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Fractal dimension and universality in avascular tumor growth
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For years, the comprehension of the tumor growth process has been intriguing scientists. New research has
been constantly required to better understand the complexity of this phenomenon. In this paper, we propose
a mathematical model that describes the properties, already known empirically, of avascular tumor growth.
We present, from an individual-level (microscopic) framework, an explanation of some phenomenological
(macroscopic) aspects of tumors, such as their spatial form and the way they develop. Our approach is based on
competitive interaction between the cells. This simple rule makes the model able to reproduce evidence observed
in real tumors, such as exponential growth in their early stage followed by power-law growth. The model also
reproduces (i) the fractal-space distribution of tumor cells and (ii) the universal growth behavior observed in both
animals and tumors. Our analyses suggest that the universal similarity between tumor and animal growth comes
from the fact that both can be described by the same dynamic equation—the Bertalanffy-Richards model—even
if they do not necessarily share the same biological properties.
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I. INTRODUCTION

Tumor growth is among the most outstanding issues in the
scientific community, from basic science to applied research.
This subject began drawing increasing interest from the fields
of biology, mathematics, physics, and medicine soon after the
relevant increase in diagnosis of tumors in the world popula-
tion [1–3]. However, in spite of the interdisciplinary research,
there is no consensus concerning its causes and development.
Empirical observations lead us to believe that tumor growth
is ruled by general growth laws which can be represented by
differential equations [4]. This approach has many advantages,
as, for instance, in estimating the progress of tumors and,
consequently, to determine the frequency at which exams
such as mammography screening should be performed [5–7].
Furthermore, experimentalists are becoming increasingly con-
vinced that mathematical modeling can clarify and help to
interpret a large class of experimental findings.

Even after decades of study and medical breakthroughs,
the basic mechanisms underlying tumor growth are still not
clear enough and researchers are still attempting to answer
the main question regarding this topic: How do tumors grow?
From a mathematical point of view, the Gompertz curve, one
of the most important current models, has been successful in
describing animal and human tumor growth [4,8–10]. On the
other hand, the Bertalanffy-Richards model [11–13], which is
the general case of the Gompertz, Verhulst, and exponential
growth models [4,14–16], provides an accurate description
of tumor growth as well [17]. In a brief and simple way,
the process of tumor cell growth can be divided into three
stages: the avascular phase, the stage where posteriorly new
blood vessels form from preexisting vessels (angiogenesis),
and, finally, the metastasis stage, when the cancer spreads
from one part of the body to another. Within this context,
we are interested in characterizing avascular tumor [18] to
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better understand its development. Although avascular growth
corresponds only to the initial stage of tumors, knowledge of
this phase is quite important since most experimental data are
collected using avascular tumor spheroids in vitro [19–21], as
they are easier to work with than in vivo tumors.

In our current research, supported by previous works such
as [22] and [23], we propose a microscopic model to describe
tumor growth using two assumptions: self-replication of cells
and competition dependent on the distance between them.
The model is able to explain the empirical evidence and
reproduces the results of some widely known models under
certain conditions. Our approach is also able to interpret
(at the microscopic level) the phenomenological Bertalanffy-
Richards model and, consequently, the Gompertz curve. The
model also give an explanation for the fractal distribution of
tumor cells, verified in empirical studies [24,25]. Finally, we
show that our model is able to explain microscopically the
phenomenon responsible for the universal behavior observed
in animal and tumor growth (see Figs. 1 and 2), as previously
reported in the literature [8]. Our results suggest that the
universal similarity between tumor and animal growth comes
from the fact that both are described by the same growth
equation—the Bertalanffy-Richards model—even if they do
not necessarily share the same biological properties. And
the universality comes from the fact that the solution of the
Bertalanffy-Richards model presents universal mathematical
properties. Universality is observed in many physical and
biological systems [26–28] and this subject has drawn the
attention of theoretical [15,16,29–36] and empirical [8,37–39]
studies in the last decades.

The remainder of the paper is organized in the following
sections: Section II briefly describes common features in most
avascular tumors and some empirical evidence. In Sec. III, we
introduce our mathematical model of tumor growth. In Sec. IV
we present the concept of optimal fractal dimension and its ap-
plication to tumor growth. In Sec. V we derive the Bertalanffy-
Richards model by a microscopic approach and we also obtain
the Gompertz model as a particular case. In Sec. VI we show
that our model is able to explain why tumors, as well as animal
growth, also follow an universal behavior. Both are described
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FIG. 1. Growth of two types of tumors, (a) EMT6 and (b) KHJJ, implanted in mice and rats. These data show the usual growth behavior in
tumors: an exponential rise in the first stage followed by power-law growth. Source: Ref. [40].

by the same mathematical (Bertalanffy-Richards) model, even
though they do not necessarily follow the same biological
principles. Finally, in the last section (Sec. VII) we present our
conclusions. The Appendix presents a short review of the West,
Brown, Enquist (WBE) model [8] for ontogenetic growth.

II. EMPIRICAL EVIDENCE

Many empirical works [17,41–43] suggest that the total
mass m of a tumor increases with time t , obeying two regimes:
initial exponential growth followed by power-law growth. That
is, after the early exponential stage, we have

m(t) ∼ tα, (1)

where α is an exponent which depends on the tumor type and
the microenvironment conditions [25,41,44]. The data pre-
sented in Fig. 1, reproduced from [41], describe the evolution
of the size of a tumor. Moreover, some experiments [41,45]
also show that the radius of a solid tumor, Rmax, grows linearly
with time (Rmax ∼ t). Consequently, the spatial size of the
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FIG. 2. The universal growth law of the dimensionless mass (μ)
as a function of the dimensionless time (τ ). Data from completely
different organisms collapse in the same universal curve: animals,
tumors, and data from the model proposed (see Sec. VI), regardless
of the parameter values. The information about tumor and animal
growth was extracted from Refs. [40] and [8], respectively.

tumor scales with its mass as

Rmax ∼ m1/α. (2)

In earlier studies, tumor growth had been characterized
to be chaotic [38,44]. But current researches have adopted
fractal geometry to describe this phenomenon, because it is
more suitable to quantify the morphological characteristics of
solid tumors [25,39,46]. This property is already being taken
into account in diagnosing the grade of malignancy of tumors.
Some studies suggest that a higher fractal dimension implies
greater tumor aggressiveness [24,47–49].

Empirical data on tumors also suggest that their growth
seems to follow the same universal pattern observed in animal
growth [37,38]. West et al. [8] first proposed that the growth
of different species (mammals, birds, and fish) follows the
same universal curve. The application of the model for tumor
growth (in vivo, in vitro, and in clinical practice) also has
yielded successful results [37–39]. Figure 2 summarizes these
findings, showing the plot of the dimensionless mass (μ) as a
function of the dimensionless time (τ ), for completely different
kinds of animals (cow, chicken, and guppy) and for two tumors
(the same as in Fig. 1). All of them collapse in the same
universal curve: μ = 1 − e−τ (more details in the Appendix).

The universal behavior of animal growth, according to West
et al., is because all species allocate energy in a similar way:
to create new cells (growth) and to maintain those that already
exist [8,39,40]. However, for tumors, this universal behavior
is still not clear enough. In the present work, we show that
self-replication and competition among cells, characteristics
which seem to be applicable to tumors, can also generate this
universal growth pattern.

In order to endorse the empirical evidence previously
mentioned in this paper, we propose a simple microscopic
model based on the distance-dependent interactions between
cells living in a competitive environment. This model explains
the following properties of solid-tumor growth:

(a) exponential growth in earlier stages;
(b) power-law growth in later stages;
(c) a diameter following a power law with the number of

cells;
(d) fractal-like structures; and
(e) universal behavior.
We present the details of the model in the next section.
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III. THE MICROSCOPIC MODEL

We consider three reasonable assumptions from the physi-
cal and biological points of view:

(1) The cells compete for resources in their microenviron-
ment, and consequently, they change their position in order to
minimize the competition among them.

(2) The replication rate of the cells is affected by this
competition.

(3) The intensity of the competition among cells decays as
the distance among them increases.
Based on these premises we built a mathematical model that
is presented below.

First, let us consider an interaction function f (r) which
represents the effects—the field—that affects a single cell, say
i, due to the presence of another cell at distance r . The cells
are spatially distributed according to the density function ρ(r),
where r is the position vector. Then the total interaction field
affecting cell i is

Ii =
∫

VD

ρ(r)f (r)dDr. (3)

Here, D (integer) is the Euclidean dimension; VD is the
hypervolume in which the population is immersed; and dDr =
rD−1dr d�D is the hypervolume element, where d�D is
the solid angle. For more details about this formulation, see
Refs. [16,22,50,51].

We consider that the interaction between two cells decays
with distance, and therefore, a reasonable choice for the
interaction function is

f (r) =
{ 1

rγ if r > 2r0,

1
(2r0)γ otherwise,

(4)

where γ is the decay exponent, and r0 is the diameter of the
cell. Hypothesis (4) has been used to describe population cell
growth [22,23] and social interaction among individuals in a
city [52]. Consider hereafter, for convenience, r0 = 1/2.

Let us suppose that the population grows forming a radially
symmetrical structure. We also consider that the number of
cells scales as rDf , where Df is the dimension of the spacial
structure formed by the population, while the hypervolume in
which the cells are inserted scales as rD [53]. Thus, we can
write the density of cells as

ρ(r) = Number of cells

Volume
= ρ0

rDf

rD
= ρ0r

Df −D, (5)

where ρ0 is a constant and Df � D.
With these assumptions one can solve Eq. (3) considering

periodic boundary conditions, following the idea presented in
previous works [22,23,54]. At first, this is just a mathematical
artifact, but we show that this consideration has physical and
biological meaning. The periodic boundary conditions allow
us to write the interaction field as (see details in Ref. [22])

Ii = I (Df ,N ) = ωD

Df

ln(β−1)

(
Df

ωD

N

)
+ ωD

Df

, (6)

where

β ≡ 2 − γ

Df

(7)

and lnβ−1(x) ≡ (xβ−1 − 1)/(β − 1) is the generalized loga-
rithm (see [55]). The particular case β → 1 (or γ → Df )
leads to the natural logarithm. Recent works [16,22,30,51]
have suggested that generalized growth models can be written
in terms of generalized logarithms, which allows an easier
algebraic treatment. In Eq. (6), we also introduced ωD ≡
ρ0

∫
d�D , which is a constant that depends only on the

dimension D. When N → ∞, the interaction field given by
Eq. (6) diverges if γ < Df , which implies the existence of
long-range interactions between cells. On the other hand, it
converges if γ > Df ; then we have a short-range interaction
between them. We restricted our research to the short-range
interaction situation, that is, γ > Df , which means that
the cells interact only with their closer neighbors, and the
interaction intensity between them decreases with the distance.
It is known from a biological perspective that cells far from
each other do not compete for nutrients and, consequently,
do not affect each other. This means that the interaction
between them is minimal, so short-range interactions is a good
assumption. In this case, the periodic boundary conditions,
which allow us to get the result given by Eq. (6), simplify the
problem and it is good enough to describe realistic situations.

Note that the field given by Eq. (6) does not depend on
the index i; that is, it is the same for all individuals in the
population. This is a consequence of the periodic boundary
conditions [22] and the self-similarity of the mathematical
structure that we have proposed to describe the tumors. This
means that all cells are subject to the same influence from their
neighboring cells. In fact, this influence depends only on the
size of the population and the dimension of its structure; that
is, Ii = I (N,Df ).

In Sec. IV, we show that the population reaches an optimal
space distribution when the cells move in order to minimize
the competitive interaction. As we see, this dimension must
be fractal when the population is sufficiently large. This
means that an optimal fractal dimension appears as a natural
consequence of the interaction between cells. So, we can show
that the model is able to explain, by a microscopic approach,
the spacial distribution observed in real tumors.

As a first application of this model, one can use it to
predict how the diameter of the tumor, say 2Rmax, behaves
when the number of cells N increases. Considering that
N = ∫

all space ρ(r)dDr and the density is given by Eq. (5), one

has N = ρ0
∫

d�D

∫ Rmax

0 rDf −1dr and, consequently,

Rmax ∼ (Df N )
1

Df . (8)

This result is in accordance with the empirical data that the
diameter of the tumor follows a power law with the number of
cells [41,45].

IV. OPTIMAL FRACTAL DIMENSION

In the growth period, the cells compete for resources in their
microenvironment. This means that each cell must to move in
order to minimize the competition with the other cells. Figure 3
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FIG. 3. Schematic of cellular dynamics. In a competitive envi-
ronment, each cell tries to move in a direction that minimizes the
influence (competitive field) of other cells.

shows schematically the movement of a single cell to minimize
its competitive field with its neighbors. If all cells perform
this movement, the spatial distribution of their population will
change adaptively. Consequently, the (fractal) dimension of
the structure formed by the population will change over time.

The interaction field generated by the cells presents two
extreme values: when Df → 0 and Df → 3. When Df →
0, the population tends to concentrate in a single point [see
Eq. (8): Rmax → 0 when Df → 0], creating a high interaction
field. On the other hand, when Df ≈ 3 and N is sufficiently
large, the population is compacted (higher density), which
also results in a strong interaction field. However, there is
an optimal dimension between these two values, that we call
D

opt
f , which minimizes the competitive field experienced by

each cell. One can obtain D
opt
f by evaluating

∂

∂Df

I (N,Df )

∣∣∣∣
Df =D

opt
f

= 0. (9)

Such ideas are illustrated quantitatively in Fig. 4(a), which
presents the plot of the interaction field I (N,Df ), given by
Eq. (6), as a function of the dimension of the population, with
N fixed. It is possible to see that the interaction field always has

a minimum (Df = D
opt
f ). If N is small, then D

opt
f = 3, which

means a compacted population; but for a sufficiently large
population, the optimal dimension is fractal, which represents
a real tumor. Our microscopic model clarifies the role of the
fractal geometry of tumor growth since this structure emerges
spontaneously as a response of the cells to minimize the
competitive field.

In the next section we present the population growth process
in this competitive context. We see that the proposed model
presents exponential growth in earlier stages, followed by
a power-law growth stage, which is in accordance with the
empirical evidence.

V. POPULATION GROWTH

Our model presents two time scales. The first one is the
time that the cells take to reach the optimal fractal dimension
arrangement. The second time scale, represented by t , is
measured in generations. The cells reproduce at the end
of each generation. We also assume that the time between
two consecutive generations is sufficiently large to allow the
population to reach an optimal spatial distribution D

opt
f before

the next procreation. Then, at the moment of reproduction, the
field felt by each cell is I opt(N ) ≡ I (N,Df = D

opt
f ).

In a competitive context, the interaction field exercises
inhibitory behavior in the reproduction of the cells [22,23,46].
In this way, it is quite reasonable to consider that the replication
rate Ri of the i-th cell is given by

Ri = k − JI opt. (10)

This equation says that the reproductive capability of the cells
depends on both properties: an inherent property—given by the
intrinsic replication rate k—and an (inhibitory) influence of
the other cells in the population, given by JI opt. The parameter
k is identical, by definition, for all cells, while JI opt represents
the rate of competition. The parameter J > 0 measures the
intensity of the inhibition. When J < 0, we have cooperation
among cells. This situation provides a different approach than
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FIG. 4. (a) Plot of the field I (N,Df ), given by Eq. (6), as a function of the fractal dimension. The plot was made for fixed values of
population size and using γ = 5. Black circles represent the minimum value of I (N,Df ) in relation to the fractal dimension, which leads to
D

opt
f . When the population is small, the plot suggests that the population tends to be compact, that is, D

opt
f = 3. However, when the population

becomes sufficiently large, the optimal dimension is fractal. (b) Plot of the fractal dimension which minimizes the interaction field (Dopt
f ) as a

function of the population size. The optimal fractal dimension decreases monotonically as the population increases, and it becomes slower for
a sufficiently large population.
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FIG. 5. Temporal evolution for (a) mass, (b) replication rate, and (c) optimal fractal dimension given by our microscopic model. We used
different values of the intrinsic replication rate k, and we kept fixed the parameters J = 0.1, γ = 5, and mc = 1. The curves were obtained
by Eq. (11). When k > kpower the population (or its mass) diverges, when k = kpower the population grows according to a power law, and when
k < kpower the population saturates. If k ∼ kpower, the population remains in a power-law growth regime for a long period. The population grows
in a power-law regime because the replication rate Ri also decreases as a power law. The optimal dimension of the spatial structure formed
by the population is 3 (compacted form) in the initial stage, but then it becomes fractal when the population increases. This optimal fractal
dimension saturates to what we call Dconv

f .

we are interested in and it has been discussed in previous
works [16,22,50].

Since 
tRi is the number of daughter cells that cell i

generates in a time period 
t , the updated population size
in this period is

N (t + 
t) = N (t) + 
t

N∑
i=1

Ri. (11)

In the limit 
t → 0, this recurrence equation yields to an
ordinary differential equation:

dN

dt
= N (k − JI opt). (12)

Introducing the result given by Eq. (6), we have

dN

dt
= cNβopt − bN, (13)

where

b ≡ JωDγ

D
opt
f

(
γ − D

opt
f

) − k, (14)

c ≡ −J(
1 − γ

D
opt
f

)(
D

opt
f

ωD

)− γ

D
opt
f

, (15)

and

βopt ≡ 2 − γ

D
opt
f

. (16)

Assuming that each cell has the same mass mc, the total
mass of the tumor at time t can be written as m(t) = mcN (t).
Thus, Eq. (13) becomes

dm

dt
= amβopt − bm, (17)

with

a ≡ −Jm

γ

D
opt
f

−1

c

1 − γ

D
opt
f

(
D

opt
f

ωD

)− γ

D
opt
f

. (18)

Note that this model reproduces the Bertalanffy-Richards
model when the parameter Df is constant. This particular
case is discussed in Sec. V A.

It is difficult to obtain an analytic solution to Eq. (17) since
βopt is not fixed (it depends on D

opt
f , which, in turn, depends on

the population size). However, the dynamics of the model can
be investigated by solving numerically the recurrence relation
given by Eq. (11). This numerical solution is presented in
Fig. 5. The population size (the mass) of the tumor grows
exponentially at the beginning and then grows according to a
power-law regime before it saturates or blow up. Whether the
population saturates or explodes, it depends on the value of
the self-replication rate. The value of k that divides these two
stages is k = kpower, where

kpower ≡ JωDγ

D
opt
f

(
γ − D

opt
f

) (19)

is obtained by assuming b = 0 in Eq. (14) (more details in
Sec. V A).

When k = kpower, the population grows purely in a power-
law regime, described by (see Sec. V A)

m(t) ∼ t
Df

γ−Df . (20)

In fact, the power-law growth happens because the replication
rate Ri decreases according to a power law [see Fig. 5(b)].
On the other hand, when k < kpower, the population saturates
because the replication rate tends to 0 as the dynamics evolves.
And, finally, the population explodes (exponentially) when
k > kpower because the replication rate Ri converges to a
constant (greater than 0).1

It should be noted that the dynamics of the population
always reaches a power-law growth regime regardless of
the value of the intrinsic replication rate. This phenomenon
has been observed in real tumor growth. According to the
numerical results, the period for which the population grows

1Malthusian growth happens when the replication rate is constant.
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according to this regime depends on the intrinsic replication
rate of the cells. If k ∼ kpower, the population stays for a long
period on a power-law growth, but if k is too different from
kpower, the population stays in this regime for only a short
period (see Fig. 5).

The dynamics of the fractal dimension D
opt
f are also

presented in Fig. 5. Note that small populations have D
opt
f = 3

(compacted structure), but for large populations, the dimension
becomes fractal. The numeric value of the (fractal) dimension
decreases rapidly and then saturates to a value that we
call Dconv

f (the convergence value). When k � kpower, then
Dconv

f → γ /2, where γ is the decay exponent of the interaction
function.

In a real situation, the condition k < kpower is necessary
and the population saturates for longer times; otherwise, the
population diverges. However, as discussed in Refs. [37–39],
a real tumor does not saturate because, before this happens,
either the patient is dead or the tumor cells had already
started the vascularization and, consequently, the metastasis.
Nevertheless, our microscopic model is good enough to
describe the initial stage of real tumors characterized by
power-law growth.

The strong point of our model is that it explains, based on
few principles, the spatial distribution and growth process of
a real tumor. It is also important to emphasize that the model
is built using a microscopic (individual-level) approach, and
not a phenomenological (macroscopic) perspective, as earlier
studies did [1,4,22,44,56].

A. Connection with the Bertalanffy-Richards model

We can obtain an analytical solution to Eq. (17) when
the parameter Df is kept fixed during the growth process,
for example, taking Df = Dconv

f . This is reasonable for N

sufficiently large. Thus, one can obtain a simpler version of
the original approach, that which proves to be the Bertallanfy-
Richards growth model [12,13,57], whose solution is

m(t) =
[
a

b
+

(
m

1−β

0 − a

b

)
eb(β−1)t

] 1
1−β

, (21)

where a, b, and β are given by Eqs. (18), (14), and (7),
respectively.

In Fig. 6 we show a comparison between the original model
(evolving Df ) and its simplified version (keeping Df = Dconv

f

fixed). Note that, despite the differences between the two
dynamics during the growth process, they converge to the
same saturation mass.

The Bertalanffy-Richards model has been successfully used
to describe tumor growth [4,12,37,40]. One of the main points
of the model proposed here is that the Bertalanffy-Richards
growth model emerges as a consequence of the cellular
interaction (microscopic level), and not by a phenomenological
(macroscopic) approach.

The solution given by Eq. (21) has two asymptotic behav-
iors, saturation and divergence, according to the signal of the
argument in the exponential of Eq. (21). As γ /Df > 1 (short-
range interaction regime), then (β − 1) is always negative, and
consequently the signal of this argument depends only on b.
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FIG. 6. Predictions of the microscopic model of the population
growth (its mass), using two approaches: (i) Df evolves over
time, represented by dots; and (ii) the (fractal) dimension is fixed,
represented by the red line (special case of the model, when Df =
Dconv

f ). In both cases J = 0.1 and γ = 5. The straight dashed line
shows a power-law behavior as a guide for the eyes. The red line is
slightly different from the dotted curve during the growth process, but
they converge to the same saturation value. Inset: Fractal dimension
of the population for these two approaches. For the dotted line, the
population starts with D

opt
f = D = 3 (compacted form) but shortly

becomes fractal and converges to a saturation value, D
opt
f → Dconv

f .

In fact, this quantity can be written as b = kpower − k, where
kpower is given by Eq. (19).

If b < 0 (that is, k > kpower), the population grows expo-
nentially. Then b also plays the role of growth rate. Otherwise,
if b > 0 (that is, k < kpower), the population saturates asymp-
totically. These two accessible regimes are limited by a line
characterized by b = 0, when the population grows following
a power law. In this context, we get Eq. (20).

B. Connection with the Gompertz model

The Bertalanffy-Richards equation represents a generalized
growth model since it embraces some phenomenological
models as particular cases. We have to analyze the ratio γ /Df

[or the parameter β, by Eq. (7)]. For example, the Verhulst
model [58] is reached when γ � Df (that is, β → 2). As
proposed in Refs. [22,23,54] this happens when the interaction
between cells does not depend on the distance. So, the Verhulst
model is some kind of mean-field model.

The Gompertz model [59] is also a particular case of the
Bertalanffy-Richards model, which is reached when γ → Df

(or β → 1). It is easy to see how the Gompertz model emerges
from this theoretical framework. Defining δ = a − b and α =
b(1 − βopt), Eq. (17) becomes

dm

dt
= δmβopt − αmβopt

(
m1−βopt − 1

1 − βopt

)
. (22)

If we take the limit βopt → 1−,

dm

dt
= δm − αm ln (m) = −α ln

(
m

K

)
, (23)

which is the Gompertz equation, with K ≡ exp (δ/α). So the
Gompertz model is recovered at the limit of β → 1, which
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corresponds to the optimal fractal dimension D
opt
f ’s being

numerically equivalent to the decay coefficient γ [see Eqs. (4)
and (16)].

We have claimed that there is a relationship between the
tumor malignancy and the fractal dimension of the cancerous
cell body. The more malignant the tumor, the greater the fractal
dimension [25]. If the condition Df = γ is reasonable, the
model indicates that malignancy involves cells with shorter-
range interaction.

We also noted that, for a large enough population, the
replication rate decays exponentially, as shown in Fig. 5.
Our model was formulated based on interactions among cells
which depend just on the distance that separates them. Even
considering just this very simple interaction, our approach is
able to explain very well the success of the phenomenological
Gompertz model to describe tumor growth.

VI. UNIVERSAL GROWTH BEHAVIOR

In animal growth, West et al. (WBE model [8]) suggest
that the universal behavior shown in the data in Fig. 2 comes
from the fact that species allocate energy in the same way: for
growth or for maintenance (see the Appendix). Moreover, to
get this universal growth law, it is also necessary to consider
that species obey the allometric law (also called Kleiber’s
law), which says that the metabolic rate increases sublinearly
with the mass of the organism [60]. However, tumors do not
necessarily obey the allometric law, and furthermore, they
present a fractal form, instead of the space-filling process
required by WBE theory [8,38]. Thus, the explanation based
on allocation of energy is not necessarily suitable for tumors.

Our model, on the other hand, suggests that this universal
growth pattern emerges from first principles, i.e., cell in-
teractions. Specifically, two assumptions at the microscopic
level: competition and self-replication. In animal growth, the
dimensionless mass μ is related to the ratio between the
maintenance energy and the total energy of the organism
(details in the Appendix). But in our model this quantity
gets another interpretation, although it is still universal. In
fact, using the relations given by Eqs. (14), (18), (19), (A6),
and (A7), one can show that

μ = kpower − k

kpower − JIi

. (24)

This result means that the dimensionless mass is a relationship
between the intrinsic replication rate k and the competition rate
JIi . While k is constant during the process, the competition
rate increases because the population size grows as well.

For a small time frame (i.e., τ ≈ 0), the competition rate
is lower compared to the intrinsic replication rate, resulting
in μ ≈ 1 − k/kpower. In this case, the tumor keeps growing.
However, for τ sufficiently large, the competition rate reaches
the same magnitude as the intrinsic replication rate. In this sit-
uation the tumor stops growing (population saturates), which
means that μ → 1. According to the model, as noted for Fig. 2,
this happens regardless of the intensity of the competition J ,
the decay exponent of the competitive interaction γ (and con-
sequently β = 2 − γ /Df ), or the intrinsic replication rate k.

All the settings collapse into a single universal curve,
exactly as happens to empirical data on tumor and animal

growth. Of course, k has to be less than kpower to avoid the un-
realistic situation of exploding population size. In other words,
no matter what the value of the parameter β, all dynamics
collapse in the same universal curve. This means that even if
an organism does not follow the allometric law (β = 3/4), it
will still follow the universal curve, as probably happens in the
case of tumor growth. Moreover, this approach also explains
why as long as the competition among cells increases, due to
the population increase, the replication rate decreases.

Finally, our microscopic model suggests that the universal
similarity between tumor and animal growth does not neces-
sarily come from common biological properties. The universal
behavior that emerges may be because any biological growth
(animal, tumor) is in fact described by the same equation,
the Bertalanffy-Richards model, (17). Any process (biological
or physical) that can be modeled by this equation will also
collapse in the same universal curve.

VII. CONCLUSIONS

In this paper, we have presented good reasons to consider
that our mathematical model is able to explain empirical
evidence of tumor growth. Our microscopic model describe
well enough the form and the growth process of avascular
tumors, taking into account a few basic principles. In our
approach, the competition between cells determines their
replication rate, and beyond that the cells can also move in
order to minimize this competition among them. Such basic
assumptions, at the microscopic level, induce macroscopic
properties that can be observed in real tumors.

The model reproduces, for instance, the exponential growth
in early stages followed by power-law growth. The fractal
structure, observed in many solid tumors [24,25,61], is also
described in our model, since the optimal fractal dimension
emerges spontaneously, as a consequence of the interaction
between the cells.

Moreover, this model shows that the relation between the
intrinsic replication rate and the competition rate of the cells
plays the same role as energy allocation in growing animals.
This leads to the same universal behavior in both animal and
tumor growth. In other words, different biological mechanisms
can be represented by the same ubiquitous equation, given
by the Bertalanffy-Richards model. Besides, the universality
found for tumor growth is irrespective of the values of the
parameters of the microscopic model.

In short, we have presented a robust model able to describe
tumor growth as well as other processes in general. Regardless
of the system under discussion, as long as it is described
by the Bertalanffy-Richards model, its dynamics will follow
universal growth behavior. In conclusion, we believe that our
model is able to provide a better comprehension of growth
patterns not only in relation to tumors, but also with regard to
other biological systems.
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APPENDIX: WBE MODEL FOR ANIMAL GROWTH

In this Appendix we give a short description of the
West, Brown, Enquist model [8], which describes animal
growth considering Kleiber’s law [60] and the principle of
conservation of energy. Kleiber’s law says that the metabolic
rate B of an organism scales sublinearly with its body mass,
that is, B = B0m

β , where B0 is constant for a given taxon
and β < 1 is the allometric constant. According to the WBE
model, the total metabolized energy of an organism must be
used for maintenance of the already existent cells or to generate
new cells. That is,

[Total Metabolic Energy] = [Maintenance] + [Growth].

It yields the ordinary differential equation,

B0m
β = Bcm + Ec

dm

dt
, (A1)

where Bc is the metabolic rate of a single cell and Ec is the
energy necessary to create a new cell. The equation above can
be written as

dm

dt
= amβ − bm, (A2)

where

a ≡ B0mc

Ec

(A3)

and

b ≡ Bc

Ec

. (A4)

The constants B0, mc, and Ec are scaling invariants and do not
depend on the species. That is, these parameters are universal.
Then a, given by (A3), which depends only on scale-invariant
parameters, is also universal. However, this is not the case for
the parameter b, which depends on the biological species.

The solution of Eq. (A2) is

m(t) =
[
a

b
+

(
m

1−β

0 − a

b

)
eb(β−1)t

] 1
1−β

, (A5)

where m0 is the initial mass of the organism. As β < 1, the
solution of Eq. (A5) converges to

M ≡ m(t → ∞) =
(

a

b

) 1
1−β

, (A6)

which can be interpreted as the maturity mass of the organism.
Consider the quantity

μ ≡
(

m

M

)1−β

= Maintenance Energy

Total Metabolic Energy
, (A7)

a kind of dimensionless mass. Consider also

τ ≡ − ln

(
1 −

(
m0

M

)1−β)
+ a(1 − β)

M1−β
t, (A8)

a kind of dimensionless time. The WBE theory shows that if
one plots μ as a function of τ , then many species of animals
(birds, mammals, fish) and also tumors collapse in the same
universal curve (μ = 1 − e−τ ), as shown in Fig. 2.
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