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Theories that are used to extract energy-landscape information from single-molecule pulling experiments in
biophysics are all invariably based on Kramers’ theory of the thermally activated escape rate from a potential
well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and
crucially relies on the assumption that the barrier energy is much larger than kBT (limit of comparatively low
thermal fluctuations). As was shown already in Dudko et al. [Phys. Rev. Lett. 96, 108101 (2006)], this approach
leads to the unphysical prediction of dissociation time increasing with decreasing binding energy when the latter
is lowered to values comparable to kBT (limit of large thermal fluctuations). We propose a theoretical framework
(fully supported by numerical simulations) which amends Kramers’ theory in this limit and use it to extract
the dissociation rate from single-molecule experiments where now predictions are physically meaningful and in
agreement with simulations over the whole range of applied forces (binding energies). These results are expected
to be relevant for a large number of experimental settings in single-molecule biophysics.
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I. INTRODUCTION

Formation of intermolecular bonds in thermally agitated
environments is ubiquitous from biological to condensed
matter physics. Examples include nanoparticle adsorption to
membranes [1,2], protein-ligand bindings [3–5], mechanical
studies of cellular membranes [6,7], and conformational
changes in proteins [8] The energy gain upon forming the
bond—the binding energy Q—determines the bond’s stability
in an environment with thermal fluctuations. When the binding
energy and thermal fluctuations (energies on the order of
kBT ) are comparable in size, i.e., E ≡ Q/kBT ≈ 1, the bond
can break on a relatively short time scale. Conversely, larger
binding energies mean increased stability and longer mean
dissociation times.

Bond stability is described by the mean dissociation time
τ or, alternatively, by the dissociation rate r = 1/τ . Kramers
[9] recovered the Arrhenius law [10] [τ ∝ exp(E)] from the
Smoluchowski equation and the energy landscape displayed
in Fig. 1(a),

τ = 2π kBT

(|ωA||ωB |)1/2D
exp

(
Q

kBT

)
, (1)

where ωA,B = ∂2U (x)/∂x2|x=xA,xB
are the potential’s curva-

tures at its minimum and maximum, respectively, and D is the
diffusion constant.

In order to reach the above result Kramers had to make
a series of assumptions. One of the most important is that
a stationary energy distribution exists around the minimum.
This imposes the requirement of large energy barriers [9,11].
Kramers used the saddle-point approximation to evaluate two
integrals. By doing so, he imposed implicitly the condition
of steepness in the energy landscape around the minimum
and maximum. Evidently these assumptions fail for small
values of E, which corresponds both to shallow potential wells
and to large thermal energies. Furthermore, some potentials

[e.g., Lennard-Jones (LJ)] do not have an energy barrier over
which escape takes place. In these cases, it is clear that Eq. (1)
cannot be applied, but Arrhenius-law-style behavior of τ (E)
appears to exist for sufficiently deep wells.

We use an alternative mean first-passage time formalism—
the Ornstein-Uhlenbeck (OU) method—to obtain solutions
τ (E) for situations where Kramers’ assumptions break down:
dissociation of dimers interacting through a LJ potential
and single-molecule constant-force pulling experiments. First,
analytic results are found for truncated linear and quadratic
potential wells and used as crude approximations to the (non-
analytic) LJ and linear-cubic potentials. Second, numerical
solutions for these nonanalytic potentials are obtained.

Our numerical model gives results that agree excellently
with data from dissociation simulations of LJ dimers (see
Fig. 3). Surprisingly good agreement between our analytic
models and the data also is observed. The data for larger
values of E appear to have an Arrhenius-style E depen-
dence. However, significant deviation from this exponen-
tial behavior is found for smaller values of E with 27-
and 13-fold discrepancies for E = 0 and 1, respectively.
Our approach can be applied successfully to constant-force
pulling experiments and, importantly, for small E our model
does not give an unphysical divergence in τ , which is the
case for the model based on Kramers’ theory presented in
Ref. [12].

For a particle moving in a potential-energy land-
scape U (x) with reflecting and absorbing boundaries at
xA and xB , respectively, and an initial position x sat-
isfying xA � x � xB , the OU method gives the mean
first-passage time up to a multiplicative constant as
[13,14]

τ = C

∫ xB

x

dy exp

(
U (y)

kBT

)∫ y

xA

dz exp

(
−U (z)

kBT

)
. (2)
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FIG. 1. (a) Schematic of the potential used in the derivation of
Kramers’ dissociation time Eq. (1). (b) The truncated linear [Eq. (3)]
and quadratic [Eq. (7)] potentials used in the analytic calculation of
dissociation times.

A. Truncated linear potential

First, the truncated linear potential [solid line in Fig. 1(b)],

U (x) =
{

Qx

L
, 0 < x � L,

Q, x > L.
(3)

Placing the reflecting and absorbing boundaries at xA = 0 and
xB = L produces

τ (x) = L2

D

1

(Q/kBT )2

[
exp

(
Q

kBT

)
− exp

(
Qx

LkBT

)]

+L(x − L)

D

1

Q/kBT
. (4)

Setting x = 0 gives τ (0): the mean first-passage time for a
particle starting at the reflecting boundary. This is the quantity
of interest because the linear (and quadratic) wells are used as
crude models of the LJ landscape describing the interactions of
Brownian dimers. The dimers start in the potential minimum,
and so we start at the point lowest in potential, which
corresponds to x = 0—the reflecting wall. Multiplying by
D/L2 renders the above dimensionless: τ0 = Dτ (0)/L2,

τ0 = 1

(Q/kBT )2

[
exp

(
Q

kBT

)
− 1

]
− 1

Q/kBT
.

Finally, substituting E = Q/kBT , we have

τ0 = 1

E2
[exp(E) − 1] − 1

E
, (5)

with a subexponential (non-Arrhenius) dependence
[∼ exp(E)/E2] for larger values of E. Note that, as
E → 0, Eq. (5) remains finite and the free diffusion limit is
recovered for E = 0 [15].

Next, the truncated quadratic well,

U (x) =
{

Qx2

L2 , 0 < x � L,

Q, x > L.
(6)

Proceeding as before we find

τ (x) = L2

2D

(
2F2

[
{1,1},

{
3

2
,2

}
,E

])

−x2 L2

2D

(
2F2

[
{1,1},

{
3

2
,2

}
,
( x

L

)2
E

])
, (7)

where pFq(a1, . . . ,ap; b1, . . . ,bq ; z) is the generalized hyper-
geometric function [16]. We form τ0,

τ0 = 1
2 2F2

[{1,1},{ 3
2 ,2

}
,E

]
. (8)

The hypergeometric function notation obscures the behav-
ior of τ making immediate comparison with the result for the
linear well difficult. However, we can deduce the asymptotic
behaviors. As E → 0 the force due to the potential also falls
towards zero. This means that the escape process transforms
into free diffusion, and thus the results must coincide with each
other and the free-diffusion limit for E = 0.

B. Force-tilted potentials

The OU method can be used for one-dimensional (1D)
potential-energy landscapes only. Justification of its applica-
bility to LJ dimers and the single-molecule pulling experiment
(see later) is necessary. First, the dimers: The LJ potential
is spherically symmetric and thus a function of the absolute
distance between the particles—a scalar quantity—alone.
The escape process is thus effectively one dimensional.
Second, the pulling experiment: Applying a pulling force
defines a preferential direction for escape. We exploit this by
characterizing the unfolding process as motion in an energy
landscape defined by one coordinate along the line of the force
and so reduce the dimensionality from three to one.

In order to test the analytical theory, we conducted Brow-
nian dynamics simulations of two initially bonded Brownian
dimers. The particles interact through a LJ potential U (x) =
4Q[(σ/x)12 − (σ/x)6]. The potential is truncated at x = 3 σ

and shifted by U (3 σ ) to avoid a discontinuity at x = 3 σ .
Here, x is the distance between the particles, Q is the depth
of the potential well, and σ is the characteristic particle size.
The particles are initialized at a distance of x0 = 21/6σ from
each other, where U (x) has its minimum. The simulations
are performed in the framework of Brownian dynamics, i.e.,
the overdamped Langevin equation with a negligible inertial
term using the LAMMPS molecular dynamics package [17]. The
friction coefficient in the overdamped Langevin equation is
γ = 103 in LJ units (mQ/σ 2)1/2. We measure the dissociation
time τ for different values of E according to the following
protocol.

Different values of E were simulated by fixing Q = 1
and changing the temperature T from 0.1 to 10, where T

is measured in LJ units Q/kB. Depending on the temperature,
different time steps were used for the time integration
from δt = 0.001 (low temperatures) to δt = 0.0001 (high
temperatures) where time is measured in LJ units: (mσ 2/Q)1/2.
For each value of E, 500–1000 dimers were simulated
independently. The simulations were run for a number of
steps N in the range of N = 107 to 1.5 × 109, depending on
E. N was chosen such that, for each E, a substantial number
of dimers dissociated before the simulation finished at time
tend = N δt. τ is defined as the first time at which the two
particles are separated by a distance greater than 3 σ , see
Fig. 2(b). This dissociation condition was implemented in the
OU method by placing the absorbing barrier at xB = 3σ .

The mean dissociation times are calculated using the
“survival” function P (t), which measures the fraction of bonds
that are still intact at time t . Figure 2(b) shows P (t) for a
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FIG. 2. Simulation setup and analysis. (a) The binary system and
interaction potential used in simulations. For each value of E between
500 and 1000 pairs were simulated. (b) The association ratio P (t)
(brown circles) and the dissociation rate r(t) (blue squares) vs time
for E = 5.0.

sample simulation run. The instantaneous dissociation rate is
defined as r(t) = −d ln P (t)/dt [18], which also is plotted
(blue curve) in Fig. 2(b). The steady-state dissociation rate r

is calculated from the plateau of r(t) [19]. Since we change
E by changing the temperature T , each simulation point
has a different diffusion constant D = kBT/γ . Therefore, to
compare simulation results with our models, we use τ = T/r

from the simulations so that the scaling factor D/L2 (used to
make our models dimensionless) is compensated for.

II. RESULTS

Attempting to fit the Arrhenius law [τ ∝ exp(E)] to the data
for large values of E allows us to test whether or not Kramers’
method retains some applicability despite the requirement of
an energy barrier to escape no longer being fulfilled.

Figure 3 shows the simulation data and the result obtained
from the OU method [numerical integration of Eq. (2)] with
the LJ potential-energy landscape: Excellent agreement is
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FIG. 3. Dissociation time vs bond strength for a binary system.
Kramers’ law works well for E � 7, whereas the analytical solution
and quadratic potential model presented here fit better across the entire
range. Only one adjustable prefactor C that shifts the curves in the y

direction is used to fit the theoretical models to the data. Corrections
to Kramers’ law can be as large as 27-fold in the dissociation time.
The inset shows the comparison between the same simulation data
and the analytical solutions of Eq. (2) with the simplified quadratic
and linear ramp potentials.

observed. The inset of Fig. 3 shows the same data but with
the analytic results found previously for the linear [Eq. (5)]
and quadratic [Eq. (8)] potential wells. Given the stark
differences between the linear and the LJ energy landscapes,
it is interesting to see good agreement between the linear
model [Eq. (5)] and the data. Perhaps this hints that the salient
features of an energy landscape—the width and depth of the
well—play a significant part in determining the broad first-
passage properties with the finer features producing smaller
corrections. Better agreement still is observed between the
quadratic model and the simulation data. This is because the
quadratic potential can capture some of the LJ potential’s
curvature, which is not possible for the linear potential.

The plots also show the Arrhenius law fitted to the data
for E � 7. This range was chosen in the hope that Kramers’
requirement of a relatively deep and steep well was met.
Should this be the case, then we might conclude that deviations
from the Arrhenius law for larger values of E are attributable
to the shape of the well alone. Unsurprisingly, the Arrhenius
law deviates significantly from the simulation data for smaller
values of E showing that, as expected, it is unable to predict
correctly dissociation times for weak bonds or large thermal
fluctuations. More data are required before we can be sure of
a deviation from the Arrhenius law for large values of E as
predicted by our analytic models and the numerical integration.

Moreover, the analytic solution of Eq. (8) agrees well
with the simulations even without adjustable parameters.
For example, the best fit to the data using Eq. (5) gives
L2/D = 763. The corresponding prefactor in the simulation
is γ /w2, where γ = 103 is the friction coefficient and w is the
effective length associated with the Lennard-Jones interaction.
Given σ = 1 used in the simulations, we expect 1 < w < 2
based on the analytical prediction. Equating C = γ /w2 gives
w = 1.4, which agrees well with the theoretical expectation.

A method based on Kramers’ theory for extracting the mean
rupture rates from single-molecule constant-force pulling
experiments is presented in Ref. [12]. Comparison to Brownian
dynamics simulations of a system with a cubic potential-
energy landscape showed discrepancies for large pulling forces
where the energy barrier to rupture is comparable in size to the
thermal fluctuations Ref. [12].

We use the OU method with the model potential given in
Ref. [12] to calculate mean rupture times and compare with
the aforementioned simulations. Both numerical integration
of the full potential and a new analytical expression (a
linearized approximation) valid for large forces F (small E)
are used. The analytical expression and its derivation can be
found in the Appendix. Applying a force F alters the energy
landscape by lowering the barrier to rupture and moving the
minimum and maximum closer together. Thus, new xA, xB ,
and Q must be calculated for each value of F . We consider
forces ranging in size from zero up to the value at which
the barrier height vanishes and the minimum and maximum
overlap. Both methods yield, up to a multiplicative constant,
the corresponding rupture times. This constant is determined
by fitting to the simulation data. Results are plotted in Fig. 4
as a function of the effective binding energy in units of kBT

together with the model and simulation data from Ref. [12].
For 1 � E � 12, corresponding to F < 280 pN, both the

Dudko-Kramers theory and our numerical integration match
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FIG. 4. Dissociation time in simulated pulling experiments.
Dissociation time τ vs effective bond-strength E calculated from
constant-force simulated pulling experiments. The potential used is
the same cubic potential of Ref. [12] with an attractive minimum
and an energy barrier, qualitatively similar to Fig. 1(a). Whereas the
Kramers-Dudko-Hummer-Szabo theory [12] breaks down for E � 1
(large pulling force F ), the full integration of the OU theory Eq. (2)
captures the decrease in τ for very low E, which highlights the
importance of the effect. The inset is a zoom in of the low-E regime.

the simulation data well. For larger forces—an important
regime for experimental single-molecule studies—the Dudko-
Kramers theory breaks down as already discussed in Ref. [12],
predicting an unphysical result: the mean rupture time increas-
ing upon decreasing the effective binding energy. Instead, both
our analytical solution and numerical calculations predict the
correct decrease in τ with decreasing E, in excellent agreement
with the simulation data. Also, both our approaches recover
the vanishing rupture time in the limit E → 0 [20].

III. CONCLUSION

Kramers’ theory for the escape time from a potential
well has been extremely successful in providing a theoretical
foundation to the Arrhenius law in physics, chemistry, and
biology. However, the underlying assumptions restrict its
applicability to deep wells with a barrier to escape, and
its validity for shallow wells or large thermal fluctuations
has not been investigated properly. This limit is crucial
for biophysics: In single-molecule pulling experiments, an
external force is applied with a cantilever to explore the energy
landscape of proteins and to determine the dissociation time
of receptor-ligand complexes. Clearly, the effective well depth
in this case is controlled by the applied force and can become
comparable to, if not smaller than, the thermal fluctuations.
Kramers’ theory breaks down dramatically in this limit, but
our approach, making use of the Ornstein-Uhlenbeck method,
produces models that have been verified against numerical
simulations.

We then applied this approach to a single-molecule pulling
experiment and found that our models provide an excellent
description of simulation data even in the large-force limit
where the famous approach of Dudko et al. [12], based on
Kramers’ theory, provides unphysical results. Our method can

be applied widely and, in particular, it may play a major role
in the quantitative analysis of force-spectroscopy experiments
in biological systems.
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APPENDIX: ANALYTICAL APPROXIMATION FOR THE
RATE OF SINGLE-MOLECULE PULLING EXPERIMENTS

We will demonstrate how the OU method can be used to
analyze the data presented by Dudko et al. in Ref. [12]. In doing
so, we will convert the effect of an applied force F into the
lowering of a potential barrier, which allows the OU method
to be applied and mean first-passage times τ to be obtained.
Two cases will be considered: numerical integration of the
full linear-cubic potential for all F and analytic integration
of a linearized version of the potential valid for larger forces,
corresponding to lower barriers.

The potential-energy landscape under consideration is a
linear-cubic combination,

U0(x) = 3	G‡

2

x

x‡ − 2 	G‡
( x

x‡

)3
. (A1)

A biasing force then is applied, which leads to the following
potential defined in terms of the effective quantities x

‡
c

and 	G
‡
c—the apparent minimum-to-barrier distance and

apparent barrier height:

U (x) = 3 	G
‡
c

2

x

x
‡
c

− 2 	G‡
c

(
x

x
‡
c

)3

− Fx, (A2)

where F is the applied biasing force.
In order to apply the OU method we need two quantities: the

form of the potential U (x), which we know, and the coordinates
of the minimum and maximum of the potential well. However,
in order to compare the mean first-passage times produced
by this method to data from the paper we also need to know
the barrier height Q. The stationary points are found in the
next section, and the barrier height is determined in the third
section.

1. The stationary points

As usual, these are found by solving the equation dU
dx

= 0,

U (x) =
(

3 	G
‡
c

2
− Fx‡

c

)
x

x
‡
c

− 2 	G‡
c

(
x

x
‡
c

)3

, (A3)

dU

dx
=

(
3 	G

‡
c

2
− Fx‡

c

)
− 6 	G‡

c

(
x

x
‡
c

)2

= 0, (A4)

⇒ x±
x
‡
c

= ±
√√√√ 1

6 	G
‡
c

(
3 	G

‡
c

2
− Fx

‡
c

)
. (A5)
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2. The barrier height

In the previous section we saw that x+—the positive root
of dU

dx
= 0—is exactly minus the negative root. Combining

this with the antisymmetry of U (x) means that Q̃ is given by
Q̃ = U (x+) − U (x−) = 2U (x+),

Q̃ = 2 ×
(

3 	G
‡
c

2
− Fx‡

c

)
x+
x
‡
c

− 2 × 2 	G‡
c

(
x+
x
‡
c

)3

, (A6)

Q̃ = 2

(
3 	G

‡
c

2
− Fx‡

c

)(
3 	G

‡
c

2
− Fx‡

c

)1/2(
1

6	G
‡
c

)1/2

−4 	G‡
c

(
1

6 	G
‡
c

)(
1

6 	G
‡
c

)1/2
(

3	G
‡
c

2
− Fx‡

c

)3/2

,

(A7)

Q̃ = 4

3

(
1

6 	G
‡
c

)1/2
(

3 	G
‡
c

2
− Fx‡

c

)3/2

. (A8)

3. Applying the Ornstein-Uhlebeck method

Using the result presented by Gardiner in Ref. [13], the
mean first-passage time τ is given up to a multiplicative
constant by the following formula which appears at the front
of the expression and will be called C:

τ = C

∫ x+

x−
dy exp

(
U (y)

kBT

) ∫ y

x−
dz kBT

(
−U (z)

kBT

)
. (A9)

In Ref. [12], we are told that 	G
‡
c = 17.6 kBT . Plugging in

this information to the above formula leads to the following:

τ = C

∫ x+

x−
dy exp

[
(26.4 − Fx‡

c )
y

x
‡
c

− 35.2

(
y

x
‡
c

)3
]

×
∫ y

x−
dz exp

[
35.2

(
z

x
‡
c

)3

− (26.4 − Fx‡
c )

z

x
‡
c

]
.

(A10)

We see that the only quantities in the above expression
remaining to be evaluated are x± and Fx

‡
c . From Eq. (5) we

notice that evaluating x± boils down to determining Fx
‡
c . The

values of F can be read off the graph presented in Ref. [12],
and x

‡
c is given there too as 0.34 nm. From here nothing more

is required apart from the conversion of Fx
‡
c from Joules

to thermal units kBT . To do this, we assumed a standard
temperature of 298 K.

4. Linearization of the potential for large thermal fluctuations
(small barriers)

For sufficiently large forces, the potential-energy landscape
between the minimum (starting point) and the maximum
(exit point) appears almost linear. This hints at the option
of modeling the landscape as a linear potential between these
two points which will allow us to obtain an analytic form valid
for large forces or small barriers (low Q/kBT ). In the rest of

U(x−)

0

U(x+)

x0− x− 0 x+ x0+

FIG. 5. A schematic depicting the forms of the linear-cubic
potential and the linear approximation to this potential. The linear
approximation works well when the applied force is large, corre-
sponding to small energy barriers Q/kBT . The vertical line at x−
represents the reflecting wall boundary condition applied at this point.

this section we will work through how this is achieved and
ultimately provide the final analytic result.

The linear ramp potential will run from [x−,U (x−)] to
[x+,U (x+)] (see Fig. 5). The symmetry properties of the
potential mean that x+ = −x− and U (x+) = −U (x−). Thus
the gradient of the line connecting these two points is
m = U (x+)

x+
, and hence the linear potential is as follows:

V (x) = U (x−) + U (x+)

x+
(x − x−). (A11)

5. Performing the integration

The OU method provides the mean first-passage time for a
general starting point x in the region (x−,x+) as

τ (x) = C

∫ x+

x

dy exp

(
V (y)

kBT

)

×
∫ y

x−
dz exp

(
−V (z)

kBT

)
. (A12)

Inserting the expression for V into the above and evaluating
the integrals leads to the following expression for τ (x):

τ (x)

C
=

(
kBT x+
U (x+)

)2

exp

(
2U (x+)

kBT

)

−
(

kBT x+
U (x+)

)2

exp

(
U (x+)

kBT x+
(x − x−)

)

− kBT x+
U (x+)

(x+ − x). (A13)

6. Specializing to the case of Dudko-Hummer-Szabo
model simulations

We now set the initial position x in the above to the position
of the minimum in the linear-cubic potential—x−. This gives
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the following:

τ (x−) = C

(
kBT

U (x+)

)2

x2
+

[
exp

(
2U (x+)

kBT

)
− 1

]

−2C
kBT

U (x+)
x2

+. (A14)

7. Evaluating τ (x−)

In order to evaluate τ (x−) we need to put in the expressions
for x+ and U (x+). These are as follows:

x+ = xc

(
1

6 	G
‡
c

)1/2
(

3 	G
‡
c

2
− Fx‡

c

)1/2

, (A15)

U (x+) = 2

3

(
1

6 	G
‡
c

)1/2
(

3 	G
‡
c

2
− Fx‡

c

)3/2

. (A16)

We may now determine the following quantities of use:

U (x+)

kBT
= 2

3

(
1

4
− Fx

‡
c

6 	G
‡
c

)1/2(
3 	G

‡
c

2 kBT
− Fx

‡
c

kBT

)
, (A17)

kBT x+
U (x+)

= 3xc

2

(
3 	G

‡
c

2 kBT
− Fx

‡
c

kBT

)−1

, (A18)

kBT x2
+

U (x+)
= 3x2

c

2

(
1

6 	G
‡
c/ kBT

)1/2(
3 	G

‡
c

2 kBT
− Fx

‡
c

kBT
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8. Final result

Plugging all of the above expressions into the formula for
τ (x−) gives the following result:
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For a given value of the applied force F , the barrier height
Q is given by

Q

kBT
= 4

3

(
1

4
− Fx

‡
c

6 	G
‡
c

)1/2(
3 	G

‡
c

2 kBT
− Fx

‡
c

kBT

)
, (A21)

and plotting τ (x−)/Cx2
c vs Q/kBT enables comparison

with the results from the numerical integration of the full
cubic-linear potential and simulation data from the paper of
Dudko et al. [12].

9. Comparison

From the graph of “rate” vs “force” in Ref. [12], we
can obtain the mean first-passage time by taking 1/rate. The
integrals in Eq. (10) were evaluated numerically for different

values of the applied force F , and mean first-passage times
were obtained up to the multiplicative constant C. Comparing
these sets of data allowed the scaling factor C to be determined
and hence the model fitted to the data, see Fig. 4 in the main
article.

For the linearized potential, the analytic result was evalu-
ated for a range of values of F . Again, this produced a series
of mean first-passage times up to a multiplicative constant
C. These quantities were scaled to fit the data in an identical
fashion to that described above (also for this, see Fig. 4 in the
main article).

A plot of the numerically integrated result and the analytic
result (from linearization) shows excellent agreement with the
data for low barrier heights Q/kBT (large applied forces F )
as shown in Fig. 4 in the main article.
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