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Ecological communities in heterogeneous environments assemble through the combined effect of species
interaction and migration. Understanding the effect of these processes on the community properties is central
to ecology. Here we study these processes for a single community subject to migration from a pool of species,
with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the
phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions.
A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where
multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to
possess a symmetry that also establishes a connection with other well-known models.
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Natural ecological conditions are often spatially heteroge-
neous, with conditions varying between the different local
habitats. Individuals migrate between these habitats and
interact locally within each habitat (see, e.g., [1]). As a result
of these processes, local ecological communities assemble (see
Fig. 1). These processes can be modeled on many levels; one of
the simplest and most popular is where a single community is
described explicitly, and the rest of the ecosystem is modeled
via a regional pool of species from which individuals of all
species can invade [2].

Characterizing ecological communities is a central subject
in ecology. Some of the key questions are: Does a given habitat
reach a stable composition of species? If so, does it depend
on historical factors such as the initial conditions following an
environmental change, or the order of colonization by different
species? How many species coexist in a community? What
is the distribution of abundances (number of individuals) of
the species in the community? How much do the abundances
fluctuate in time? The purpose of this paper is to address these
questions within one popular setting.

To proceed, a model for the dynamics of the populations
needs to be specified. Here we choose the well-known
generalized Lotka-Volterra equations. As for many models,
these equations include many system parameters that encode
the interactions between all pairs of species. Since the details
of the interactions between all pairs of species are typically
not available, and for many purposes not needed, here the
system parameters are replaced with random numbers, drawn
from distributions characterized by a few model parameters.
Ever since the pioneering work of May [3], models with
random parameters have played an important role in theoretical
ecology. However, in contrast to Ref. [3], here it is the
properties of the species pool that are drawn at random, rather
than the community, and the composition of the community
results from the dynamics. This approach can be viewed as
a way of studying the outcomes of migration and species
interactions on the community, allowing us to disentangle these
processes from other factors such as evolution.

The resulting communities are thus an outcome of the
heterogeneous interactions, with the fates of different species
intertwined in complex ways. As such, analytical calculations
of their properties are not trivial. Tools from physics of
disordered systems (in particular, spin glasses) are ideally

suited to address such problems, as has been realized many
years ago [4,5]. Works [6–11] that followed in the footsteps
of Ref. [4] described the population dynamics using the
replicator equations, which are commonly used in game theory
and other fields [12]. In describing species interactions, the
Lotka-Volterra equations are very popular [13,14] but have
only been analyzed with these tools in [5]. However, due to
the model assumptions in [5], some of the main phenomena
discussed here do not show up, including the multiple attractor
phase and partial coexistence of species. Recently, related
techniques have been used to study other models [15,16], as
part of a revival in applying methods from statistical mechanics
to understand ecology [15–21]. Motivated by this renewed
interest, we here attempt to provide derivations that are as
self-contained and elementary as possible.

The paper is organized as follows: The model is presented
in Sec. I, and its phase diagram is described in Sec. II. In
Sec. III the model is shown to posses a symmetry by which the
properties of its fixed points depend only on certain parameter
combinations. In Sec. IV the diversity and species abundance
distributions are derived, and the transition line to the multiple
attractor phase is discussed in Sec. V. The paper concludes
with a discussion of the implications of the results to ecology
and possible future research directions.

I. MODEL DEFINITION

The species pool includes S species that might reach the
local community (see Fig. 1). Within the community the

A,B,C,D,E,...

A,C,D,.. B,C,E,..

Habitat I Habitat II

Regional pool

FIG. 1. Communities assembled in different locations from a
regional species pool. The model focuses on one such community.
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abundances Ni of the species, with i = 1..S, evolve according
to the generalized Lotka-Volterra equations:

dNi

dt
= ri

Ki

Ni

⎛
⎝Ki − Ni −

∑
j,(j �=i)

αijNj

⎞
⎠ . (1)

Here ri are the intrinsic growth rates, Ki are the carrying
capacities, and αij for i �= j encode interspecies interactions,
with positive values representing competition. Here we focus
on the effect of interactions and neglect noise [22].

In order to proceed, the parameters ri,Ki and αij of the
species in the pool—as would be measured in the local
community conditions—need to be specified. Here the αij

are sampled independently, except for possibly a correlation
between αij and αji , set by the coefficient γ ≡ corr(αij ,αji)
with −1 � γ � 1. It is not restricted to the symmetric case,
γ = 1.

The analytical technique is controlled at large pool sizes S

with individually weak interspecies interactions, i.e., keeping
the asymmetry γ and the parameters μ ≡ S〈αij 〉 and σ 2 ≡
S var (αij ) constant. (The mean will be denoted by angular
brackets, 〈..〉.) It will be instructive and convenient to work
with variables aij defined through

αij = μ

S
+ σaij , (2)

with 〈aij 〉 = 0,〈a2
ij 〉 = 1/S and 〈aij aji〉 = γ /S, so the re-

lations for αij are satisfied. aij can be sampled from any
distribution with the required mean and variance. The carrying
capacities Ki are sampled independently of the αij . By
rescaling Ni → Ni/〈Ki〉 we set 〈Ki〉 = 1. Where Ki are not
identical they are taken to be Gaussian with σ 2

K ≡ var (Ki).
(Calculations can be carried out for other distributions of Ki

as well. Note that Ki is allowed to be negative, as in the case
of predators that rely on prey for their survival.)

While the analytical theory is exact for large S, in practice
the number of species need not be large; good agreement is
found for modest values of S (see Figs. 3 and 4 for S = 15
and communities down to 6 species). The rationale behind the
scaling in Eq. (2) is to keep the interaction term in Eq. (1),∑

j,(j �=i) αijNj , finite when S is large. This has been employed
in many works [4–10,15,18], while others have considered
the limit where the distribution of αij is kept constant as S

grows [19,20]. One notable difference is the fraction of species
that coexist in the community, which attains a finite value
in the present scaling and is very small if αij is maintained
constant. This may serve as a rough guideline for the scaling
limit most appropriate for a specific ecological setting, if S and
the number of species S∗ in the community can be estimated.

II. PHASE DIAGRAM FOR THE DYNAMICAL BEHAVIOR

We study the properties of the community at long times. The
dynamics of Eq. (1) can exhibit various different behaviors.
Equation (1) might converge to a fixed point that is stable
against small perturbations in values of the persistent species
(defined as the species for which Ni > 0). This fixed point
could also be resistant to invasions, i.e., species for which
Ni = 0 will decay to zero if introduced at a small abundance,
[ 1
Ni

dNi

dt
]
Ni→0+ < 0. In such a case, the community composition

will be maintained indefinitely, if migration acts on long
enough time scales which allow the community to relax
between colonization attempts [19,23–26]. Other scenarios are
also possible: the system may settle to a dynamical attractor,
in which the abundances fluctuate indefinitely. In this case
uninvadable fixed points might not exist [25]. In addition to
the stability and uninvadability conditions just described, all
species in the community by definition have positive Ni . This is
known as feasibility when formulated as a separate condition.

Given the various possible dynamical behaviors, we first
review the phase diagram of the model’s dynamical behavior
before going into the details of the calculations. Depending on
the parameters μ,σ,σK , and γ , the model exhibits three distinct
dynamical phases, separated by sharp transitions at large S. In
the unique-fixed-point (UFP) phase, any given system admits
a unique, stable fixed point that is resistant to invasion.

In the multiple attractor (MA) phase, multiple dynamical
attractors generally exist so that the community composition
depends on assembly history, for example, the initial condi-
tions or the order of species’ invasions. These attractors may
be stable fixed points or other dynamical attractors. Finally,
in the third phase the abundances grow without bound; here
the description in terms of Lotka-Volterra equations eventually
breaks down and this regime will not be further discussed.

The analytical technique is based on assuming that an
uninvadable fixed point exists, calculating its properties and
checking the validity of this assumption self-consistently.
Since in the UFP phase all uninvadable fixed points are
also stable, the analytical predictions are exact there. The
calculation of the transition lines is described in Secs. IV and V.
For small values of S the sharp transitions are broadened, as
discussed below.

III. A SYMMETRY OF THE FIXED POINTS

We begin with a change of variables that reveals an
underlying symmetry of properties of the fixed points.
Fixed points dNi/dt = 0 of Eq. (1) require that for all i,
Ni(Ki − Ni − ∑

j �=i αijNj ) = 0. By using the definition of
aij and rearranging this becomes

0 = ni

⎛
⎝λi − uni −

∑
j �=i

aij nj + h

⎞
⎠ , (3)

where ni are the normalized abundances

ni = Ni/

⎛
⎝ 1

S

S∑
j=1

Nj

⎞
⎠

so that 1
S

∑S
i=1 ni = 1, and

u = 1 − μ/S

σ
, λi = Ki − 1

σ 〈Ni〉 , h = 1/〈Ni〉 − μ

σ
, (4)

so that 〈λi〉 = 0 and σ 2
λ ≡ 〈λ2

i 〉 = σ 2
K/(σ 〈Ni〉)2. In this lan-

guage the problem becomes as follows: Given the input
parameters u,γ , and σ 2

λ , find a value of h such that Eq. (3) holds
for all species;

∑S
i=1 ni = S; species for which ni = 0 cannot

invade; and the persistent species (ni > 0) are stable against
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FIG. 2. The model exhibits three distinct dynamical behaviors,
depending on model parameters. In the unique fixed-point (UFP)
phase, a unique, stable fixed point that is resistent to invasion exists
for any system. In multiple attractor (MA) phase, multiple dynamical
attractors can be found for any system. These may be stable fixed
points or other attractors, and the community composition is history
dependent. In the third phase abundances grow without bound; here
the Lotka-Volterra equations likely break down. The phases are shown
for asymmetric interactions (γ = 0) and equal carrying capacities, all
set to Ki = 1.

small perturbations in ni . Thus h is a result of the calculation
from which 〈Ni〉 can be obtained. At large S, u � 1/σ to
lowest order in 1/S, which is used throughout the paper in
comparisons with Lotka-Volterra simulations.

As Eq. (3) depends on the original parameters only through
the combinations u,γ,σ 2

λ in Eq. (4), new nontrivial symmetries
of the original problem are revealed. For example, if all
carrying capacities are identical (Ki = 1), then σ 2

λ = 0 and
the problem depends on all the original parameters through u

and γ . Therefore at at large S all properties of the normalized
abundances ni do not depend on μ [see Fig. 3(a) and Fig. 4(b)].
In particular, note that the transition between the UFP and MA
phases in Fig. 2 is a straight line. This is due to a symmetry
discussed in the next section, as is manifested for σK = 0.

The mapping also establishes a connection to the replicator
equations and literature that studies its properties, as the fixed
points of Eq. (3) are precisely those of the replicator equations
dni/dt = ni(λi − uni − ∑

j �=i aij nj + h). This mapping only
holds for the fixed-point properties. It is not the well-known
mapping of the full dynamics [7,12], in which the change
of variables mixes them in a way that generates statistical
dependencies between interaction strengths, even when they
do not exist in the original Lotka-Volterra equations.

The exact expression for u, u = (1 − 〈αij 〉)/σ , can be used
in a different scaling limit where 〈αij 〉 is kept constant, instead
of 〈αij 〉 = μ/S. Here u can be interpreted as the angle in
〈αij 〉,σ plane from the Hubbell point [15,20], 〈αij 〉 = 1,σ = 0.

IV. DIVERSITY AND SPECIES ABUNDANCE

To study the properties of the community, we use a
variant of the cavity method [4–6,27,28]. It is based on the
dynamical cavity method [5,6], which does not require αij to
be symmetric but replaces its generating functional formalism

by a more elementary derivation, closer in spirit to [27]. Given
the mapping described in Sec. III, it is no wonder that the final
equations will be similar to those obtained in the context of
the replicator equations [4,6], and equivalent for σλ = 0. For
completeness the derivation provided is self-contained and
does not require prior knowledge of spin-glass techniques.

The argument proceeds by adding a new species along
with newly sampled interactions with the existing system, and
comparing the properties of the solution with S species to that
with S + 1 species, requiring that the new species has the same
properties as the rest. Starting from Eq. (3), assume that the
abundances ni\0 of the species in the pool i = 1..S are known.
Introduce a new species with interactions {a0i ,ai0}i=1..S and
λ0. For the purposes of the derivation, Eq. (3) is extended
to include additional small perturbations ξi to the λi of each
species, later set to zero:

0 = ni

⎛
⎝λi − uni −

∑
j �=i

aij nj + h + ξi

⎞
⎠ . (5)

The response to the perturbation is defined by

vij ≡ [∂ni/∂ξj ]ξj =0 . (6)

Once the new species is introduced, it might invade and its
final abundance will be n0 > 0, or else n0 = 0. The effect it
has on the species i � 1 is [29]

uni = λi −
∑
j �=i

aij nj + h − ai0n0 .

This is the same as Eq. (5), with ξi = −ai0n0. For large S each
ai0n0 is small, as n0 does not scale with S (its mean is 1 by
the normalization), and ai0 scales as 1/

√
S. Therefore linear

response can be used, nj = nj\0 − ∑
k vjkξk , giving

nj = nj\0 − n0

∑
k

vjkak0 .

If n0 > 0 we substitute this equation into 0 = λ0 − un0 −∑
j a0j nj + h + ξ0 and rearrange to find that n0 = n+

0 , where

n+
0 ≡ λ0 − ∑

j a0j nj\0 + h + ξ0

u − ∑
j,k vjka0j ak0

. (7)

The denominator of this equation will be a finite number
with negligible fluctuations. To see this, note that vii = O(S0),
while vij , which is mediated by the aij interactions, is expected
to be vij = O(S−1/2) (as can later be verified [30]). The sum
over the j = k terms in

∑
j,k vjka0j ak0 gives〈∑

j

vjj a0j aj0

〉
=

∑
j

vjj 〈a0j aj0〉 = γ

S

∑
j

vjj ,

with O(S−1/2) fluctuations, while the sum over the j �= k

terms is O(S−1/2). Together, up to O(S−1/2) fluctuations, the
denominator is equal to u − γ v with v ≡ 〈vjj 〉. All in all, the
indirect effects of the existing community on the new species
changes the denominator from u to u − γ v.

Turning to the numerator of Eq. (7), the term
λ0 − ∑

j a0j nj\0 + h has mean h and variance σ 2
λ +∑

j 〈a2
0j 〉〈n2〉 = σ 2

λ + q, where q ≡ 〈n2〉. This follows from
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the distributions of λ0 and a0j (all independent from each
other by construction). As a sum of many weakly correlated
terms, −∑

j a0j nj\0 is Gaussian (see, e.g., [31]), and so

the numerator is Gaussian, h + ξ0 +
√

q + σ 2
λ z with P (z) =

1√
2π

e−z2/2. Setting ξ0 = 0, Eq. (7) becomes

n+
0 = 1

u − γ v

(
h +

√
q + σ 2

λ z
)
. (8)

From the Lotka-Volterra equations, Eq. (1), it follows that
if n+

0 > 0, the solution n0 = 0 is not stable against invasion
([ 1

Ni

dNi

dt
]
Ni→0+ > 0), so n0 = n+

0 . This is where the resistance

to invasion enters. Together, n0 = max (0,n+
0 ) with n+

0 given
in Eq. (8). But once species “0” has been added to the system
it is in no way different from the other species, so we may drop
the subscript 0 to obtain the species abundance distribution of
all species,

n = max

(
0,

h +
√

q + σ 2
λ z

u − γ v

)
. (9)

The distribution of n is therefore a truncated Gaussian (as was
obtained in other models [6,7]).

It remains to find the values of q,v,h,φ. Using Eq. (9)
for n, the relations 1 = 〈n〉,q = 〈n2〉,φ = 〈
+(n)〉 can be
used. Here 
+(n) is the Heaviside function with 
+(0) =
0, i.e., 
+(n) = 0 if n < 0 and 1 otherwise. Note that
φ is the fraction of persistent species. Denoting wk(�) ≡∫ ∞
−�

1√
2π

e− z2

2 (z + �)kdz, these three relations read

φ = w0(�),

u − γ v =
√

q + σ 2
λ w1(�), (10)

(u − γ v)2 = (
1 + σ 2

λ /q
)
w2(�),

where � ≡ h/
√

q + σ 2
λ . A fourth equation is obtained by

differentiating Eq. (7) with respect to ξ0: if n0 > 0 it gives
v00 = 1/(u − γ v) and otherwise v00 = 0. Together,

v = 〈v00〉 = φ
1

u − γ v
. (11)

This completes the set of four coupled equations for the
unknowns q,v,h,φ. Using the identity w2(�) = w0(�) + � ·
w1(�) and the definition of �, we also have

h = q
[
u − v

(
1 + γ + σ 2

λ /q
)]

. (12)

These equations were first derived, for σ 2
λ = 0, in the context

of the replicator equations in [4,6].
These equations can be solved numerically by eval-

uating q = w2/w
2
1,v = w0/(w1

√
q + σ 2

λ ) and u = γ v +√
q + σ 2

λ w1 as functions of �,γ and σ 2
λ . One then finds that

at any fixed values of σ 2
λ ,γ , and for all u > 0, the function u

is an increasing function of �. Therefore u(�) is one-to-one
and can be numerically inverted to obtain �(u), allowing one
to calculate the values of v,q,h as a function of the input
parameters u,γ , and σ 2

λ . The explicit expressions for q,v,u,h

as functions of �,γ , and σ 2
λ , along with the uniqueness of the

0 1 2
0

0.5

1

S=15, =4
S=200, =2
S=200, =4

0 0.5 1 1.5
0

1

2
S = 15
S = 200(a)

(b)

FIG. 3. Diversity and species abundance distribution. φ is the
fraction of persistent (Ni > 0) species. Solid and dashed lines show
analytical predictions, exact in the UFP phase, left of the vertical
dotted lines in (a). Parameter values are γ = 0 and σ 2

K = 0, and in
(b) μ = 4 and σ = 1.1.

inversion u(�), guarantee that the solution as a function of
u,γ , and σ 2

λ is unique.
Returning to the Lotka-Volterra variables Ni = 〈Ni〉ni , one

has 〈Ni〉 = 1/(σh + μ) from Eq. (4) and 〈N2
i 〉 = q〈Ni〉2 =

q/(σh + μ)2. The species abundance of Ni is a truncated
Gaussian from Eq. (9), fully characterized by 〈Ni〉 and 〈N2

i 〉
[see Fig. 3(b)]. It also shows the fraction of persistent species
and the moments 〈Ni〉 and 〈N2

i 〉.
To simulate the model, a realization of the interaction matrix

αij and the carrying capacities Ki is sampled, and the dynamics
in Eq. (1) are then run. The details are given in Appendix B.
The predictions for the diversity and abundance distributions
are shown in Figs. 3 and 4, and compared to simulations with
S = 200 and S = 15. The following points are noteworthy:

(1) At large S (here, S = 200), data collapses for μ = 2,4
for the quantities in Fig. 3(a) and Fig. 4(b), which are properties
of the normalized ni alone, in accordance with the predictions
of Sec. III.

(2) The analytical predictions are indeed exact for large S

in the UFP phase, left of the vertical dotted line in Fig. 3(a)
and Fig. 4. Note that the analytical predictions are also a good
approximation beyond this point, well into the MA phase.

(3) The analytical predictions fit quite well also for S = 15,
and communities with S∗ as low as 6 species. The transition
to the unbounded growth phase is broadened at low S, leading
to higher values and large fluctuations in 〈N2

i 〉 [see Fig. 4(b)].
The transition to the unbounded growth phase, shown

in Fig. 2, is marked by the divergence of 〈Ni〉. As

0.5 1 1.5 2

100

101

0.5 1 1.5 2
100

(b)(a)

FIG. 4. Moments of the species abundance distribution. Symbols
and parameter values are the same as in Fig. 3(a).
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FIG. 5. (a) Phase diagram for σK = 0 and different γ . The γ = 0
lines correspond to Fig. 2 in the main text. Crosses mark the transition
to diverging solutions, found numerically. (b) Numerical check of the
phase boundary between UFP and MA phases, the fraction of systems
for which there are multiple solutions, at μ = 4 and γ = 1. At large
S this fraction jumps sharply at the phase transition. The dashed line
marks the analytically calculated transition point, σ = 1/

√
2.

〈Ni〉 = 1/(σh + μ), the boundary with the unbounded growth
can be located analytically through the condition σh + μ = 0.
The analytical expression for h is exact in the UFP phase
and approximate in the MA phase, so the prediction for this
phase boundary will accordingly be exact when it limits the
UFP phase and approximate when it limits the MA. The
phase diagram for different values of γ is shown in Fig. 5(a),
with crosses indicating the position for the transition found in
simulations.

V. STABILITY AND MULTIPLE ATTRACTORS

As in similar models [4,6], the transition to the MA phase
proceeds via the loss of stability of the single fixed point which
was described in the previous section [32,33]. The transition
can thus be located by calculating the stability of this fixed
point to perturbations. Consider the change of the normalized
abundances �n in response to a perturbation �ξ defined in Eq. (5),
with the ξi’s sampled independently from each other. (The
average includes δni = 0 for species outside the community.)
The derivation is similar to the one in the previous section and
to standard techniques. It is given in Appendix A. One finds
that

〈(δn)2〉
〈ξ 2〉 = φ

(u − γ v)2 − φ
. (13)

This diverges at the boundary between the UFP and MA
phases, φ = (u − γ v)2, indicating the loss of stability of the
fixed point. For σK = 0 this line lies along σ = √

2/(1 + γ )
for all μ > 0 (see Appendix A). The transition lines for
different values of γ are shown in Fig. 5. The transition lines
for different σK > 0 are presented in Fig. 6. These figures
demonstrate that lower symmetry (reducing γ ) and higher
variability in the carrying capacities (increasing σK ) both delay

μ

0 1 2 3 4 5 6 7

σ

1.4

1.6

1.8

2

2.2

2.4

σ
K
2  = 0.2

σ
K
2  = 0.4

σ
K
2  = 0.6

FIG. 6. Phase boundary between UFP and MA phases for
different values of σK at γ = 0. Solid lines correspond to the γ = 0
phase boundaries in Fig. 5(a).

the transition from the UFP to the MA phase. Beyond this line,
the right-hand side of Eq. (13) is negative, which cannot be
correct. This means that the assumption of a single uninvadable
fixed point is not longer consistent. To observe this transition
numerically, one checks whether the same final community
is obtained in repeated runs of the Lotka-Volterra dynamics,
Eq. (1), for different initial conditions on the same system. The
fraction of systems that have multiple fixed points is plotted
in Fig. 5(b). For large S this fraction jumps abruptly at the
predicted position. The transition is broadened for finite values
of S and is quite broad even for S = 100, with a single fixed
point found even well inside the MA phase. The transition
between the UFP and MA phases is closely related to those
found for the replicator equations [4,6,9,10,18], and is also
similar to transitions described in [15,20].

The calculation in Eq. (13) is of the response to changes in
the carrying capacities Ki . This is equivalent to the requirement
that α∗, the interaction matrix reduced to the community
species Ni > 0, is positive definite. An a priori different
requirement is for the fixed point �N∗ to be dynamically stable,
returning to �N∗ when abundances are initialized close to it.
By expanding Eq. (1) around �N∗, one finds that the matrix
M∗

ij = α∗
ij r

∗
i N∗

i /K∗
i must be positive definite, which does not

generally follow from α∗ being positive definite [34]. However,
in the UFP phase we always find that M∗ is positive definite
if �r∗ is sampled independently from α∗ and �K∗. This was
tested for various distributions (including identical values,
exponential, power-law, and uniform distributions).

VI. DISCUSSION

The relationship between the different constraints on a
community—feasibility, uninvadability, and stability—is a
central theme in theoretical ecology. The phase diagram of
the present model gives an interesting take on the subject.
In the UFP phase we find that all feasible and uninvadable
fixed points are also automatically stable. Moreover, in
this phase they are unique and thus globally stable. Upon
transitioning to the MA phase, both these properties break
at once: there are multiple fixed points and some of them
are unstable. In this phase asymmetric models (e.g., γ = 0)
may fall into dynamical attractors that are not fixed points.
In addition, they might never become uninvadable; instead,
invasions can trigger jumps between a number of possible
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communities [25,26,35]. This may happen for dynamical
attractors [25], or if species that go below some abundance
cutoff are removed from the community, as seems inevitable
in any realistic situation [25,26,35]. We see this phenomenon
in numerical simulations (see Appendix B). It is perhaps
surprising that all these changes happen upon crossing a single
transition.

The analytical technique as employed here only uses
feasibility and resistance to invasion, without accounting for
stability. Stability may be an important factor affecting the
structure of communities [3]. Nonetheless, some of the key
results, in particular, the diversity (number of coexisting
species) and the abundance distributions, are very reasonably
described by the theory even in the MA phase where some
fixed points are unstable (see Figs. 3 and 4).

The species abundance distribution P (N ) is Gaussian,
truncated at N = 0. This analytical prediction is confirmed by
simulations. Abundance distributions are a subject of ongoing
research; commonly cited distributions are log-normal or
power law rather than Gaussian [13,21,36]. As the community
assembly studied here accounts for only some of the processes
acting in nature, this result is instructive in disentangling the
effect of different processes. Factors that may significantly
change the abundance distribution are the introduction of noise
(as emphasized by neutral theory [21,36], especially if the
species are very similar in their properties) and the full spatial
effects (as in meta-community models [1]). It has also been
suggested [7] that this P (N ) may appear similar to observed
distributions in some parameter regimes.

The applicability of the predictions to small values of S

is important when studying ecosystems with tens of species
(or groups of similar species). Here we find that diversity and
species abundance distributions are very well approximated
by the large S results. The transitions between the different
phases are broadened, and in particular, unique fixed points as
in the UFP phase are found for model parameters that would
be deep in the MA phase. This is a significant effect even for
S = 100.

The model studied here should be viewed as a simple null
model that may be extended or modified to tackle different
questions or specific biological settings. The theoretical
framework may be readily applied to a range of such settings.
The functional forms of the single-species response and
interspecies interactions may be replaced with more realistic,
biologically motivated forms. Sparse interactions, where αij

vanishes for some of the interaction pairs, can also be studied.
In this case the theory is almost unchanged once the definitions
of μ,σ are modified to μ = C〈αij 〉 and σ 2 = C var (αij ),
where C is the average number of links of a given species.
This straightforward extension requires C to be large and with
small variability between species, in which case the derivations
above generalize trivially. In fact, this case is already covered
by the present framework since αij was allowed take any
distribution, in particular, one where some of the αij values
vanish. If C is small, new phenomena may appear [11] that
can be approached with variants of the present cavity method.

Models of resource competition play an important role in
ecology, yet theoretical techniques related to those used here
have only begun to be applied [10,16]. In models of this class
that use Lotka-Volterra dynamics, the matrix α is constructed

from an underlying niche space [17,37,38]. As a result, the
properties of α are different from those taken in the present
work. Under certain conditions on this construction, all fixed
points are either stable or marginally stable [39]. These models
may exhibit a transition from a single fixed-point regime to
one where a subspace of marginally stable fixed points exists
[17,37,38]; this is different from the MA phase, where multiple
fully stable fixed points can appear [see Fig. 5(b)].

Other future research directions include full spatial or meta-
community models [1]. Finally, it would be interesting to study
the MA phase in more depth. This may require more powerful
and involved theoretical tools [33,40].
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APPENDIX A: TRANSITION TO MULTIPLE
ATTRACTORS

The stability of α∗ can be analyzed through the changes
in ni when a perturbation �ξ is applied. Consider an on-site
perturbation �ξ = ε�η to all species with ni > 0, where the ηi

are independent random variables, which are also independent
of the ni and aij and with 〈ηi〉 = 0. ε is a parameter, and we
wish to calculate dn+

0 /dε. We see that it diverges at some
point, signaling the loss of the stability of the unique fixed
point and a transition to a phase with multiple fixed points.

The average over realizations of the existing variables, nj\0

and ηi>0, is denoted by 〈..〉; the average also over η0 is denoted
by (..). As in the other cavity derivations,

n+
0 = 1

û

⎛
⎝λ0 −

∑
j

a0j nj\0 + h + εη0

⎞
⎠ ,

where û ≡ u − γ v. Differentiating with regard to ε, and
denoting yi\0 ≡ dni\0/dε and y+

0 ≡ dn+
0 /dε,

y+
0 = 1

û

⎛
⎝−

∑
j

a0j yj\0 + η0

⎞
⎠ .

If n0 > 0, then dn0
dε

= dn+
0

dε
= y+

0 ; otherwise dn0
dε

= 0. Taking
the square of this equation,

û2(y+
0 )2 =

∑
j,j ′

a0j a0j ′yj ′\0yj\0 − 2η0

∑
j

a0j yj\0 + η2
0 .

The term
∑

j,j ′ a0j a0j ′ 〈yj ′\0yj\0〉ηi>0
is self-averaging and

equal to S−1 ∑
j�1 〈y2

j\0〉ηi>0
= φ〈y2

j\0〉+, where 〈..〉+ denotes
the average only over the community (i.e., nj\0 > 0) variables.
To see this, note that y2

i\0 is O(S0) and with positive
mean, while yj\0 are weakly correlated for different j ,
and with 〈 dnj\0

dε
〉
ηi>0

= 0 (as �ηi>0 → −�ηi>0 leads to dnj\0

dε
→

− dnj\0

dε
). Therefore

∑
j �=j ′ a0j a0j ′ 〈yj ′\0yj\0〉ηi>0

= SO(S−3/2),
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while
∑

j a2
0j 〈y2

j ′\0〉ηi>0
= O(1). Thus

û2(y+
0 )2 = φ

〈
y2

j\0

〉
+ − 2η0

∑
j

a0j yj\0 + η2
0 .

Averaging over η0, which is independent from both a0j and
yj\0,

û2(y+
0 )2 = φ

〈
y2

j\0

〉
+ + η2

0 ,

we see that (y+
0 )

2
is independent of n+

0 . Thus (y+
0 )

2
is precisely

the average over dn0
dε

in all cases where n0 > 0. If n0 > 0, once
it has been added to the community it is no different from all the

other community variables, so we must have (y+
0 )

2 = 〈y2
j\0〉+.

Also, 〈y2
j\0〉+ = 〈y2

j 〉+ because the differences between yj\0

and yj are O(S−1/2). Together this gives

〈δn2〉
〈ξ 2〉 = φ〈δn2〉+

〈ξ 2〉 = φ
〈
y2

j\0

〉
+

η2
0

= φ

û2 − φ
.

This diverges when

(u − γ v)2 = φ = v(u − γ v) ⇒ uc ≡ (1 + γ )v .

Thus when u < uc the cavity solution becomes unstable.
For σλ = 0, �c = q[uc − vc(1 + γ )] = 0, so

vc(uc − γ vc) = ∫ ∞
0 Dz = 1/2, and (uc − γ vc)2 =∫ ∞

−�
Dz(z + �)2 = 1/2 and so together vc = 1/

√
2; hence

uc = (1 + γ )/
√

2 (for σλ = 0).

APPENDIX B: NUMERICAL SIMULATIONS

To numerically find persistent solutions, the variables αij

and Ki are first sampled. αij are sampled from a normal
distribution throughout. A uniform distribution was checked to
give identical results at large S. The Lotka-Volterra dynamics,
Eq. (1), are then integrated, using a Runge-Kutta 45 solver,
from random initial conditions sampled uniformly on [0,1].
All species that go below an abundance cutoff Ni < 10−14 are
removed from the community (Ni set to zero). The solver is
terminated when an equilibrium solution is found, in which

σ
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FIG. 7. Fraction of species that may invade. Data plotted with
dashed lines show the results after multiple invasion attempts.

for every i either dNi/dt is small or Ni < 10−14. Solutions
that do not terminate are stopped after a long time (T = 107)
and all variables with Ni > 10−14 are considered part of the
community. The solution is checked against invasion of the
pool species not present. As some species are removed during
the dynamics due to the abundance cutoff, it is possible that
they would be able to invade later. If any such species are
found, the dynamics are run from the end point of the first
simulation with additional small abundance (Ni = 10−10) to
the species that may invade. This process is repeated until
an uninvadable solution is reached or after ten iterations. In
the UFP phase the resulting community is always found to
be uninvadable and is usually reached on the first run of the
dynamics. For a given system all initial conditions give the
same final community. In the MA phase and for asymmetric
interactions (specifically γ = 0), this process did not always
converge to an uninvadable solution after ten iterations and
then was stopped (see Fig. 7). All numerical results shown in
the paper show only minor differences when plotted after the
first run, compared to iterations of the invasion process.

To test if a system has more than one fixed point, as shown
in Fig. 5(b), the same system (same αij and Ki) is run starting
from different initial conditions.
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