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J-shaped stress-strain diagram of collagen fibers: Frame tension
of triangulated surfaces with fixed boundaries
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We present Monte Carlo data of the stress-strain diagrams obtained using two different triangulated surface
models. The first is the canonical surface model of Helfrich and Polyakov (HP), and the second is a Finsler
geometry (FG) model. The shape of the experimentally observed stress-strain diagram is called J-shaped. Indeed,
the diagram has a plateau for the small strain region and becomes linear in the relatively large strain region.
Because of this highly nonlinear behavior, the J-shaped diagram is far beyond the scope of the ordinary theory
of elasticity. Therefore, the mechanism behind the J-shaped diagram still remains to be clarified, although it is
commonly believed that the collagen degrees of freedom play an essential role. We find that the FG modeling
technique provides a coarse-grained picture for the interaction between the collagen and the bulk material. The
role of the directional degrees of freedom of collagen molecules or fibers can be understood in the context
of FG modeling. We also discuss the reason for why the J-shaped diagram cannot (can) be explained by the
HP (FG) model.
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I. INTRODUCTION

The mechanical properties of macroscopic membranes,
such as human skin, have been extensively studied experimen-
tally for a long time [1–3]. One interesting mechanical property
is the stress-strain diagram. This diagram is called “J-shaped”
because of its plateau (linear behavior) in the small (large)
strain region [4–8]. This J-shaped curve is quite different
from the curve expected from the theory of elasticity, and
it is also different from the curve observed in rubber elasticity
[9]. Moreover, from an engineering perspective, this nonlinear
behavior attracts a considerable amount of attention for
biomaterial functional technology [10,11]. For these reasons,
many efforts have been devoted to understanding the origin
of such a specific and unusual response to external forces.
However, the mechanism still remains unclear, although it is
widely accepted that the internal structure such as the collagen
degrees of freedom [12–14], the notion of collagen network
[15–18], and the notion of fibers [19,20] play essential roles
in the J-shaped behavior.

In this paper, we use surface models for membranes, such as
the Helfrich and Polyakov (HP) model [21–26] and a Finsler
geometry (FG) model [27,28], to calculate the stress-strain
diagram. The purpose of this study is to clarify the J-shaped
behavior from the perspective of the theory of two-dimensional
surfaces, which undergo thermal fluctuations. In such two-
dimensional surface models, the stress τ can be obtained as
the frame tension of the surface that spans the fixed boundaries
[29–31]. We will show that the J-shaped curve of τ can
be obtained in the context of the HP model. However, a
linear response of τ against the strain is also detected in
an intermediate region of the bending rigidity κ . This linear
behavior at the low strain region contradicts the existing
experimental data [2–4]. In contrast, the J-shaped curve of
τ can be obtained independently of κ in the FG model.
From this result, we confirm that the stress-strain diagrams
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obtained using the FG model are consistent with the existing
experimental data.

The FG model is an extension of the HP model; hence, the
Hamiltonian is composed of the Gaussian bond potential S1

and the bending energy S2 [27]. Moreover, the Hamiltonian
includes the sigma model Hamiltonian S0 for variable σ ,
which represents directional degrees of freedom of collagen
or some internal molecular structures such as liquid crystals
(LCs). This variable σ plays an important role in the J-shaped
curve of the stress-strain diagram, just like the polymeric
degrees of freedom in the aforementioned collagen network
and fiber models. We also note that the variable σ in this
paper corresponds to the one used in the FG model [28] to
represent the directional degrees of freedom of LC molecules
in three-dimensional (3D) liquid-crystal elastomers [32–35].
We also note that the FG model in this paper is identical to
the one introduced in Ref. [36], where the surface tension and
string tension of membranes are calculated on spherical and
disk surfaces. In this paper, we use a cylindrical surface for
calculating the diagram; thus, both the boundary conditions
and the results in this paper differ from those reported in
Ref. [36].

II. MODEL

A. Frame tension of cylindrical surface

Let us assume that an external force f is applied to
a square surface, the size of which is supposed to be
L × H [Fig. 1(a)]. Let τ be the surface tension; then, we
have f = τL, and therefore, the accumulated surface-tension
energy is given by F = ∫ H

H0
f dz = τL(H − H0) = τAp +

const, where Ap = LH is the surface area. This surface area
Ap is the projected area of the frame, and therefore, Ap is not
always identical to the real surface area A if the surface is
fluctuating. Thus, the surface tension τ is called frame tension
if the real surface area deviates from the projected area Ap

due to the surface fluctuations [30,31]. This frame tension τ

is the one that we would like to calculate in this paper. In
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(a)               (b)                    

FIG. 1. (a) An external force f is applied to the square surface of
the projected area Ap(=LH ); (b) a cylindrical surface is made from
the square surface by removing the vertical boundaries.

this paper, not only macroscopic membranes such as human
skin but also microscopic membranes are assumed as the
research targets, where the thermal fluctuations are not always
negligible.

A cylindrical surface is used for calculating the frame
tension τ [Fig. 1(b)]. We use this cylindrical surface because
the cylinder has no boundary except the one to which an
external force is applied. A triangulated cylinder of size
N =297 is shown in Fig. 2(a), where the height H and
the diameter D are assumed to be identical: H =D. Let
N1 (N2) be the total number of vertices in the height
(circumferential) direction; then, we have N =N1×N2, H =√

3(N1−1)a/2, and D=N2a/π , where a is the triangle edge
length. Thus, the ratio N2/N1 =√

3π/2 is independent of
the size N (in the limit of N1,N2 → ∞), and all cylinders
that we use in the simulations are characterized by this
ratio.

B. Finsler geometry model

In this section, we introduce a FG model, which is identical
to the one introduced in Ref. [36]. The outlines of the
discrete model and the corresponding continuous model are
shown in this section and the Appendix A, respectively,
in a self-contained manner. First, we introduce the variable
σi(∈ S2 : unit sphere) to represent the directional degrees of
freedom of liquid-crystal molecules (or collagen molecules).
The Hamiltonian of the FG surface model is simply obtained
by replacing the surface metric gab with a Finsler metric (see
Appendix). To describe the interaction between the variables

(a)               (b)                    

FIG. 2. (a) A cylindrical surface of size N =297, which is made
of the rectangle of (N1,N2)= (11,27); (b) a unit normal vector Ni

of the tangential plane at the vertex i, and the tangential component
σ

‖
i of σi .

σ themselves, we include the sigma model energy λS0 in the
Hamiltonian S with the interaction coefficient λ such that

S(σ,r) = λS0 + S1 + κS2 + UB,

S0(σ ) =
{

−∑
ij σ

‖
i · σ

‖
j (polar)

−(3/2)
∑

ij

(
σ

‖
i · σ

‖
j

)2
(nonpolar),

UB =
∑

i∈boundary

UB(ri),

UB(ri) =
{∞ (|zi − H | > δB or |zi | > δB)

0 (otherwise), (1)

where σ
‖
i [see Fig. 2(b)] is defined as

σ
‖
i = σi − (σi · Ni)Ni . (2)

In S0 of Eq. (1), we assume the factor 3/2 for the nonpolar in-
teraction, because Lebwohl-Lasher potential for LCs includes
this factor, although LCs are not always included in collagen
fibers [37]. In our FG model, the variable σ represents the
direction of the collagen molecule as mentioned above. The
collagen fiber is made of collagen fibrils, which are made of
collagen molecules (a hierarchical structure), and therefore
the fiber becomes relatively stiff [11]. In addition, the fibers
are loosely connected by cross-linkers. For these reasons,
the collagen fiber networks are always locally ordered. This
is in sharp contrast to the case of polymers, which have
not only crystalline but also randomly disordered structure.
Therefore, the collagen fiber networks change from locally
ordered to globally ordered states when they are expanded
by external tensile forces. This coarse-grained picture of the
locally ordered structure of a fiber network is expressed by the
energy term λS0 with finite λ for σ in our FG model. The reason
why the polar interaction is also assumed for σ is simply to
compare the results with those of a nonpolar interaction. The
coefficient λ of S0 is fixed to λ=1 in both polar and nonpolar
interactions in the simulations. The fact that λ is fixed to λ=1
is the cause of the locally ordered configuration of σ , although
λ=1 corresponds to the isotropic phase at least for the small
strain region.

The stiffness of the fibers can be measured by EI , where
E is the Young modulus and I the second moment of
area. This EI is called bending rigidity, which measures
the stiffness of macroscopic elastic materials. In contrast, the
bending rigidity κ in Eq. (1) corresponds to the stiffness of
microscopic membranes such as red cells. Thus, κ in Eq. (1)
should be simply considered as a microscopic parameter that
can be controlled depending on the rigidity of the fibers in
consideration.

The vector Ni is the unit normal vector of the surface at
vertex i, and it is defined as

Ni =
∑

j (i) Aj (i)nj (i)∣∣∣∑j (i) Aj (i)nj (i)

∣∣∣ , (3)

where Aj (i) and nj (i) denote the area and the unit normal vector
of the triangle j (i) sharing the vertex i, respectively. Note that
S0 is implicitly dependent on r because σ

‖
i depends on the

surface shape. The expressions for the Gaussian bond potential
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S1 and the bending energy S2 are

S1 = 1

6

∑
�

[
γ12


2
12 + γ23


2
23 + γ31


2
31

]
,

S2 = 1

6

∑
�

[κ12(1 − n0 · n1) + κ23(1 − n0 · n3)

+ κ31(1 − n0 · n2)],

γ12 = v12

v13
+ v21

v23
, γ23 = v23

v21
+ v32

v31
,

γ31 = v31

v32
+ v13

v12
,

κ12 = v13

v12
+ v23

v21
, κ23 = v21

v23
+ v31

v32
,

κ31 = v32

v31
+ v12

v13
. (4)

The derivation of these expressions from the continuous
Hamiltonians is shown in the Appendix A. The symbol 
ij

is the length of bond ij , and vij is given in Eq. (A2) (see also
Fig. 11 in the Appendix A).

Here we should comment on the boundary condition for the
cylindrical surface. Because of the definition of v13 in Eq. (A2),
the variable σ1 at vertex 1 on the boundary cannot be vertical to
bond 13 on the same boundary. In fact, if σ1 · t13 =0, then we
have v13 =0, and therefore γ12 → ∞. This divergence of γ12

implies that σ1 never be vertical to the boundary. Therefore,
to remove such unphysical repulsive interaction with respect
to the direction of tensile forces, we assume that the boundary
vertices are able to move into the horizontal direction only
slightly within small range δB . This constraint for the boundary
vertices is defined by the potential UB . The small value δB is
given by the mean bond length, and therefore we have

δB

H

(
= mean bond length

height of cylinder

)
→ 0 (N → ∞). (5)

This implies that the constraint potential UB is negligible in
the limit of N →∞:

UB → 0 (N → ∞), (6)

while σ can be vertical to the boundaries or parallel to the
direction of tensile forces.

The discrete partition function Z is given by

Z(λ,κ; L)

=
∑

σ

∫ 2N2∏
i=1

dri

N−2N2∏
i=1

dri exp[−S(σ,r)], (7)

where Z(λ,κ; L) denotes that Z depends on the parameters
λ,κ and the height L of the cylindrical surface.

∫ ∏2N2
i=1 dri

denotes the multiple 4N2-dimensional integration for the 2N2

vertices on the upper and lower boundaries of the cylinder.
The vertices on the boundaries are prohibited from moving in
the height direction, and hence, the corresponding integration∫

dri becomes a two-dimensional integration. In contrast, the
vertices on the surface, except for those on the boundaries, are
not constrained by the boundaries; therefore,

∫ ∏N−2N2
i=1 dri is

understood to be the 3(N−2N2)-dimensional integrations for
those N−2N2 vertices.

C. Formula for calculating stress-strain diagram

The surface position r is the variable that is integrated out
in the partition function Z, and for this reason, Z becomes
invariant under the change of the integration variable such that
r→αr (α ∈ R). This property is called the scale invariance of
Z, and it is used for calculating the stress-strain curve [29].

The scale invariance implies that Z should be independent
of the scale parameter α [38]:

dZ/dα|α=1 = 0. (8)

The scaled partition function is given by

Z(α; α−2Ap)

= α3N−2N2
∑

σ

∫ 2N2∏
i=1

dri

N−2N2∏
i=1

dri exp[−S(σ,αr)],

× S(σ,αr) = λS0 + α2γ S1 + κS2, (9)

where α−2Ap in Z(α; α−2Ap) denotes the dependence of Z

on α arising from the fact that the projected area Ap is fixed.
This dependence of Z on α implies that Z can be considered
to be a two-component function. Thus, from Eq. (8), we
obtain dZ/dα = ∂Z/∂α+[∂Z/∂(α−2Ap)][∂(α−2Ap)/∂α] =
0. Dividing Eq. (8) by Z and using ∂(α−2Ap)/∂α = −2Apα

−3,
we have

3N − 2N2 − 2γ 〈S1〉 − 2
Ap

Z

∂Z

∂Ap
= 0. (10)

The mean value of the Gaussian energy 〈S1〉 on the left-
hand side is obtained by Monte Carlo (MC) simulations.
However, the problem here is how to evaluate the final term
(1/Z)∂Z/∂Ap. To calculate this term, we assume that the free
energy F is given by

F = τ

∫ Ap

A0

dA = τ (Ap − A0), (11)

where τ is the frame tension as mentioned above. Because the
corresponding partition function is given by Z = exp(−F ),
we finally obtain τ = (2γ 〈S1〉 − 3N + 2N2)/(2Ap).

The problem now is how to obtain the projected area
Ap in this τ . Let D and H be the diameter and the height
of the cylinder, respectively. Then, it is natural to define
Ap as Ap = πDH if D is uniform in the sense that D is
independent of the height position h of the cylinder. Note that
D corresponds to L/π for the cylinder, such as the one in
Fig. 1(b). However, the diameter D is expected to generally
depend on h because the cylinder is not a three-dimensional
one but rather a two-dimensional surface, and therefore, D

at the height position h=H/2 may be different from D at
h	H or h	0, for example. For this reason, we use the
diameter D0(=H0) of the initial surface, which is used for
the simulations of τ =0. Thus, the formula for τ is given by

τ = (2γ 〈S1〉 − 3N + 2N2)/(2Ap),

Ap = πD0H (γ = 1). (12)

D. Monte Carlo technique

The multiple-dimensional integrations in Z are simulated
using the standard Metropolis Monte Carlo technique [39,40].
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The update of the vertex position r is performed with the
probability Min[1, exp(−δS)], where δS =S(new)−S(old)
with the new position r′ =r+δr. The small change δr is
randomly distributed in a small sphere (or circle) of radius Rδ ,
which is fixed to keep an approximately 50% acceptance rate
of r′. The vertices on the boundaries are allowed to move only
in the horizontal plane (R2), whereas the other vertices move
in the three-dimensional space R3. The variable σ is updated
such that the new variable σ ′(∈ S2) is completely independent
of the old σ . One Monte Carlo sweep (MCS) consists of N

consecutive updates for r and N consecutive updates for σ .
After a sufficiently large number of MCSs, measurements of
physical quantities are performed every 1000 MCSs. All the
simulations in this paper are performed on lattices of size
N =10 584.

The initial height H0(=D0) for the frame tension τ in
Eq. (12) is determined such that the equilibrium configurations
satisfy τ =0. From this definition of D0 and that of Ap, the
frame tension τ in Eq. (12) is considered to be the nominal
stress in the sense that τ is independent of π〈D〉, the real length
of the circumference of the cylinder. To be more precise, π〈D〉
can be identified using the real length of the circumference of
the cylinder only when the cylinder is sufficiently smooth and
has no surface fluctuations. In the case of the 3D liquid-crystal
elastomer (LCE), the nominal stress is calculated with a
constant sectional area, which is independent of the height
of the cylinder [28]. In contrast, the projected area Ap for τ in
Eq. (12) is proportional to the height H of the cylinder. Note
that the diameter D0(=H0) is not always identical to 〈D〉 (the
symbol 〈 〉 is not used henceforth, for simplicity); however,
the deviation between D0 and D is expected to be small
because the cylinder is constructed such that the diameter
equals the height for τ =0.

III. RESULTS

A. Snapshots

First, we show snapshots of surfaces of the nonpolar model
in Fig. 3. From the snapshots, we confirm that the variable
σ is locally ordered when H/H0 =1 for κ =1, while it is
globally ordered along the vertical direction when H/H0 =1.4
[Figs. 3(a) and 3(b)]. The reason why σ is locally ordered is
because the coefficient λ of S0 is fixed to λ=1. For the case
κ =3, we can also see almost the same ordering of σ on the
surfaces [Figs. 3(c) and 3(d)].

B. Canonical model

In this section, we present the results of the HP (or
canonical) model and discuss why the canonical model is
insufficient for explaining the existing experimental data of
the J-shaped stress and strain diagram [1–4]. The canonical
model is defined as

Z(κ; L) =
∫ 2N2∏

i=1

dri

N−2N2∏
i=1

dri exp[−S(r)],

S(r) = S−1 + κS3 (canonical),

S−1 =
∑
ij


2
ij , S3 =

∑
ij

(1 − ni · nj ), (13)

(a)               (b)                    

(c)               (d)                    

FIG. 3. Snapshots of surfaces of the nonpolar model for κ =1
with (a) H/H0 =1 and (b) H/H0 =1.4, and for κ =3 with (c) H/H0 =
1 and (d) H/H0 =1.24. The short lines (or burs) on the surfaces
represent the variable σ . N =10 584 and λ=1.

where 
2
ij = (ri − rj )2 is the bond-length squares [23,26,29].

In Eq. (13), we use the symbols S−1 and S3 for the canonical
Gaussian energy and the bending energy, respectively, to
distinguish them from S1 and S2 in Eq. (1) for the FG model.
Note that these S−1 and S3 are not assumed as Hamiltonians
in the FG model; however, these quantities can be obtained (or
calculated) from the surface configurations of the FG model.

As shown in Fig. 4(a), τ is linear with respect to H/H0

for κ =1.5 and κ =1. This figure also shows that the shape
of τ changes from linear to J-shaped when κ increases from
κ =1.5 to κ =3, κ =5, and κ =7. It is also observed that τ

becomes J-shaped when κ decreases from κ =1.5 to κ =0.75.
To evaluate the surface smoothness, we plot the bending energy
S3/NB in Fig. 4(c), where NB is the total number of bonds
excluding the bonds on the boundaries on which S3 is not
defined. We find that the plateau of τ can be observed on
the relatively smooth surfaces of S3/NB �0.07 and on the
relatively wrinkled surfaces of S3/NB �0.4. On the surfaces
of S3/NB 	0.2, τ becomes linear with respect to H/H0. The
mean triangle area A, which is defined as

A = (1/NT )
∑
�

A�, (14)

is also J-shaped if the corresponding τ is J-shaped [Fig. 4(d)],
where NT is the total number of triangles. Only for κ =1.5 is
the mean triangle area A almost linear. The J-shaped behavior
of A implies that the real surface area remains unchanged for
the small H/H0(>1) region, whereas the projected area Ap

always changes linearly with respect to H/H0.
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0.5
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1.5

H/H0

τ

(b)

:κ=7
:κ=5
:κ=3
:κ=0.75

cano

1 1.2 1.4
0

0.2

0.4

H/H0

S3/NB

(c)

κ=0.75
canoκ=1

κ=1.5

1 1.2 1.4
0

0.5

1

1.5

H/H0

τ

(a)

:κ=1.5
:κ=1

cano

1 1.2 1.4

0.14

0.18

0.22

H/H0

A

(d)

:κ=1.5
:κ=1

cano

FIG. 4. The stress τ vs strain H/H0 of the canonical model for
(a) κ =1, κ =1.5 and (b) 3�κ �7, κ =0.75; (c) the bending energy
S3/NB vs H/H0; and (d) the mean triangle area A vs H/H0, where
S3 is defined in Eq. (13). N =10 584.

Thus, we observe that the behavior of τ for κ 	0.75 and 3�
κ �7 appears J-shaped, and hence, this observation indicates
that the J-shaped diagram can be understood within the context
of the canonical model. However, the problem is the linear
behavior of τ observed in the intermediate region κ 	1.5.
These results also imply that τ has J-shaped behavior at low
and high temperatures, whereas it has a linear behavior at
intermediate temperatures because κ has units of kBT . To
summarize these results, the linear τ at κ 	1.5 conflicts with
the existing experimental results [1–4], at least in the context
of the canonical model.

The problem is why linear behavior is observed only at
the intermediate region of κ . We first note that the linear
behavior of τ for the large H/H0 region is easy to understand.
For the large H/H0 region, the surface area is increased
to a sufficiently large value, while the bending energy S3

is negligible compared with S−1, which has units of length
squares; hence, the energy supplied by the external force is
accumulated only in S−1. The interesting region of H/H0 is
close to H/H0 =1, where the surface can fluctuate if κ is not
very large. For the small κ region, the surface is sufficiently
wrinkled, and therefore, the surface height H is increased
without changing the bond length for H/H0 close to H/H0 =1.
On such rough surfaces, the long-wavelength mode of surface
fluctuations is not expected. This means that the persistence
length ξ is relatively short, and hence, the external force at one
of the two boundaries has no influence on the other boundary.
However, when κ is increased to κ 	1.5, the surface becomes
relatively smooth such that the long-wavelength modes (or
long-range correlations of surface fluctuations, such as surface
normals) are expected to appear on the surface, and therefore,
the external force applied on the boundary influences the

1 1.2 1.4
0

0.1

0.2

0.3

H/H0

S3/NB

κ=3

(b)

κ=1

κ=1.5

1 1.2 1.4
0

0.5

1

1.5

H/H0

τ
FG, λ=0

(a)

:κ=1
:κ=1.5
:κ=3
:κ=5

1 1.2 1.4

2.55

2.6

2.65

H/H0

γ

(c)

κ=1

κ=1.5

κ=5

1 1.2 1.4
1.2

1.24

H/H0

κ

κ=1

(d)

κ=1.5

κ=5

FIG. 5. MC data of the FG model for λ=0: (a) τ vs H/H0, (b)
S3/NB vs H/H0, (c) γ̄ vs H/H0, and (d) κ̄ vs H/H0. N =10 584.

entire surface such that S−1 can be increased even for the
small H/H0 region. This is a reason for why no plateau is
observed in τ in the intermediate region of κ . For the large κ

region, such as κ 	5, the surface is further smoothed, and the
surface fluctuation is suppressed. On these relatively smooth
surfaces with small surface fluctuations, the boundary effect is
not mediated in the form of surface fluctuation modes for the
small H/H0 region, and this makes a plateau in τ .

Thus, the linear behavior of τ for the intermediate region
of κ is typical of the two-dimensional fluctuating surfaces;
however, this linear behavior is unsatisfactory from the
perspective of the experimental fact that τ is J-shaped in
biological membranes [1–4]. The main reason for this is
that the surface fluctuations are expected in the canonical
surface model, while they are suppressed in the macroscopic
membranes such as skins and collagen fiber networks. We have
to conclude that the canonical surface model is insufficient for
explaining the J-shaped stress-strain diagram of macroscopic
membranes.

C. FG model for λ = 0

In this section, we evaluate the equivalence between the
canonical model and the FG model for λ=0. When λ is zero
in the FG model, the variable σ becomes random, and hence,
no anisotropy is expected on the surface [27,28]. Indeed, the
FG model is an extension of the canonical HP model in the
sense that the outputs of the FG model for λ=0 are consistent
with those of the canonical model.

Figure 5(a) shows τ vs H/H0 of the FG model for λ=0
with several different values of κ . As shown in this figure, τ

changes linearly against H/H0 for κ =1.5, and τ is J-shaped
for κ =5, κ =3, and κ =1. From these results, it is clear that
the dependence of τ on H/H0 of the FG model for λ=0
is consistent with that of the canonical model. Indeed, we
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find from S3/NB shown in Fig. 5(b) that the stress τ for
the surfaces of S3/NB 	0.2 (S3/NB �0.07 and S3/NB �0.35)
behaves linearly (has a plateau) with respect to H/H0. This
result is almost consistent with the results of the canonical
model shown in Figs. 4(a)–4(c).

Note that the role of κ in the canonical model is not always
the same as that in the FG model. Indeed, κκij plays the role
of the bending rigidity in the FG model, whereas the constant
κ is the bending rigidity in the canonical model. Moreover, the
surface-tension coefficient γ is fixed to γ =1 in the canonical
model, whereas in the FG model, γij plays the role of the
surface-tension coefficient. For these reasons, to clarify the
relation between the coefficients in the canonical model and
those in the FG model, we calculate the mean values of γij and
κij such that

γ̄ =
∑

ij γij 

2
ij∑

ij 
2
ij

= 3S1

S−1
,

κ̄ =
∑

ij κij (1 − ni · nj )∑
ij (1 − ni · nj )

= 3S2

S3
. (15)

The reason for multiplying S1 and S2 by a factor of 3 in Eq. (15)
is as follows. The sum of triangles

∑
� in S1 and S2 in Eq. (4)

can be replaced by the sum of bonds 2
∑

ij because every term

2

ij or 1 − ni · nj is summed over twice in the sum
∑

�. From
this factor 2, the factor 1/6 in S1, and the expression of S2 in
Eq. (4), we include the factor 3 in γ̄ and κ̄ in Eq. (15).

We observe that the dependence of γ̄ on H/H0 in Fig. 5(c)
appears similar to that of τ in Fig. 5(a). Indeed, both γ̄ and
τ have a plateau (linear behavior) for κ =5, κ =3, and κ =1
(κ =1.5). We also observe that the value of γ̄ is in the range
2� γ̄ �2.8, and it is larger than that of γ (=1) of the canonical
model. However, γ̄ is included in S1(= γ̄ S−1), and therefore,
we expect that this difference between γ̄ and γ (=1) does not
make any difference between the stresses τ of the canonical
and FG models. Indeed, τ in Fig. 5(a) for each κ is almost
comparable to (or slightly smaller than) τ in Figs. 4(a) and
4(b) of the canonical model.

Using the γ̄ ,κ̄ in Eq. (15) and the Hamiltonians S−1,S3

in Eq. (13), we have the effective Hamiltonian for the FG
model such that Seff = γ̄ S−1+κκ̄S3, which can also be written
as Seff = γ̄ [S−1+κ(κ̄/γ̄ )S3]. In these expressions of Seff , the
multiplicative factor 3 is dropped for simplicity. Furthermore,
because the factor γ̄ in Seff can be dropped due to the scale
invariance of Z, we finally have S̃eff =S−1+κ(κ̄/γ̄ )S3.

From this S̃eff , the differences between S3/NB of the
canonical and FG models are understood. As shown in
Fig. 5(d), κ̄ is slightly larger than 1; κ̄ >1. However, κ̄ is not
included in S3, which is shown in Fig. 5(b) [κ̄ is included only
in S2(= κ̄S3)] in contrast to the case of γ̄ , which is included in
S1. For this reason, S3/NB of the FG model is expected to be
smaller than that of the canonical model. However, the results
are opposite; S3/NB of the FG model is slightly larger than that
of the canonical model. This result can be understood from the
effective Hamiltonian S̃eff =S−1+κ(κ̄/γ̄ )S3 described above.
Indeed, the fact that κ̄/γ̄ <1 makes S3 larger. In other words,
the effective bending rigidity of the FG model for λ=0
corresponds to the slightly smaller κ of the canonical model
for the same value of S3/NB . This result is consistent with the

1 1.2 1.4
0

0.5

1

H/H0

τ

FG, λ=1
polar

(a)

:κ=1
:κ=1.5
:κ=3
:κ=5

polar

1 1.2 1.4
0

0.1

0.2

H/H0

S3/NB

κ=3

(b)

κ=1

κ=1.5

1 1.2 1.4

2.4

2.8

H/H0

γ

(c)

κ=1

1 1.2 1.4

1.1

1.15

H/H0

κ

κ=1

(d)

κ=5

FIG. 6. MC data of the polar FG model for λ=1: (a) τ vs H/H0,
(b) S3/NB vs H/H0, (c) γ̄ vs H/H0, and (d) κ̄ vs H/H0. N =10 584.

aforementioned result that τ of the canonical model for κ =1
is linear, whereas τ of the FG model for κ =1 has a plateau.

D. FG model for λ �= 0

Now we turn to the nontrivial cases corresponding to λ �=0,
and we will show that the results, obtained in the entire range of
κ including the large κ region, are consistent with the existing
J-shaped diagram. First, in Fig. 6, we present the results of
the polar FG model, where λ is fixed as λ=1. The stress τ vs
H/H0 in Fig. 6(a) is found to be J-shaped for κ =1, κ =1.5,
κ =3, and κ =5. The result for κ =1.5 in Fig. 6(a) is new and
nontrivial. Indeed, the corresponding S3/NB has values such
that S3/NB 	0.2, which corresponds to those for 1.0�κ �1.5
of the canonical model in Figs. 4(a) and 4(b), where τ behaves
linearly against H/H0. Note that τ for κ �=1.5 is not always
specific to the FG model because the corresponding τ also
has a plateau structure just like in the canonical model. The
parameters γ̄ and κ̄ also have a plateau in the region of H/H0,
where τ has the plateau.

The question is, why is there no linear behavior of τ ob-
served in the FG model? One possible answer is that the effec-
tive one-dimensional correlation introduced by the variable σ

changes the property of two-dimensional surface fluctuations
such that the long-range force is suppressed in the region of
H/H0 close to H/H0 =1. The variable σ aligns along the z di-
rection in which the cylindrical surface is expanded, and there-
fore, the one-dimensional correlation along this direction is ex-
pected for a relatively large region of λ, such as λ�1. Indeed,
it is easy to understand from S1 in Eq. (A5) that a bond length
becomes large (small) if σ aligns parallel (vertical) to this bond.
Therefore, it is natural that the surface fluctuations expected
in the FG model for the large λ region are different from those
expected in the canonical model. This phenomenon in which
the long-range force is suppressed is quite analogous to the one

042411-6



J-SHAPED STRESS-STRAIN DIAGRAM OF COLLAGEN . . . PHYSICAL REVIEW E 95, 042411 (2017)
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1 1.2 1.4
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1.1

H/H0

κ
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FIG. 7. MC data of the nonpolar FG model for λ=1: (a) τ vs
H/H0, (b) S3/NB vs H/H0, (c) γ̄ vs H/H0, and (d) κ̄ vs H/H0.
N =10 584.

reported in Ref. [41], where an XY model energy suppresses
the crumpling transition on spherical surfaces, although the
interaction between σ and the surface of the XY model in [41]
is different from that of the FG model in this paper.

The results of the nonpolar FG model are presented in Fig. 7,
where λ is fixed to λ=1.5. These data are consistent with those
of the polar model in the region of κ such as 1� κ �5. For all
values of κ assumed, τ has the J-shaped structure.

The mean triangle area A and the order parameter M for
the variable σ defined by

M =
{

σ (polar)
(3/2)

[
σ 2

z − (1/3)
]

(nonpolar)
(16)

are plotted in Figs. 8(a)–8(d). In Eq. (16), σ for the polar case
is given by σ =| ∑i σi |/N . A plateau can also be detected in
A, like that in τ , in both the polar and nonpolar models, and
the range H/H0 of the plateau for A is almost identical to that
for τ . The area A corresponds to the real surface area; hence,
it is considerably different from the projected area Ap, which
is proportional to H/H0. This difference between A and Ap

implies that the radius of the cylinder shrinks in its plateau
region. In fact, it is easy to understand that A has no plateau if
the cylinder radius remains unreduced.

The order parameter changes such that M →0 (M →1) for
H/H0 →1 (H/H0 →∞) in Figs. 8(b) and 8(d). This result
indicates that the origin of the J-shaped curve is the structural
change of σ . Indeed, M varies rapidly in the plateau region
in both the polar and nonpolar models. The plateau of τ is
observed in the range 1�H/H0 �1.2 (1�H/H0 �1.3) for
the polar (nonpolar) model.

The eigenvalues � of the tensor order parameter defined by

Qμν = 3(〈σμσν〉 − δμν/3) (17)

1 1.2 1.4
0.16

0.2

H/H0

A

(a)

:κ=1
:κ=1.5
:κ=3
:κ=5

polar

1 1.2 1.4

0.16

0.2

H/H0

A
:κ=1
:κ=1.5
:κ=3
:κ=5

(c)

nonpolar

1 1.2 1.4
0

0.4

H/H0

M

FG, λ=1
polar

(b)

1 1.2 1.4
0

0.4

H/H0

M

FG, λ=1.5
nonpolar

(d)

FIG. 8. (a) Tangential component vij of σi along the direction tij
on the triangle 123; (b) a unit normal vector Ni of the tangential plane
at the vertex i, and the tangential component σ

‖
i of σi .

are plotted in Fig. 9 for the nonpolar model. The largest
eigenvalue �1 becomes �1 →1, and the other two eigenvalues
�2 and �3 are expected to be �2,3 →−0.5 if σ is completely
ordered. We confirm also from Figs. 9(a) and 9(b) that the
variable σ becomes ordered if H is enlarged. The behavior of
ordering of σ is exactly consistent to that of M in Fig. 8(d).
The large fluctuations of �i in the small region of H/H0 for
κ =3 indicate that the directional change of σ is abrupt with
respect to H .

Finally in this section, we comment on the reasons for why
the bending rigidities of κ →0 and κ →∞ are not assumed in
the calculations. First, the curves of τ vs H/H0 are obtained
under the assumption that the surface remains cylindrical in
shape. However, the surface shape deviates from cylindrical
and becomes very thin for the small κ region, such as κ =0.5,
and collapses into stringlike configurations if κ is reduced to
κ =0.4. In such a very thin surface, the surface area becomes
far different from the projected area. Moreover, for these highly

1 1.2 1.4

-0.5

0

0.5

H/H0

Σ

λ=1,κ=1.5
nonpolar

(a)

Σ1

Σ2, Σ3

1 1.2 1.4

-0.5

0

0.5

H/H0

Σ

λ=1,κ=3
nonpolar

(b)

Σ1

Σ2, Σ3

FIG. 9. Eigenvalues �i (i =1,2,3) of the tensor order parameter
Qμν in Eq. (17) of the nonpolar model for (a) κ =1.5 and (b) κ =3,
under λ=1.
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0
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:Expt. Ref.[5]
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κ=1

FIG. 10. The nominal stress vs strain (©) of (a) blood vessel [5],
(b) rat muscle [6], (c) collagen fibers [7], and (d) collagen hydrogels
[8]. The solid triangle denotes the simulation data τsim of Eq. (18) for
the nonpolar interaction.

wrinkled surfaces, τ appears to always be positive even for
small H0. This is actually expected because the surface shrinks
to a small sphere for sufficiently small κ . For these reasons,
we assume a relatively large bending rigidity (κ � 0.75) such
that the cylindrical surface shape is maintained in the range
1�H/H0 �2. In contrast, for the region of large κ , which is
denoted by κ →∞, S2 is expected to be zero, and therefore, the
surface shape can be changed only in its tangential direction.
In this case, only S−1 changes as H/H0 increases, and there
is no reason for τ to behave nonlinearly with respect to
H/H0. However, in the case that S2 is not always exactly
zero, where the surface is expected to undergo buckling, we
also expect a nonlinear behavior in τ . However, in these large
regions of κ , the model surface will be far from biological
membranes.

E. Comparison with experimental data

In this section, we show that the simulation data can be
compared to the experimental stress-strain data of biological
materials such as blood vessel, rat muscle, collagen fibers,
and collagen hydrogels [5–8] [see Figs. 10(a)–10(d)]. First,
we should comment on the unit of τ in Eq. (12) assumed for
the simulations in more detail. In the simulations, the inverse
temperature β(=1/kBT ) is fixed to β =1(⇔ kBT =1), and
under this unit the triangle edge length a is fixed to a=1. This
a corresponds to the lattice spacing in the lattice field theory
language [42] and is suitably fixed such that the simulation
data can be compared to the experimental data. However, the
physical unit of τ is given by [N/m], which is different from
the experimental one [Pa] for stresses of macroscopic objects.
For this reason, we obtain τsim dividing the simulation data τ

TABLE I. The lattice spacing a corresponding to the stress-strain
diagrams shown in Figs. 10(a)–10(d).

Fig. 10 (a) (b) (c) (d)

a[m] 6.9 × 10−9 1.30 × 10−8 8.53 × 10−9 3.14 × 10−9

by a to compare τ with the experimental stresses. By including
β, a, and kBT in the calculation formula of τ , we have

τsim = 2γ 〈S1〉 − 3N + 2N2

2Ap

kBT

a3

= (4 × 10−21/a3)τ, (18)

where the room temperature is assumed for T . Note that
the simulation data τ in Eq. (12) is obtained from this τsim

by assuming kBT =1 and a=1. Note also that the unit of
(4 × 10−21/a3) is [m−1] because the units of τsim and τ are
given by [N/m2] and [N/m], respectively. This τsim[N/m2]
can be identified with experimental stresses if the value of a is
specified. The question is, how can we obtain the coefficient
(4 × 10−21/a3) from experimental and simulation data? One
possible answer is to determine (4 × 10−21/a3) such that the
slope of τsim equals to that of the experimental data in their
linear regions. The slope of τ with respect to the strain is
just Young modulus Esim. Therefore, the experimental and
simulation Young moduli Eexp and Esim can be obtained
from their linear part of the corresponding experimental
nominal stress and τ such that the following condition is
satisfied:

Eexpt. = (4 × 10−21/a3)Esim. (19)

From this relation, the coefficient (4 × 10−21/a3) is obtained
and used to plot τsim in Figs. 10(a)–10(d). We find in the
experimental data that the linear behavior terminates for
the large strain region [see Fig. 10(d)]. In contrast, the
simulation data τsim behave only linearly for the large strain
region because no failure mechanism is implemented in the
model.

From the coefficients (4 × 10−21/a3), which are obtained
from the experimental and simulation data and used for the
plots in Figs. 10(a)–10(d), the parameters a can be obtained
and are shown in Table I. The parameters a are approximately
ten times (or more) greater than the van der Waals radius
of atoms, and therefore these a are meaningful as the lattice
spacing for the calculations of τsim.

IV. SUMMARY AND CONCLUSION

We have studied the origin of the J-shaped stress-strain
diagram using Monte Carlo simulations on triangulated sur-
faces. For such a nonlinear behavior of the J-shaped diagram,
it has been widely accepted that the collagen structure plays
an essential role [12–17,19,20]. However, for the J-shaped
diagram, no concrete result has yet been obtained in theoretical
or computational evaluations of the curve from the perspective
of two-dimensional surface models because the interaction
between the collagen and the bulk material (including collagen
itself) is too complex.
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To understand the mechanism of the J-shaped diagram,
we first calculate the frame tension τ of cylindrical surfaces
using the canonical surface model of HP [38,43,44]. From
the Monte Carlo data of the HP model, we find that τ is
J-shaped. However, the J-shaped curve can be obtained only
for some limiting cases, such as small and large bending
rigidity κ regions. In fact, for the region of κ 	1.5, τ changes
linearly with respect to H/H0, including the smaller region
H/H0 	1. For this reason, we apply the FG model to evaluate
τ on the same cylindrical surfaces. The FG model is an
extension of the HP model and includes a new degree of
freedom σ corresponding to the polymer (or liquid-crystal)
direction [27,28,36]. The Monte Carlo results of the FG model
for all values of κ are in good agreement with the existing
J-shaped stress-strain curves obtained experimentally. This
result implies that the J-shaped diagram can be understood
in the context of the FG modeling.

The important point to note is that a structural change
is essential for the J-shaped curve. This structural change
is associated with the directional degrees of freedom of
σ , which has two different phases, such as ordered and
disordered. A phase transition between these two phases, from
the disordered phase to the ordered phase, is activated by an
external force that expands the surface. In this expansion
process, the external force changes the internal structure
represented by σ in the small H/H0 region. As a result of this
structural change, the surface fluctuation property is altered
such that a long-range correlation, expected for a certain
region of κ in the canonical model, is suppressed due to the
one-dimensional correlation of σ . Thus, the internal structural
change during the process of surface expansion is the origin
of the J-shaped stress-strain diagram of membranes, and this
intuitive picture for the interaction between σ and the bulk
polymer can be implemented in the FG surface model. We
should note that the detailed information on the transition
property of this internal structure and the dependence of the
J-shaped curve on the internal phase transition remain to
be studied.
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APPENDIX: FINSLER GEOMETRY MODEL
FOR 2D MEMBRANE

We start with the continuous Hamiltonian S, which is
given by

S = γ S1 + κS2,

S1 =
∫ √

gd2xgab ∂r
∂xa

· ∂r
∂xa

,

S2 = 1

2

∫ √
gd2xgab ∂n

∂xa

· ∂n
∂xb

, (A1)

(b)(a)

FIG. 11. (a) Tangential component vij of σi along the direction
tij on the triangle 123; (b) the triangle 123 and the three neighboring
triangles with unit normal vectors ni (i = 0,1,2,3); r1 is the position
of vertex 1.

where S1 and S2 are the Gaussian energy and the bending
energy, respectively. The coefficients γ (=1) and κ[1/kBT ]
are the surface tension and the bending rigidity, respectively,
where kB and T are the Boltzmann constant and the tempera-
ture. In S1, r(∈ R3) is the surface position [see Fig. 2(b)], which
is locally parametrized by (x1,x2); hence, r is understood
to be a mapping from the two-dimensional parameter space
M to R3 such that M � (x1,x2) �→ r(x1,x2) ∈ R3. The 2×2
matrix gab is a metric function on M , gab is its inverse, and
g is the determinant of gab. The symbol n in S2 is a unit
normal vector of the surface r(x1,x2) in R3 (see Ref. [27]
for more details). The FG is considered to be a framework
for anisotropic phenomena [45–48]. We also note that the
J-shaped diagram is expected to share the same origin with
the soft elasticity in 3D liquid-crystal elastomers [32–35].

Let σi(∈ S2 : unit sphere) be the variable corresponding to
the directional degrees of freedom of a polymer or molecule
such as liquid crystals at the vertex i of the triangulated
surface. Let tij be the unit tangential vector of the triangle edge
(or bond) ij , which connects the vertices i and j , such
that tij = (rj − ri)/|rj − ri |. Using this tij , we define the
tangential component of σi along the bond ij by

vij = |σi · tij |. (A2)

We note that vij �= vji in general.
Let 123 denote a triangle on M , and let the vertex 1 be the

local coordinate origin of the triangle 123 (Fig. 11); then, the
Finsler metric gab on the triangle 123 is defined by

gab =
(

1/v2
12 0

0 1/v2
13

)
. (A3)

Thus, by the replacements

∂1r → r2 − r1, ∂2r → r3 − r1,

∂1n → n0 − n2, ∂2n → n0 − n3,∫ √
gd2x → 1

2

∑
�

√
det gab (A4)

in Eq. (A1), we have

S1 = 1

2

∑
�

[
v12

v13

2

12 + v13

v12

2

13

]
, 
2

ij = (ri − rj )2,

S2 = 1

2

∑
�

[
v13

v12
(1 − n0 · n3) + v12

v13
(1 − n0 · n2)

]
. (A5)
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Because there are three possible local coordinate origins
on the triangle 123, all possible terms in S1 and S2 should be
summed over with the coefficient 1/3. The sum over triangles∑

� in both S1 and S2 can be replaced by the sum over bonds∑
ij ; then, we finally obtain

S1 = 1

6

∑
�

[
γ12


2
12 + γ23


2
23 + γ31


2
31

]
,

S2 = 1

6

∑
�

[κ12(1 − n0 · n3) + κ23(1 − n0 · n1)

+ κ31(1 − n0 · n2)],

γ12 = v12

v13
+ v21

v23
, γ23 = v23

v21
+ v32

v31
,

γ31 = v31

v32
+ v13

v12
,

κ12 = v13

v12
+ v23

v21
, κ23 = v21

v23
+ v31

v32
,

κ31 = v32

v31
+ v12

v13
. (A6)

Multiplying γ (=1) by γij and κ by κij , we have γ γij and
κκij , which can be considered to be effective surface tension
and effective bending rigidity. These quantities γ γij and κκij

are dependent on the position and the direction of the bond
ij , although γij and κij are a part of energies S1 and S2,
respectively. This dependence of γij and κij on the position
and the direction of the bond is the most interesting output of
the FG model. Anisotropic coefficients are expected to play an
important role for the anisotropy in LCE [49–52]. Note that
both S1 and S2 are explicitly dependent on σ because γij and
κij are determined by σ via Eq. (A2).
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