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Weakly coupled map lattice models for multicellular patterning and collective normalization
of abnormal single-cell states
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We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the
local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To
this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules
similar to those of Conway’s Game of Life (model II). The normal and abnormal cell states evolve according
to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the
prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled
by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance
for positional information processes as well as for intercellular communication in tumorigenesis, where the
collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
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I. INTRODUCTION

Biological and artificial networks composed of micro-
and nanoscale two-state building blocks (cells) are bound
to operate under significant physical limitations because of
individual diversity and thermal noise effects. These effects
may weaken the local dynamic rules of the network and result
in a distribution of individual cell states instead of the two
generic Boolean states 0 and 1. We present two-dimensional
(2D), coupled map lattice models based on cellular automaton
dynamics [1] to explore the consequences of this weakening,
with the emphasis on biophysical multicellular ensembles. In
model I, the central cell state is determined by applying a
smooth majority rule to the individual states of the multicellu-
lar neighborhood. In model II, the dynamical rules are similar
to those of Conway’s Game of Life [2–6]. The above rules may
favor the normal state (0) but permit also the existence of cells
in the abnormal state (1). The predominance of state 0 over
state 1 may occur in the ensemble under certain conditions and
is called normalization.

For the two biologically motivated models, the individual
cell states evolve according to local dynamical rules modulated
by a coupling parameter κ: This parameter quantifies the
weakening of the rules due to the limited coupling of each
individual cell to its local neighborhood. In general, low
values of κ tend to enforce the local rules over the ensemble,
while high values of κ are associated with limited intercellular
communication. We note that κ should have a wide physical
significance. In the case of artificial networks, κ could be
related to the degree of heterogeneity characteristic of most
nanostructures. For instance, nanowire field-effect transistors
and nanoparticle-based single-electron transistors do not show
identical responses at the individual level because of significant
physical variability and this experimental fact may result in
weak collective coupling [7]. Also, κ can indirectly account for
the decreased cooperativity observed in molecular monolayers
because of thermal noise effects [8]. In these cases, static
(individual variability) and dynamic (finite-temperature) noise
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limitations eventually result in weak local rules of the system
dynamics. Limited coupling may also be significant in clusters
of protein ion channels with individually different threshold
responses [9] and interacting cells forming spatiotemporal
patterns [10]. These multicellular patterns are crucial to
positional information processes such as embryogenesis and
tumorigenesis [11,12].

Abnormal tumor cells form precancerous lesions that can
rest dormant for a long time because they are located in
unsuitable sites or controlled by intercellular interactions with
a majority of normal cells [13,14]. In this context, exploring the
consequences of the interaction between the abnormal tumor
cells (state 1) and their neighboring normal cells (state 0)
should be of interest for new theoretical approaches [15–18]. In
the tissue organization field theory, for instance, the disruption
of local intercellular communication is associated with the
appearance of abnormal cells and carcinogenesis [16–18].
These facts suggest the possibility of acting on the intercellular
coupling by means of appropriate external agents. However,
strategies designed to modify multicellular ensembles are
difficult to implement because small changes at the local
level may result in unexpected global outcomes. Indeed, the
emergent large-scale patterns cannot be easily anticipated from
single-cell considerations [10,12]. This problem is crucial in
carcinogenesis where small clusters of cells may establish local
interactions that escape from the morphogenetic control based
on intercellular coupling [15,16,18].

Modeling the interplay between the local rules that govern
intercellular coupling and the emergent multicellular pattern-
ing is of current interest. We consider here two weakly coupled
map lattice models for the spatiotemporal patterning and
normalization of cell ensembles. In particular, we describe the
range of single-cell states between 0 and 1 that may originate
from the weakening of the intercellular local rules and show
the dynamical consequences of weak coupling on multicellular
patterning.

II. MODELS

The states of biological cells can be defined in terms of
dynamical variables such as the concentration c of a signaling

2470-0045/2017/95(4)/042324(10) 042324-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.042324


GARCÍA-MORALES, MANZANARES, AND MAFE PHYSICAL REVIEW E 95, 042324 (2017)

molecule in the cell [11,19] and the membrane potential
V , defined as the electric potential difference between the
cell cytoplasm and the extracellular microenvironment under
zero-current conditions [10,20]. In general, a variable x that
characterizes the cell state can be mapped into a dimensionless
variable u varying in the range [0,1] by the transformation
u = (x − x0)/(x1 − x0), where x0 and x1 are, respectively, the
values of x in some reference normal (0) and abnormal (1)
states. The membrane potential V constitutes a typical example
of dynamical variable because depolarized potentials are
characteristic of abnormal cells [20–23]. The corresponding
dimensionless variable would be u = (V − V0)/(V1 − V0),
where V < 0, with V0 and V1 the normal (polarized) and
abnormal (depolarized) potentials (V0 � V � V1). The vari-
able u varies continuously between 0 and 1 and characterizes
the cell state. We model the multicellular ensemble as a 2D
lattice where each site represents a single cell. The site can
be in a continuum of states ranging from 0 (normal state) to 1
(abnormal state). A lattice where most sites are found in state
0 is said to be in a normalized state. The biological signals that
couple individual cells to their local multicellular environment
may contribute to normalization and are modeled using a
continuous parameter κ that accounts for a weak coupling
between cells.

A. Lattice and states

We consider a 2D square lattice L with square (Moore)
neighborhoods of 3 × 3 sites. The neighborhood of the lattice
site (i,j ) is formed by the sites (i + k,j + m), where k and
m can take the values −1, 0, and 1. At time t , the state of
site (i,j ) is given by the continuous dimensionless dynamical
variable u

i,j
t ∈ [0,1]. The states of all sites in the lattice are

synchronously updated at discrete time steps according to
the map

u
i,j

t+1 = f
(
u

i,j
t ,s

i,j
t ; κ

)
, (i,j ) ∈ L, (1)

where κ is the coupling parameter and

s
i,j
t ≡

1∑
k,m=−1

u
i+k,j+m
t (2)

is the neighborhood sum.
The lattice dynamics is studied using numerical simulations

and the analytical mean-field approximation

ut+1 = f (ut ,9ut ; κ) ≡ fMF(ut ; κ), (3)

which considers that all cells have approximately the same
average value

ut = 〈
u

i,j
t

〉 ≡ 1

�

n∑
i=1

n∑
j=1

u
i,j
t , (4)

where � = n2 is the total number of sites, with n the number
of sites on a side of the square lattice. The mean-field
approximation provides a good description of the dynamics,
Eq. (1), only if

〈
f

(
u

i,j
t ,s

i,j
t ; κ

)〉 ≈ f
(〈
u

i,j
t

〉
,
〈
s
i,j
t

〉
; κ

) = fMF(ut ; κ). (5)

Therefore, by expanding Eq. (1) around u
i,j
t = ut , we obtain

u
i,j

t+1 = fMF(ut ; κ) + (
u

i,j
t − ut

) ∂f

∂u
i,j
t

∣∣∣∣
u

i,j
t =ut

+ (
s
i,j
t − 9ut

) ∂f

∂s
i,j
t

∣∣∣∣
u

i,j
t =ut

+ · · · . (6)

Thus, the validity of the mean-field approximation as a
reduced description of the full dynamics depends on (a)
the convergence of this series and (b) the fulfillment of
the relationship∣∣∣∣

〈(
u

i,j
t − ut

) ∂f

∂u
i,j
t

∣∣∣∣
u

i,j
t =ut

+ (
s
i,j
t − 9ut

) ∂f

∂s
i,j
t

∣∣∣∣
u

i,j
t =ut

〉∣∣∣∣
� fMF(ut ; κ). (7)

Specific models of Eq. (1) are constructed following the
method in Ref. [1]. First, the limits κ → 0 and κ → ∞ of
Eq. (1), called the cellular automaton limits, are described
in terms of simple rules. Then we allow κ to take any finite
nonzero value, thus weakening the dynamics of the cellular
automaton limits.

B. Model I

This model constitutes a smooth majority coupled map
lattice. The coupling between sites is modulated by the
continuous parameter κ ∈ (0,∞):

(1) In the limit κ → 0 the central site within a neighbor-
hood remains in state 1 at the next time step if and only if
there are no fewer than eight other neighboring sites in state
1 as well. Otherwise, it changes to state 0 at the next time
step. In this limit, the only possibility for a cell to remain
abnormal is for all the cells in the multicellular ensemble to
be abnormal; otherwise, normalization of the ensemble occurs
after a transient.

(2) In the limit κ → ∞ a site remains in state 0 at the
next time step if and only if all neighboring sites are in state
0 as well. Otherwise, it changes to state 1 at the next time
step. This limiting case corresponds to the predominance of
the abnormal state in the absence of intercellular coupling, the
situation opposite to the above case κ → 0.

At intermediate values of κ , sites with states 0 and 1 should
coexist in the ensemble. The above cases are the cellular
automaton limits of the coupled map lattice. Note that in these
limits a site with state 0 (state 1) cannot arise at the center of a
neighborhood where all sites have value 1 (value 0). Therefore,
homogeneous neighborhoods where all sites have value either
0 or 1 are fixed points of the dynamics.

According with these rules, the map of Eq. (1) that governs
the spatiotemporal evolution of state u

i,j
t of cell (i,j ) is

given by

u
i,j

t+1 = Bκ

(
9 − s

i,j
t , 1

2

)
B1/κ

(
5 − s

i,j
t , 9

2

)
Bκ

(
0, 1

2

)
B1/κ

(
0, 9

2

) , (8)

where the Bκ function of real variables x and y is [1]

Bκ (x,y) ≡ 1

2

[
tanh

(
x + y

κ

)
− tanh

(
x − y

κ

)]
. (9)
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FIG. 1. The cell state u
i,j

t+1 ∈ [0,1] vs the neighborhood sum s
i,j
t for the values of κ indicated beside the curves. Panels are separated to

better show the effect of varying κ in Eq. (8). Note that values of s
i,j
t > 9 are considered only to show the mathematical trends of Eq. (8).

Note that κ is the only free parameter of the model and modu-
lates the local rules that couple the multicellular ensemble. For
all finite values of the real variables x and y, the Bκ function
satisfies the limits [1]

lim
κ→∞Bκ (x, y) = 0, lim

κ→∞
Bκ (x, y)

Bκ (0, y)
= 1, (10)

lim
κ→0

Bκ (x, y) = B(x,y) = 1

2

(
x + y

|x + y| − x − y

|x − y|
)

=

⎧⎪⎨
⎪⎩

sgn y if |x| < |y|,
sgn y

2 if |x| = |y|,
0 if |x| > |y|,

(11)

where we have introduced the B function, B(x,y), which
allows a universal map for cellular automata to be formulated
[24].

In the limit κ → 0, Eq. (8) becomes

u
i,j

t+1 = B
(
9 − s

i,j
t , 1

2

)
. (12)

For initial conditions that satisfy

s
i,j

0 ∈ R \ (Z/2) ∀ (i,j ) ∈ L, (13)

where R \ (Z/2) denotes the real line excluding all half-
integers n

2 , n ∈ Z, the first iteration of Eq. (12) becomes
locally a map R \ (Z/2) → A2 ≡ {0,1}. From the second
iteration, it collapses to a map [A2]9 → A2, where [A2]9

is the Cartesian product of nine copies of the Boolean set
A2 ≡ {0,1}. Thus, for t � 1, Eq. (12) corresponds to the 2D
totalistic Boolean cellular automaton [24,25] that sets u

i,j

t+1 = 1

if s
i,j
t = 9 and u

i,j

t+1 = 0 otherwise. It is to be noted that this
cellular automaton behavior is found for most initial conditions
since those that fail to satisfy Eq. (13) constitute a set with
zero measure. Therefore, in the limit κ → 0 and t � 1 a
configuration with noninteger neighborhood sum s

i,j
t cannot

arise in the spatiotemporal dynamics if all neighborhoods
satisfy Eq. (13) at t = 0.

In the limit κ → ∞, Eq. (8) becomes

u
i,j

t+1 = B
(
5 − s

i,j
t , 9

2

)
, (14)

which, for initial conditions that satisfy Eq. (13), collapses for
t � 1 to a 2D totalistic cellular automaton that sets u

i,j

t+1 = 0

if s
i,j
t = 0 and u

i,j

t+1 = 1 otherwise. Symmetry considerations
[26,27] show that Eq. (14) is the global complement of Eq. (12)
so that the respective evolutions of these equations are the
“negative” of each other if one exchanges normal and abnormal
cells (see the Appendix).

Figure 1 shows u
i,j

t+1 of Eq. (8) as a function of the

neighborhood sum s
i,j
t for different values of κ . Note that

normalization is enforced in the limit of low κ [Fig. 1(a)]
because a site in state 1 is viable only if all neighboring sites
are in a state close to 1. On the contrary, normalization is
discouraged in the limit of high κ [Fig. 1(b)] because a site in
state 0 requires that all neighboring sites are previously in a
state close to 0.

C. Model II

In the limit κ → 0, the rules of this model are similar to
those of Conway’s Game of Life [2–4] for initial conditions
u

i,j

0 = 0 or 1, ∀(i,j ) ∈ L:
(1) Any site in state 1 with fewer than two nearest neighbors

in state 1 takes state 0 at the next time step. The rule establishes
the normalizing effect of the local neighborhood when normal
cells predominate.

(2) Any site in state 1 with two or three nearest neighbors in
state 1 remains in state 1 at the next time step. The rule assumes
that the normalization effect of the local neighborhood is lost
when sufficient abnormal cells are present.

(3) Any site in state 0 with three nearest neighbors in state
1 changes to state 1 at the next time step. The rule considers
the promotion from a normal to an abnormal state.

(4) Any site in state 1 with more than three nearest
neighbors in state 1 changes to state 0 at the next time step.
The rule establishes a limit to abnormal cell expansion, e.g.,
because of finite available resources, representing a change
from positive to negative cooperativity.

For u
i,j
t constrained to 0 or 1, these rules constitute

the popular Game of Life [24], an outer totalistic cellular
automaton discovered by Conway [2],

u
i,j

t+1 =

⎧⎪⎨
⎪⎩

u
i,j
t if s

i,j
t − u

i,j
t = 2,

1 if s
i,j
t − u

i,j
t = 3,

0 otherwise.

(15)
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It can be proved (see the Appendix) that Eq. (15) is equivalent
to

u
i,j

t+1 =

⎧⎪⎨
⎪⎩

1 if s
i,j
t = 3,

u
i,j
t if s

i,j
t = 4,

0 otherwise.

(16)

However, we consider a more general fuzzy dynamics con-
trolled by a modulating parameter κ which is finite and
nonvanishing, with u

i,j
t ∈ [0,1] a continuous variable. Further,

we have:
(5) The coupling between sites due to the above local rules

is modulated by the parameter κ ∈ (0,∞). This parameter
loosely incorporates the collective influence of biological
phenomena such as the stochastic intercellular diffusion
of signaling molecules, the intrinsically probabilistic gene
expression, and the individual cell heterogeneity. These noisy
phenomena should weaken rules 1 to 4 above, which hold
exactly only in the limit κ → 0.

Note that a predominantly normal neighborhood may
constitute a normalizing microenvironment for a cell because
of the abnormal cell underpopulation (rule 1). On the con-
trary, a significantly abnormal neighborhood may impair the
normalization effect and promote the abnormal state (rules 2
and 3). In the case of abnormal cell overcrowding, however,
limited proliferation could arise because of the competition for
finite resources (rule 4).

All rules above are concisely implemented using the
following map for the spatiotemporal evolution of u

i,j
t in

Eq. (1):

u
i,j

t+1 = Bκ

(
3 − s

i,j
t , 1

2

) + u
i,j
t Bκ

(
4 − s

i,j
t , 1

2

)
. (17)

In the limit κ → 0, for initial conditions that satisfy Eq. (13)
and such that no u

i,j

0 is in the interval [0.4,0.5], Eq. (17)
coincides with the Game of Life cellular automaton of Eq. (16)
since the variable u

i,j
t becomes Boolean for t � 1. For κ 	= 0,

the dynamics becomes fuzzy and the values of u
i,j
t for t � 1

are bounded above by

umax = Bκ

(
0, 1

2

) + Bκ

(
1, 1

2

) = Bκ

(
1
2 , 1

)
� 1 (18)

as obtained by replacing u
i,j
t = 1 and s

i,j
t = 3 or 4 in Eq. (17)

and using the block coalescence property of the Bκ function
[1]. The lower bound

umin = Bκ

(
5, 1

2

)
� 0 (19)

is obtained by replacing u
i,j
t = 0 and s

i,j
t = 8 in Eq. (17).

Thus, u
i,j
t is constrained to a subset of the unit interval u

i,j
t ∈

[umin,umax] determined by κ .

III. RESULTS AND DISCUSSION

We have carried out numerical simulations with models I
and II assuming periodic boundary conditions. We consider
first a generic initial condition consisting of a random
distribution of 0 and 1 states with density approximately equal
to 0.5.

A. Model I

Figure 2 shows snapshots at different dimensionless times
of the multicellular ensemble evolution determined by Eq. (8).
After a sufficiently long time, the system reaches a homo-
geneous state that can be either normal (upper panels) or
abnormal (lower panels). The duration of the transient leading

FIG. 2. Spatiotemporal evolution of the cell states u
i,j
t taking values between 0 and 1 (right bar) for model I obtained by iterating Eq. (8)

in a multicellular ensemble of 159 × 159 = 25 281 cells at different times t for three κ values. The initial (t = 0) state with cells randomly
distributed in the 0 and 1 states is the same for the three cases.
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FIG. 3. Bifurcation diagram calculated from the asymptotic
behavior of Eq. (20). The stationary cell state u∞ obtained after
3 × 104 time steps is shown as a function of the parameter κ .

to homogeneity depends on the distance to the transition
separating these two trends (see the bifurcation diagram in
Fig. 3). The reversion of abnormal (blue regions, dark in
grayscale) to normal (red regions, light in grayscale) cell states
is only possible for low enough values of κ , which promote
a correction mechanism of the locally abnormal pattern at
t = 0. Indeed, the weakening of the local rules favoring the
normal state occurs at high enough values of κ . This fact causes
the expansion of the abnormal state as κ is increased above
κ ≈ 4.9.

The above results can be understood if we reduce the
map Eq. (8) to the case of homogeneous neighborhoods. This
corresponds to the mean-field approximation, Eq. (3). Within
this approximation, all neighborhoods in Eq. (8) are decoupled
and the labels i,j can be dropped because we are describing
an average single-cell behavior, thus taking u

i+k,j+m
t = ut

for all k,m ∈ {−1,0,1} and s
i,j
t = 9ut . (Note that, because

of dynamical fluctuations, the local value of the general
dynamics may depart from this single-cell mean-field value.)
This coarse-grained approximation is useful for capturing
the dynamics because no inhomogeneous neighborhoods can
persist in the cellular automaton limits of the model. The
mean-field approximation of Eq. (8) is

ut+1 = Bκ

(
9 − 9ut ,

1
2

)
B1/κ

(
5 − 9ut ,

9
2

)
Bκ

(
0, 1

2

)
B1/κ

(
0, 9

2

) . (20)

The bifurcation diagram of this map (Fig. 3) provides the stable
fixed points that can be dynamically reached depending on the
initial condition. For constructing the diagram, the whole inter-
val of initial conditions u0 ∈ [0,1] is sampled and the dynamics
is then iterated to calculate u∞. Bistable regimes are found for
several parameter ranges. In the range 4.4 � κ � 5.2, three
stable states coexist, and depending on the initial conditions,
the system can converge either to the normal state u∞,0 ≈ 0,
to the abnormal state u∞,1 ≈ 1 (most prominent at high κ

values), or to a third stable intermediate state u∞,2 found only
in an intermediate-κ regime. For the particular initial condition
in Fig. 2, the critical value κ ≈ 4.855 marks the transition
between the attractor corresponding to u∞,2 (red regions in
the rightmost panels in Fig. 2) and that corresponding to u∞,1

(blue regions). For larger κ , the abnormal state is the most
prominent, attracting almost all trajectories in phase space.
The above mean-field analysis is independent of the total
number of cells � in the ensemble. Numerical simulations
of model I, Eq. (8), showed that the mean-field approximation
accurately captures its average spatiotemporal dynamics: all
fixed points correspond to homogeneous states and the series
expansion, Eq. (6), converges as Eq. (7) is satisfied by most
trajectories. Even at intermediate values of κ , where curved
and circular interfaces are observed (see Fig. 2), the numerical
simulations showed that the temporary contribution of the
cells at domain interfaces can be neglected compared to the
dominant bulk domains that contain most of the sites. This
amounts to neglecting the contribution to the lattice average
of the small fraction of neighborhoods for which Eq. (7) does
not hold because the derivatives in that equation are large, i.e.,
the contribution of those sites found at the curvy and circular
interfaces separating the more prominent bulk domains (which
have a dynamical state corresponding to the different fixed
points of the mean-field approximation).

Further insight is obtained by estimating the width of the
basin of attraction for the different fixed points. The fractions
x0, x1, and x2 = 1 − x0 − x1 of the initial conditions in the
unit interval attracted by the fixed points u∞,0, u∞,1, and u∞,2,
respectively, are plotted in Fig. 4. The homogeneous normal
state u∞,0 ≈ 0 is most prominent at low κ values, the abnormal
state u∞,1 ≈ 1 dominates at high κ values, and the fixed point
u∞,2 is only found at intermediate κ , in significant competition
with the abnormal state u∞,1 ≈ 1. It is in this intermediate
range of κ where the bubbles shown in Fig. 2 persist during
long time spans. Therefore, normalization can be achieved by
lowering κ in ensembles where abnormal cells dominate.

Experimentally, the initial cancer stages have been associ-
ated with limited or defective intercellular communication in
multicellular ensembles [13,16,18,28–30]. As expected, Fig. 2
suggests that restoring the intercellular coupling (i.e., lowering
the value of κ) by means of external agents could contribute to
ensemble normalization. However, the effects of this restoring
procedure depend on the local rules and the particular initial
conditions, as we show in the next model.

FIG. 4. Fraction of initial conditions in the unit interval that are
attracted as t → ∞ to the stable state 0 (x0 curve) and to state 1 (x1

curve) as a function of κ and to a third stable state, u∞,2, found at
intermediate κ values (1 − x0 − x1 dashed curve).
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FIG. 5. Spatiotemporal evolution of the cell states u
i,j
t taking values between 0 and 1 (right bar) for model II obtained by iterating Eq. (17)

in a multicellular ensemble of 159 × 159 = 25 281 cells for six κ values. The initial (t = 0) state with cells randomly distributed in the 0 and
1 states is the same for all cases.

B. Model II

Imagine a multicellular ensemble with κ finite and a small
number of abnormal cells at t = 0. Because the Game of Life
rules are exact in the limit κ → 0, full normalization can no
longer be warranted in model II. Indeed, the Game of Life
displays complex behavior for generic initial conditions, and
hence, abnormal cells could persist. Furthermore, lowering
κ from a sufficiently high value of this parameter may even
enhance the contribution of the abnormal cells to the total
ensemble in certain particular cases.

Figure 5 shows the snapshots of the multicellular ensemble
for model II, Eq. (17), at different times. For κ sufficiently

large, the system reaches, after a transient, a homogeneous
state that appears to be only slightly abnormal. However, as κ

is lowered, a bifurcation to oscillatory behavior is observed for
domains of abnormal cells. Decreasing κ further, the number
of oscillatory components is increased and the system exhibits
a transition to strongly aperiodic behavior, which is most
prominent when κ = 1. For κ < 1 the patterns are noisy and
the cell state u

i,j
t varies continuously with time within the

interval [umin,umax] given by Eqs. (18) and (19). However, the
intermediate states collapse as κ → 0 and the cells show only
the discrete states 0 and 1. In this limit, the dynamics reduces
to the Game of Life. For generic initial conditions, therefore,
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FIG. 6. Spatiotemporal evolution of the cell states u
i,j
t taking values between 0 and 1 (right bar) for model II obtained by iterating Eq. (17)

in a multicellular ensemble of 159 × 159 = 25 281 cells for six κ values. The initial (t = 0) state is the same for all cases and consists of a
random distribution of 0 and 1 values in a central square region of the lattice of 25 × 25 size, the rest of the lattice being in state 0.

the ensemble may fail to normalize when κ is decreased from
a particular value.

To emphasize the complexity of the ensemble normaliza-
tion, Fig. 6 shows the snapshots obtained for an inhomoge-
neous region occupying initially a central cluster. At κ � 1.9
a homogeneous normal state is obtained at long times. As
κ is decreased, the central inhomogeneity can grow. Domain
formation and oscillations are observed within the growing
inhomogeneity (see also Fig. 5).

To better understand the results in Fig. 6, let wt ≈ 0
denote the state u

i,j
t of a cell in the homogeneous region

of the ensemble far away from the inhomogeneity. Then the
time-dependent variable

Mt = 1

�

n∑
i=1

n∑
j=1

u
i,j
t − wt = ut − wt (21)

provides an estimate of the relative weight of abnormal cells
in the lattice with respect to wt . Figure 7 shows Mt calculated

from Eqs. (17) and (21) and the same initial condition as in
Fig. 6. For κ = 1, the optimal growth of the abnormal region
is obtained. The impact of the domain oscillations within the
abnormal region is clearly visible for κ = 1.2. The effects of
noise are more prominent as κ < 1 is decreased. Statistically,
fluctuations are more noticeable when addition is performed
over the values u

i,j
t = 0 or 1 only (the case κ → 0), as opposed

to addition over a continuous u
i,j
t (the case κ ≈ 1). Note also

in Fig. 6 that, for κ � 1.9, inhomogeneities are removed after a
transient but the resulting homogeneous state is not completely
normalized.

The dynamics of model II can be analyzed further using the
mean-field approximation

ut+1 = Bκ

(
3 − 9ut ,

1
2

) + utBκ

(
4 − 9ut ,

1
2

)
. (22)

We describe next the bifurcation diagram of Eq. (22) as κ is
decreased from κ � 2 to 0:

(a) A bifurcation is encountered at κ ≈ 1.95, which is
close to the value κ ≈ 1.9 found in the numerical simulations

FIG. 7. Mt versus time t obtained from Eqs. (17) and (21) for the same initial condition as in Fig. 6 and the values of κ indicated on the
curves. Mt constitutes a measure of the ensemble abnormality.
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FIG. 8. Bifurcation diagram calculated from the asymptotic
behavior of Eq. (22). Black curves correspond to stationary states
u∞ obtained at long times. The red points (light in grayscale)
indicate the period-doubling bifurcation cascades into chaos. Note
the correspondence of this figure with the results in Figs. 5 and 6.

of the exact dynamics, Eq. (17). The system abruptly splits
into two branches, leading to the bistable regime A (Fig. 8).
Remarkably, the system will normalize when κ → 0 only if
the lower branch in Fig. 8 is followed. These facts establish
practical limits for restoring and normalization procedures.

(b) A bifurcation of the upper branch is found at κ ≈
1.35, leading to period 2 oscillations. Further period-doubling
bifurcations are then observed at κ ≈ 1.2 (as in Fig. 5), leading
through a period-doubling cascade into chaos, which is most
prominent at κ = 1 (regime B in Fig. 8). To substantiate this
observation, we have calculated the Lyapunov exponent

λ(u0) ≡ lim
T →∞

1

T

T −1∑
t=0

ln

∣∣∣∣dfMF(u; κ)

du

∣∣∣∣
u=ut

∣∣∣∣ (23)

for trajectories of the mean-field approximation starting with
initial conditions u0 = 0.15 and u0 = 0.45 in the lower and
the upper branches, respectively, and T = 3 × 104 (Fig. 9).
While λ(0.15) < 0 for all κ , we find a positive Lyapunov
exponent λ(0.45) > 0 in the range 1.045 � κ � 1.185 for a
trajectory to the upper branch of the bifurcation diagram. The

FIG. 9. Value of the Lyapunov exponent vs κ for two initial
conditions u0.

period-doubling bifurcations occur at those κ values for which
λ(0.45) = 0, consistent with the bifurcation diagram (Fig. 8)
and the numerical simulations of Eq. (17); see, for example,
the last three snapshots for κ = 1.2 in Fig. 5, where period 4
oscillations are observed.

(c) In regimes C and D of Fig. 8, the mean-field ap-
proximation fails because it can no longer be assumed that
all neighborhoods are uncoupled and well described by an
average cell value. Equation (17) needs to be considered in
these regimes. Noise is high in regime C (see Figs. 5 and 6
for κ = 0.5) but this noise may have a thermal-like origin (see
Ref. [4]). More degrees of freedom may be involved here and it
is not possible to use the mean-field approximation, Eq. (22),
to account for this dynamics. The results in Fig. 8 clearly
show the complex role of the modulating parameter κ in the
ensemble normalization.

The bifurcation diagram (Fig. 8) also explains the pattern
formation in Figs. 5 and 6 for 1 � κ � 1.9: the upper branch
with bifurcations corresponds to the inhomogeneous region,
and the lower branch to the homogeneous one in Fig. 6. The
bifurcation diagram also clarifies why oscillations occur only
in the inhomogeneous region.

An analysis of the noise in the time series of u
i,j
t for each

cell of the ensemble has been carried out in regimes C and D
in Fig. 8 (not shown here). The spectrum shifts from uniform
noise at κ = 1 to low-frequency (1/f ) noise at κ → 0. The
strong correlations found in the limit κ → 0, together with the
need to take into account local details within a neighborhood,
make it necessary to use the exact dynamics, Eq. (17), instead
of its coarse-grained approximation, Eq. (22), in that regime.
To understand why the mean-field approximation breaks
down for low κ but works well for κ > 1, we note that
|∂f/∂s

i,j
t |

u
i,j
t =ut

| ∝ 1/κ for model II, i.e., for f equal to the
right-hand side of Eq. (17). Thus, as κ is decreased below unity,
it is possible to violate the criterion in Eq. (7). Conversely, for
κ > 1 the contribution of the above derivative is increasingly
smaller and Eq. (7) can then be satisfied.

Taken together, the different results obtained with mod-
els I and II clearly emphasize the inherent complexity of
collective normalization processes based on the restoration
of weakened local rules in model multicellular ensembles.
Note, in particular, the complex scenario obtained for model II
when the intensity of the intercellular coupling is varied. These
results suggest that externally induced procedures attempting
to normalize abnormal cell domains can produce different
outcomes depending on the dominant local rules.

Cells are coupled together and thus their individual proper-
ties can be modulated by ensemble-averaged characteristics
such as electric potentials and fields [10,12,22,23]. These
characteristics may allow a spatially distributed control of
small cellular domains by the conversion of local genetic
and bioelectric responses into multicellular states that are
regulated by the gap junction interconnectivity. In this context,
the approach proposed here should be of interest for different
biophysical problems:

(a) Intercellular connectivity is crucial to growth and form.
The gap junctions between single cells modulate the rules that
instruct pattern regulation [31]. Experimentally, the functional
inhibition of the gap junctions connecting neighboring cells
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can be achieved either by injection of a specific factor that
targets connexins or by posttranslational blocking with an
external agent [32]. These processes can be simulated here by
weakening the local rules. Interestingly, the intercellular gap
junctions can contribute to the formation of Turing structures
in the cortex [33] and are also involved in the bioengineering
of excitable tissues capable of information processing [34].

(b) Experimentally, addressing gap junctions and
connexins as targets in practical problems is difficult because
they allow the transmission of a multitude of biochemical and
bioelectrical signals between individual cells, which results
in a complex context-dependent behavior [35,36]. A limited
intercellular communication should enhance autonomous cell
behavior and has been related to the initial stages of cancer
[13,14,16,20,30]. However, the outcome to be expected in
each experimental case is context dependent in the sense that it
depends not only on the signaling molecule transferred but also
on the particular states of the neighboring cells [35]. Figure 2
suggests that restoring the intercellular coupling might
contribute to ensemble normalization but Figs. 5 and 6 show
that different responses could also be possible. Taken together,
Figs. 3, 5, 6, and 8 provide some qualitative physical insights
into this complex problem: the effects of the coupling intensity
simulating the intercellular communication here are context
dependent in the sense that the outcomes depend on the local
rules and states of the neighboring cells. As could be expected,
Figs. 3 and 8 suggest that a good knowledge of the local rules
should facilitate the establishment of appropriate procedures to
change the state of cell domains by acting on the intercellular
coupling intensity (e.g., by gap junction blockers [32,35]).

(c) It is possible to analyze the time evolution of multicel-
lular ensembles by direct experimental visualization. For in-
stance, the electrical potential domains formed by cell clusters
can be imaged locally by membrane-voltage-reporting dyes
[12,22,23]. Also, the intercellular coupling may be externally
controlled by appropriate agents such as blockers of specific
ion channels [10,12,20,29] and local transfer of microRNAs
[36]. Weakly coupled map lattices can be of qualitative value to
analyze the different spatiotemporal patterns that are obtained
in culture assays with multicellular domains.

IV. CONCLUSIONS

The methods used here should have a wide physical
significance: they can be applied not only to heterogeneous
biological units but also to artificial networks of nanostructures
where weak collective coupling may arise because of the
individual heterogeneity. Some examples of current interest are
nanowire field-effect transistors, nanoparticle-based single-
electron transistors, and molecular dipoles in monolayers. In
these cases, the individual variability results in weak local
rules for the system dynamics.

In the case of biological cell networks, theoretical ap-
proaches tend to focus on biochemical signals and pathways at
the single-cell level. Extensions to tissues are usually based on
reaction-diffusion [37–39] and bioelectrical schemes [10,40]
but network models with different local rules have also been
proposed [41–43]. We have shown here that weakly coupled
map lattices [1] can provide significant insights on intercellular
coupling by using two biologically motivated sets of local rules

for the multicellular ensemble dynamics. These rules should
be modulated by the protein gap junctions between adjacent
cells but the particular mechanisms linking these junctions to
processes such as pattern formation and tumorigenesis are not
completely known [31].

For instance, the bystander effects associated with intercel-
lular coupling may enhance the antitumor effect by transferring
specific signaling molecules between neighboring cells [19].
However, the intercellular junctions have context-dependent
roles and may show pro- and antiproliferative effects de-
pending on the particular cell states and the information to
be transferred [32,35]. The rich diversity of results obtained
with models I and II suggests the difficulty of attempting to
normalize domains of abnormal cells by restoring weakened
local rules: detailed knowledge of the dominant local rules is
necessary to achieve the desired outcomes.
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APPENDIX

1. The limits κ → 0 and κ → ∞ of Model I
yield complementary dynamics

For t � 1 and all initial conditions satisfying Eq. (13), the
variable u

i,j
t of Model I becomes Boolean in the limits κ → 0

and κ → ∞. Then the neighborhood sum s
i,j
t can only take

integer values from 0 to 9, and Eqs. (12) and (14) reduce,
respectively, to

u
i,j

t+1 = B
(
9 − s

i,j
t , 1

2

) = δ
(
9 − s

i,j
t

)
, (A1)

u
i,j

t+1 = B
(
5 − s

i,j
t , 9

2

) = 1 − δ
(
s
i,j
t

)
, (A2)

where

δ(n) =
{

1 if n = 0,

0 if n 	= 0 (A3)

is the unit impulse function. Equations (A1) and (A2) are
the global complements of each other. That is, the evolutions
of u

i,j
t predicted by these equations are the “negative” of

each other under the transformation û
i,j
t = 1 − u

i,j
t , which ex-

changes the site states 0 and 1 and transforms the neighborhood
sum as ŝ

i,j
t = 9 − s

i,j
t . Indeed, inserting Eq. (A1) into û

i,j

t+1 =
1 − u

i,j

t+1 leads to û
i,j

t+1 ≡ 1 − δ(9 − s
i,j
t ) = 1 − δ(ŝi,j

t ), the
transformation of Eq. (A2).

2. Equivalence of Eqs. (15) and (16) when κ → 0

When u
i,j
t is a Boolean variable, the Game of Life cellular

automaton, Eq. (15),

u
i,j

t+1 =

⎧⎪⎨
⎪⎩

u
i,j
t if s

i,j
t − u

i,j
t = 2,

1 if s
i,j
t − u

i,j
t = 3,

0 otherwise

(A4)
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can be written in terms of the unit impulse function as

u
i,j

t+1 = δ
(
s
i,j
t − u

i,j
t − 3

) + u
i,j
t δ

(
s
i,j
t − u

i,j
t − 2

) = δ
(
s
i,j
t − 3

) + u
i,j
t δ

(
s
i,j
t − 4

)
, (A5)

which is equivalent to Eq. (16),

u
i,j

t+1 = B
(

s
i,j
t − 3,

1

2

)
+ u

i,j
t B

(
s
i,j
t − 4,

1

2

)
=

⎧⎪⎨
⎪⎩

1 if s
i,j
t = 3,

u
i,j
t if s

i,j
t = 4,

0 otherwise.

(A6)
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