p(r) and explicitly calculate a position-dependent magnetiza-
tion M(r) as a self-consistent functional of �p(r); see Eqs. (11)
and (12). This “smearing” or “averaging” of the possible
neighboring positions in terms of a “mean” concentration field
�p(r) we denote as the dipolar mean field approach.

In the present work we only consider the case of a ran-
dom isotropic microstructure, with homogeneous �p(r) = φ0.
Consequently, also the magnetization field is homogeneous,
i.e., position independent, and each particle would have the
same dipole moment mi = m in Eq. (10). Together with the
affine deformation assumption (except at very short ranges)
the present approach employed for magnetostriction seems
to be very similar to the one presented in Ref. [41] for
electrostriction of an amorphous microstructure. However,
some conceptual differences remain. First of all, the authors
in Ref. [41] consider exclusively linear polarization, whereas
we extend our model to saturating magnetization behavior.
Second, Ref. [41] focuses on the field-induced changes in the
local material properties but does not account explicitly for
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the effects of the macroscopic sample deformation onto the
local properties. Furthermore, it is assumed that the dipoles
displace affinely on all length scales, which is accounted for
in the two-particle distribution function.

In contrast to Ref. [41], we consider in detail the interplay
between microstructure effects and macroscopic effects [13].
Moreover, it is known that, at very short ranges, the two-
particle distribution function is affected by hard-sphere pack-
ing effects. We propose that, in this case also, nonaffine
deformation processes become important. We do not make
any further considerations about these processes but assume
them to preserve the form of the microstructure locally [13].
This allows us to simplify the calculations considerably. Thus,
with respect to the local redistribution effects the model in
Ref. [41] differs essentially from the present one.

For a given �p(r) the magnetization is obtained self-
consistently via the relations

M(r) = X(H(r)) = X(H0(r) + Hd(r)), (11)

Hd(r) = −Nd M(r) +
∫

Vs

d3r ′

4π
	

(

r2 − d2

p

)

×�p(r ′)
3[M(r ′) · 
r]
r − 
r2 M(r ′)


r5
. (12)

Here, 
r = r − r ′ and X(H) is a material function de-
scribing the particles magnetization behavior. For isotropic
linear magnetization X(H) = χ H , see Eq. (5) with B =
μ0μrH . The parameter Nd denotes the single-particle
(self-)demagnetization factor, which is Nd = 1/3 for spheres.
Thus, the (otherwise diverging) contribution from the inter-
action of a particle or dipole with itself is excluded from the
integral on the right-hand side in Eq. (12) via the Heaviside
step function 	. The particle diameter dp takes the role of a
short-range cutoff to prevent particle overlap.

The magnetic interaction energy within the MSE sample
exerted to a homogeneous external magnetic field H0 is then
calculated as [13]

Umag = μ0

∫
Vs

d3r

{
1

2
M(H − H0) −

∫ H

0
Md H

}
. (13)

Furthermore, we describe the elastic energy in the sample via
the Neo–Hooke law for an incompressible body [42]:

Uel = Es

6

(
(1 + ε)2 + 2

1 + ε
− 3

)
. (14)

Here, ε = 
L‖/L‖0 denotes the relative change of the length
of the sample in the direction of the applied field H0. With L⊥
denoting the size of the sample perpendicular to H0, the aspect
ratio of an incompressible sample before (�0 = L‖0/L⊥0 ) and
after (� = L‖/L⊥) the deformation is related to ε via

� = �0(1 + ε)3/2. (15)

The elastic modulus Es in Eq. (14) represents an effective
parameter describing the elastic properties of the sample as a
whole, the polymeric network plus incorporated rigid particles.
For low volume fraction φ of spherical particles, the effective

modulus of the filled network can be approximated via [43]

Es = Em(1 + 2.5φ), (16)

where Em denotes the elastic modulus of the pure polymer
phase.

The third fundamental approximation we introduce is the
assumption that all particles can only “move” affinely relative
to the deformation of the sample as a whole. This affine
approximation is, just like the dipole approximation [15–17],
very reasonable for long distances between particles. If the
particles come very close to each other our assumptions must
fail. As explained in our previous work [13], we summarize
the present approximation as the neglect of short-range effects.
Particularly, if the amount of magnetizable particles in the
sample is low φ � 1, we expect our approach to describe the
behavior of MSEs correctly.

Depending on a “start” configuration of the sample (particle
distribution �p and sample aspect ratio � = L‖/L⊥) we
calculate the deformation 〈ε〉 which minimizes the total energy
of the sample at given H0:

utot = umag + uel. (17)

Here, u = U/Vs is the corresponding energy per sample
volume.

IV. ADAPTATION OF DIPOLE APPROACH

As already mentioned in Sec. II, the finite element
simulations performed in the full field model assume the
field variables to be constant in the third dimension. This
corresponds to a sample containing infinitely long cylinders
aligned parallel to each other and the external magnetic field
directing orthogonal to the cylinders main axis. In contrast, the
dipolar mean field approach was developed for microspheres
dispensed in a sample that is varying or deforming in the third
dimension as well. In the following we present a corresponding
adaptation of our dipolar mean field approach to the systems
considered in Sec. II.

A. Magnetic contribution

We assume the cylinders to be aligned in the z direction.
Analogously, we assume constant magnetization in that direc-
tion [M �= M(z)] and the components of all fields are restricted
to the plane perpendicular to z. Furthermore, the distribution
function �p is also constant in z (perfect parallel alignment)
and the cutoff dp now refers to the cross-sectional diameter of a
cylinder. To account for the magnetization at some position z′
and its influence on a reference position in the plane z = 0 we
perform the integration with respect to z′ → ±∞ in Eq. (12)
and directly obtain

Hd(s) = −Nd M(s) +
∫

As

d2s ′

2π
	

(

s2 − d2

p

)

×�p(s′)
2[M(s′) · 
s]
s − 
s2 M(s′)


s4 . (18)

Here, s = xex + yey = r (z = 0) spans the two-dimensional
(2D) plane perpendicular to the cylinders main axis. A
magnetizable infinitely long cylinder with its main axis per-
pendicular to the magnetic field has a demagnetization factor
Nd = 1/2 [44]. This particular derivation of the interaction
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of magnetic dipoles in a plane is owed to our mean field
description using a dimensionless continuous distribution
function for the positions of the dipoles. In Appendix A we
demonstrate that this is analogous to the case of a chain of nz

dipoles with a line density nz/Lz in the third (z) direction and
it is also identical to a homogeneously magnetized circle in a
2D plane.

In the following we assume that all fields (i.e., M, H , B)
are aligned parallel to the homogeneous external field H0.
In the dipole approach we use H0 to control the strength of
the magnetic interaction in the sample. In contrast, in our
full field approach in Sec. II the control parameter is defined
as the effective induction 〈B〉 in the sample; see Eq. (9).
Accordingly, 〈B〉 can be calculated from the contributions
in the magnetizable particles 〈Bp〉 and in the nonmagnetizable
matrix 〈Bm〉:

〈B〉 = φ〈Bp〉 + (1 − φ)〈Bm〉. (19)

With 〈Bp〉 = μ0(〈H 〉 + 〈M〉) and 〈Bm〉 = μ0(H0 +
φ〈M〉fmacro) we obtain

〈B〉 = μ0H0 + μ0φ〈M〉(1 − Nd + fmacro). (20)

We discuss fmacro explicitly in Sec. IV C; for details see
Ref. [13]. For linear magnetization (M = χH ) this reduces to

〈B〉 = μ0H0
1 + χeffφ(1 − Nd)

1 − χeffφfmacro
, (21)

with χeff = χ/(1 + Ndχ ). So we obtained a relation between
〈B〉 and H0. It is worth considering these relations in more
detail. With H0 = H − Hd and M = χH , Eq. (20) may be
equally written as

〈B〉 = μ0〈M〉
(

1

χ
+ Nd + φ(1 − Nd)

)
. (22)

This is a remarkable result because it directly relates the
average magnetization of the particles to the effective induction
in the sample. Within our dipole approach the magnetization
is the central quantity which is calculated self-consistently
for a given external field H0. The magnetization crucially
depends on the sample shape as well as on the local particle
distribution �p [11,13]. From Eq. (22) we note that 〈B〉
immediately fixes the average magnetization 〈M〉 and vice
versa, independent of the sample details. We could likewise
interpret 〈B〉 as a self-consistent parameter as well. But one
must be aware that, although the derivation from Eq. (19) to
Eq. (22) is obtained strictly by fundamental magnetostatics, it
is a direct consequence of our dipole approximation assuming
the magnetic fields within any individual particle to be
homogeneous. We emphasize that our dipole approach [13]
still accounts for different average magnetizations in each
particle. Hence, deviations from the analytic relation (22) must
be due to inhomogeneities of the magnetization field in the
particles and it provides a first simple measure for the accuracy
of the dipole approach. Furthermore, in the full field approach
〈B〉 is fixed “externally” and it is assumed to be the same in
the entire sample. With Eq. (22) this corresponds to a constant

average magnetization in the entire sample. This will prove to
be very helpful when considering rectangular samples.

B. Elastic contribution

The sample is assumed to remain fixed in the z direction
(
Lz = 0). This corresponds to the plain-strain condition in
the theory of continuum mechanics [45]. Again we assume
an incompressible and isotropic sample. Then the aspect ratio
before, �0, and after, �, deformation is related via

� = �0(1 + ε)2, (23)

and the Neo–Hooke law from Eq. (14) changes to

Uel = Es

6

(
(1 + ε)2 + 1

(1 + ε)2
− 2

)
. (24)

Note that the prefactor 1/6 in Eqs. (14) and (24) is identical,
since for plain-strain conditions the shear modulus remains
constant G(3D) = G(2D) [45]. The effective elastic modulus Es

for a medium containing infinitely long rigid cylinders is given
in the dilute limit (φ � 1) by [45]

Es = Em(1 + 2φ). (25)

The parameter Em again denotes the elastic modulus of the
pure matrix phase.

C. Results for random isotropic distribution

Similar to Ref. [13] we describe a random isotropic
distribution via a constant distribution function �p(r) =
φ. In the thermodynamic limit of a macroscopic sample
(L‖, L⊥,Np → ∞ at given φ) we can safely neglect finite size
effects arising at the sample boundaries. As a first example we
consider the MSE sample to form an ellipse in the xy plane.
Analogous to an ellipsoidal sample in 3D [11,13,44,46], an
elliptic sample of homogeneously magnetized material also
generates a homogeneous demagnetization field Hd ‖ M [and
with Eq. (11) also M ‖ H0] in its interior. For a random
isotropic distribution (no internal microstructure [13]), the
magnetization of each particle is then the same in every point
of the sample, and accordingly M(s) = const. = 〈M〉. Like
in Ref. [13] we define the shape effect fmacro by the integral
expressions in Eq. (18):

Hd = −NdM + φ〈M〉fmacro. (26)

With the (arbitrary) reference point in the center (s = 0) of the
elliptic sample we have

f ellipse
macro =

∫ �

1

4ds ′

2πs ′

∫ θ(s ′)

0
dθ ′(2 cos2 θ ′ − 1), (27)

with

θ (s ′) = sin−1

(
1

s ′

√
�2 − s ′2

�2 − 1

)
,

and � the aspect ratio of the ellipse. This can be solved
analytically:

f ellipse
macro = 1

2

(� − 1)2

�2 − 1
. (28)
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For a linear magnetization behavior (M = χH ) we obtain the
self-consistent magnetization from Eq. (11):

〈M〉 = χH0

1 + χNd − χφfmacro
. (29)

This represents a general result for linear magnetization [13].
With M = 〈M〉 being the same in every magnetizable particle
and zero otherwise, the volume integral in Eq. (13) just
provides an additional factor φVs. For linear magnetization
behavior, Eq. (13) reduces to [13]

umag = Umag

Vs
= −μ0

2
φH0〈M〉. (30)

Since f
ellipse
macro in Eq. (28) is monotonically increasing with the

aspect ratio �, the MSE sample will always tend to elongate in
direction of the applied field H0. The same qualitative behavior
is also obtained for 3D samples with magnetizable rigid
spheres being randomly isotropic distributed [13].

In the full field approach in Sec. II a rectangular unit cell
with periodic boundary conditions in the x and y direction
is considered; see Fig. 2. Thus, the sample itself should be
regarded of a rectangular form as well. For rectangles in 2D,
as for cuboids in 3D, the implied homogeneity of the demag-
netization field inside the sample can no longer be strictly
valid. However, to compare both approaches we note that,
in the full field approach, we assumed a constant effective (or
average) magnetic induction 〈B〉 in each unit cell and hence in
the entire sample. For a representative segment, or unit cell, of
such an MSE sample this is reasonable, if the segment itself
is considered to be located “deep” inside the sample. With
Eq. (22) we equally assume a constant average magnetization
〈M〉 throughout the sample. For a random isotropic distribution
[�p(s) = φ] we again have M = const. = 〈M〉 in the direction
of the external field. Within our dipolar mean field approach
we consider a single-particle “deep” in the sample, i.e., the
center itself, as a representative unit and apply the boundaries
of a rectangle in Eq. (18):

f rectangle
macro = 1

2π

∫ L⊥/2

−L⊥/2
dy ′

∫ L‖/2

−L‖/2
dx ′ x ′2 − y ′2

(x ′2 + y ′2)2
	

(
s ′2−d2

p

)
.

(31)
Noting that the integral vanishes over a perfect square (L⊥ =
L‖ or � = 1) as well as it does over a perfect circle, the integrals
in Eq. (31) can be greatly simplified. The result reads

f rectangle
macro = 2

π
[tan−1(�) − tan−1(1)]. (32)

In Fig. 3 we show the results for both shape effects fmacro of
a rectangular and an elliptic sample as well as our previous
result for a 3D spheroid. In the upper part of Fig. 3 we
plot fmacro directly as a function of �, displaying the actual
similarity among all of them. In any case we always predict
an elongation in direction of the applied field H0 as they
all monotonically increase with respect to �. Furthermore,
all curves intersect in the point � = 1 (perfect symmetric
sample), where fmacro vanishes. In the lower part of Fig. 3
we plot the derivative with respect to ε at ε = 0 (and thus fixed
initial aspect ratio �0). The quantity ∂fmacro/∂ε|ε=0 represents
a direct measure for the internal force deforming the sample
at a given external field [13]. Here, clear differences between

FIG. 3. In the upper plot the functions fmacro for an elliptic and
a rectangular sample are shown. For comparison we also display
our result for a 3D spheroidal sample [13]. In the lower plot the
corresponding changes at infinitesimal deformation are illustrated.

the samples become obvious. Note that the deformation force
in elliptic and rectangular samples are maximal exactly at
�0 = 1, whereas in spheroidal samples the maximal force is
found around �0 ≈ 0.7.

D. Saturating magnetization behavior

We insert Eq. (3) into Eq. (4) to model saturating magne-
tization behavior in terms of the magnetic field H . To obtain
the magnetic energy Eq. (13) we make use of the bijective
property of Eq. (4) to calculate the total differential dH/dM

and change integration variable in Eq. (13) dH → dM . The
result reads

umag = Umag

Vs
= μ0φ

2

{
(1 − Nd + φfmacro)〈M〉

− 1 + χ

χ
ln

(
1 − 〈M〉2

M2∞

)}
. (33)

From Eqs. (18) and (4) the self-consistent magnetization M

and its average value 〈M〉 are obtained, respectively. Finally, to
relate the external magnetic field H0 to the effective induction
〈B〉 we can use the general equation (20) again. Adapting
Eq. (22) to the present saturating magnetization behavior, the
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relation 〈B〉(〈M〉) reads

〈B〉 = μ0M∞

{
1 + χ

χ
tanh−1

( 〈M〉
M∞

)

− (1 − Nd)(1 − φ)
〈M〉
M∞

}
. (34)

Again, this is independent of the sample shape or the particle
distribution �p.

V. COMPARISON OF RESULTS

We now compare the deformation behavior and the magne-
tization behavior in direction of the applied magnetic field as
predicted by both approaches. The comparison for the average
behavior is carried out for linear as well as for saturating
magnetization behavior, whereas the results for some selected
discrete particle distributions are only presented for linear
magnetization.

A. Random isotropic distributions

In Fig. 4 the average outcomes from the full field approach
(for 20 different randomly generated systems) are compared to
the analytic dipolar mean field calculations. The dashed lines
represent the dipolar mean field prediction and the squares,
with corresponding statistical error bars, display the results
obtained in our full field approach. Here, no fitting or adjusting
of any variable in the corresponding theories has been applied.
Both approaches assume identical system parameters (i.e., see
the caption in Fig. 4). With this in mind and recognizing the
fundamental different concepts and approximation schemes
applied in both approaches, the notable agreement of the results
is astonishing. In the upper plot of Fig. 4 we show the effective
deformation 〈ε〉 in direction of the applied magnetic field for
different volume fractions φ of magnetizable particles in the
sample. Except for the results with φ = 15% both approaches
coincide almost perfectly to each other. But even here the
dipolar mean field result is found within the standard deviation
from the full field calculations. In the lower plot of Fig. 4
we compare the effective magnetization within the sample
〈Ms〉 = φ〈M〉 in dependence of the applied effective induction
〈B〉 for both approaches. The dipolar mean field approach
predicts the relation Eq. (22) independent of the explicit shape
of the sample or of the distribution function �p. From our
full field calculations we obtain quite perfectly the identical
relation for each φ. It is also worth to note that, in contrast to the
upper plot in Fig. 4, the error bars for the average magnetization
are vanishingly small. This supports the mean field picture
Eq. (22) of an identical magnetization (at given 〈B〉) in the
sample independent of the explicit particle distribution.

In Fig. 5 we present the same results for a saturating magne-
tization scheme according to Eq. (4). In the full field approach
the same 20 systems are considered as in the case of linear
magnetization. Hence it is not surprising that the degree of
conformity between the results of our two approaches is almost
identical to the case of linear magnetization. Nevertheless,
in Fig. 5 we prove that the quantitative correspondence also
holds for a realistic magnetization behavior. Note, that the
present choice for μr and M∞ very accurately describes the
magnetization behavior that has been observed in experiments

FIG. 4. Comparison of the results for different volume fraction
φ of linearly magnetizable particles in the sample. In the upper
plot the effective deformation 〈ε〉av (averaged over 20 samples) in
direction of the applied field H0 (〈B〉) is shown. In the lower plot the
corresponding averaged effective magnetization 〈Ms〉av in the samples
is shown. Parameters are μr = χ + 1 = 27.61 and Em = 200 kPa.

for carbonyl iron powder [33] (Fig. 1). For 〈B〉 � 0.3 Tesla the
results in Fig. 5 resemble those in Fig. 4. At increasing applied
magnetic fields especially the magnitude of deformation is
notably reduced for the saturating magnetization behavior.

B. Discrete particle positions

In Appendix B we shortly explain how we obtain the results
for explicit particle distributions within our dipole approach.

In Fig. 6 we show the results for the four systems depicted
in Fig. 2. For the magnetization in the sample (bottom of
Fig. 6) we again find a very good quantitative agreement
between the analytic dipole relation Eq. (22) and the full
field results. Consequently, the effective magnetization of
all particles in the sample is indeed roughly independent
of the actual particle distribution �p and can be described
very accurately by the dipole approximation. Nevertheless,
the respective local magnetization field within each individual
particle may fluctuate significantly as can be observed in
Fig. 2.
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FIG. 5. Same as in Fig. 4 for a saturating magnetization behavior
of the embedded particles according to Eq. (4), with M∞ =
868 kA m−1, μr = 27.61, and Em = 200 kPa.

In the top of Fig. 6 we plot the predicted effective
deformation ε for both approaches. At least qualitatively we
always predict elongation in direction of the external field,
but the quantitative agreement is very poor. Merely for the
first system with φ = 5% we find approximately the same
quantitative magnetostrictive effect. Another accordance can
be identified for the φ = 15% and φ = 20% systems, where
both approaches predict that these systems deform almost iden-
tically (with the φ = 20% system slightly stronger deformed).
But this qualitative accordance seems a pure coincidence,
especially if we compare the results for φ = 5% and φ = 10%,
where the dipole approach predicts a smaller deformation for
φ = 10% in clear contradiction to the full field result. Hence,
the very good consistency of both approaches predicting the
same effective magnetization does not provide an indication
for the accuracy of the respective magnetostriction in the case
of discrete particle distributions. We will discuss this result in
the following.

VI. DISCUSSION

In the present work, we compare a full field and a
dipolar mean field approach regarding their predictions for the
magnetostrictive response of MSEs with cylindrical inclu-

FIG. 6. Comparison of the results for some discrete particle
positions according to the four distributions shown in Fig. 2. (top)
The effective deformation 〈ε〉 in direction of the applied field H0

(〈B〉). (bottom) The corresponding effective magnetization 〈Ms〉 in
field direction for each sample. We assume linear magnetization with
μr = 27.61 and E0 = 200 kPa.

sions. After a short revision of the basic ideas of the individual
modeling strategies, the mean field approach is modified in
order to comply with the systems under consideration. The
subsequent comparison of the simulation results shows a very
good agreement for the average magnetization as well as
the average magnetostrictive strains. The predictions of both
models nearly coincide for dilute systems with a low particle
volume fraction φ. Since the influence of an inhomogeneous
magnetization increases with φ, the accuracy of the mean
field approach decreases in microstructures which comprise
a higher amount of particles. However, in our work a good
accordance up to φ = 20% is evident.

A comparison of our full field results with those of the
dipole model with discrete particle distributions reveals sig-
nificant deviations. Although the predictions for the effective
magnetization are in good agreement, both approaches entail
fundamental differences with regard to the magnetostrictive
response. Here, the advantages of the full field approach
become apparent: the dipolar-interaction models are not
appropriate to predict the behavior of a single MSE with a
specific particle distribution. Due to the various simplifying

042501-8



THEORETICAL MODELS FOR MAGNETO-SENSITIVE . . . PHYSICAL REVIEW E 95, 042501 (2017)

assumptions in the dipole model (i.e., effective medium, pure
affine deformations, homogeneous magnetization fields) it is
not surprising that the results in Fig. 6 differ strongly in
predicting the magnetostrictive effect. Additionally, the size of
a single representative volume element might not be sufficient;
see Fig. 2. In contrast, the dipolar mean field model predicts
even quantitatively the same magnetostriction as the full field
approach statistically averaged over many randomly generated
samples. In fact, our work shows that a mean field approach
is a modeling strategy which allows us to capture the average
behavior of MSEs with a microstructure that can be described
by a continuously varying distribution function.

Reference [41] states that dipoles which are distributed
discretely on a regular cubic lattice are not a good choice
to model amorphous, isotropic materials. The present work
additionally suggests that even random irregular discrete distri-
butions of dipoles are not appropriate to describe the composite
material behavior. We want to emphasize that there is a
fundamental difference between discrete dipole models and
dipolar mean field approaches: By “smearing” the dipole field
(continuous distribution function) the surrounding dipoles may
be anywhere and “each possible position” contributes to the
interaction. This way every dipole interacts not only with
some other point-like object (with very much “empty” space
between the discrete dipoles) but also with rather extended
objects (as we effectively also account for contributions away
from the center position). This interpretation is additionally
supported by our findings that, in the discrete dipole model,
a very small displacement of only one or two particles in
the sample is sufficient to change the results for the mag-
netostriction dramatically (up to entire orders of magnitude).
Such a particular sensitivity with respect to individual particle
positions is not supported by the full field results. Considering
for example the moderate statistical error bars in Figs. 4 and 5
for 20 different systems in the full field approach, the standard
deviation for the discrete dipole results would largely exceed
the actual plot size.

To achieve a better comparability of the mean field and
full field approaches in the future, different points have
to be worked on. On the one hand, there is no reliable
information in how far the widely used assumption of an
affine deformation [7–11,13] influences the results derived
from the mean field model. Consequently, an implementation
permitting a nonaffine deformation within the sample is
pursued. On the other hand, the finite element results show
that a dipole approximation is not realistic if the magnetizable
particles get close to each other. Since this is especially the
case in MSEs with a high particle volume fraction, which
are frequently examined in experimental studies [47–51],
the multipole expansion suggested by Ref. [15] has to be
adapted for mutually interacting particles. Until now the
computationally intensive full field approach has been applied
in a two-dimensional simulation to model infinitely long
cylindrical particle inclusions. Such two-dimensional simu-
lations revealed good qualitative agreement with experimental
results [27]. MSEs of technical relevance are three dimensional
and comprise magnetizable particles with a nearly ellipsoidal
or even spherical shape. Since the physical mechanisms in
two- and three-dimensional samples are very similar, we
believe that the results of both approaches will be comparable

also for spherical particle inclusions. Nevertheless, to confirm
this assumption the present study has to be repeated for the
three-dimensional case.
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APPENDIX A: ALTERNATIVE DERIVATION
FOR TWO-DIMENSIONAL DIPOLES

In the following two alternative ways are presented to obtain
the demagnetization field of a dipole in a quasi-2D system.

1. Infinite chain of dipoles

We denote the magnetic field generated by a single point-
like magnetic dipole m located at r0 = 0 as the dipolar
demagnetization field. At any point r �= r0 it is given by

Hd = −∇ψm(r), (A1)

where the scalar potential ψm(r) fulfills the Laplace equation
(∇2ψm = 0) and is given by [32,44]

ψm(r) = m · r
4πr3

. (A2)

Let us consider a long chain of nz identical magnetic dipoles
m arranged in row of length Lz along the z axis with
x0 = y0 = 0. In accordance with our prior assumptions m
is oriented perpendicular to the z direction. The line density
nz/Lz determines the “amount of magnetic dipole” in each xy

plane at given z. We denote the density of magnetic dipoles
per xy plane as m̃ = mnz/Lz and a spatial vector in such a
plane as s. To determine the scalar potential that such a chain
of identical dipoles generates at some point r we have to sum
up the potential of each dipole in the entire chain. This can be
explicitly calculated for arbitrary z and s �= s0, but we focus
on the xy plane midway along the chain. Thus,

ψm(s) = nzm · s
4πLz

∫ Lz/2

−Lz/2

dz

r3
= m̃ · s

2π

Lz

s2
√

4s2 + L2
z

. (A3)

Note, r2 = s2 + z2. For an infinitely long chain (where then
any point along the chain is midway) of constant dipole line
density m̃ the last fraction in Eq. (A3) reduces to 1/s2. The
two-dimensional gradient with respect to s (denoted ∇2D)
determines the demagnetization field generated by such an
infinitely long chain of identical dipoles with constant line
density:

Hd = −∇2Dψm(s) = 2(m̃ · s)s − s2m̃
2πs4

. (A4)

This form is identical to the last term in Eq. (18). Note the
necessary change in the units [1/Lz] upon transferring 3D
dipoles (m) to 2D dipoles (m̃ = mnz/Lz). Thus, they are fun-
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damentally different objects. In our dipolar mean field model
[from Eqs. (12) to (18)] this difference is hidden in the dimen-
sionless definition of �p, where local dipoles are interpreted as
“smeared” average magnetization fields over the extent of each
particle. Magnetization fields are not interpreted differently
and do not change their units in varying space dimensions.

2. Homogeneously magnetized circle in two dimensions

To obtain the 2D analog of interacting magnetic dipoles
(which is originally only well defined in 3D) in Eq. (18)
or Eq. (A4) we “integrated out” the third dimension (z
direction). Hence, the dipoles defined in the two-dimensional
xy plane, i.e., z = 0, implicitly account for the interactions
with dipoles (or magnetized matter) out of that plane (z �= 0)
as the resultant demagnetization field sums up the effects from
all the (identical) xy planes at arbitrary z. In the following
we completely disregard the third direction and describe the
situation of a homogeneously magnetized circle (radius rp =
dp/2) in the xy plane. Similar to the well-known calculations
for a homogeneously magnetized sphere in 3D [32] the
magnetic scalar potential ψ for a circle fulfills the 2D Laplace
equation ∇2

2Dψout = 0 outside of the circle (s > rp) and we
expand ψout in homogeneous harmonic polynomials:

0 = ∇2
2Dψout =

(
∂2

∂s2
+ ∂

s∂s
+ ∂2

s2∂θ2

) ∞∑
n=0

cn

qn(θ )

sn
. (A5)

Here, the two-dimensional Laplace operator is given in polar
coordinates. The coefficients cn will be determined later
via boundary conditions. The angular functions qn(θ ) are
found straightforward after taking the partial derivatives with
respect to s in Eq. (A5). To fulfill the Laplace equation
they must be of the form qn(θ ) = cos(nθ ). Note that, with
a three-dimensional Laplacian in Eq. (A5) (e.g., for a sphere),
the qn are formed by the ordinary spherical harmonics which
can be reduced to the Legendre polynomials Pl(cos θ ) since
the solution must be independent of the azimuthal angle.
Then qn(θ ) = Pn−1(cos θ ). Inside the circle the magnetic field
H = H0 + Hd is considered homogeneous over the entire
extent of the circle. Thus the medium is homogeneously
magnetized in direction of H (M ‖ H = const.). Therefore,

ψin(s) = CM · s = CMs cos θ, (A6)

where θ denotes the angle between M and s. The coefficient
C is determined by the continuity condition �in(s = rp) =
�out(s = rp) revealing only the qn=1 term that survives in �out

with c1 = CMr2
p . The magnetic field at the circle boundary

displays a jump equal to the surface magnetic charge density

σ = n · M, with n being the unit normal vector at the circle
boundary. This implies the following condition:

σ = M cos θ =
(

∂�in

∂s
− ∂�out

∂s

)
s=rp

= 2CM cos θ. (A7)

Hence, we find C = 1/2 and the demagnetization factor of a
circle is identical to that of an infinitely long cylinder being ho-
mogeneously magnetized perpendicular to its main axis (Nd =
1/2). The scalar potential outside of the circle reads finally

�out(s) = r2
p M cos θ

2s
= ap

M · s
2πs2

. (A8)

Here, ap = πr2
p denotes the circle area, or analogously the

cylindrical cross section, and the 2D dipole is the sum
of the (homogeneous) magnetization field in the circle
m̃ = ∫

aP
d2sM = ap M [compare with Eq. (10)]. Hence,

Eq. (A8) is identical to Eq. (A3) in the limit of an infinitely
long chain Lz → ∞.

APPENDIX B: DISCRETE DISTRIBUTION OF PARTICLES

For a discrete allocation of the magnetizable particles
(monodisperse, with the area ai = ap for all particles) we
insert a discrete dimensionless distribution of the form �p =∑Np

i=1 apδ(s − si) into our dipolar mean field approach (18)
and obtain a summation:

Hdj
= −Nd Mj + ap

2π

Np∑
i=1

2(M i · sij )sij − s2
ij Mj

s4
ij

. (B1)

Here, Hdj
denotes the (locally constant) demagnetization

field over the extent of particle j , Mj is the (constant)
magnetization in particle j , and sij = si − sj . We consider
now only linear magnetization behavior (Mj = χ Hj ). With
Hj = H0 + Hdj

, Eq. (B1) forms a coupled set of 2Np

equations. For a given distribution (i.e., Fig. 2, periodically
continued in x and y) we solve this set self-consistently.
The effective magnetization 〈Ms〉 of all particles per sample
volume Vs, respectively per sample area As = L‖L⊥, is then

〈Ms〉 = 1

Vs

∫
Vs

d3r M = ap

As

Np∑
i=1

M i = φ

Np∑
i=1

M i

Np
= φ〈M〉.

(B2)
The magnetic energy is obtained from Eq. (30). For an affine
deformation ε we reallocate each particle accordingly and
compare the result to the undeformed sample. Minimizing
Eq. (17) we find the equilibrium, or effective, deformation 〈ε〉
of the MSE sample.
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