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The problem of community detection in networks has received wide attention and proves to be computationally
challenging. In recent years, with the surge of signed networks with positive links and negative links, to find
community structure in such signed networks has become a research focus in the area of network science. Although
many methods have been proposed to address the problem, their performance seriously depends on the predefined
optimization objectives or heuristics which are usually difficult to accurately describe the intrinsic structure of
community. In this study, we present a statistical inference method for community detection in signed networks,
in which a probabilistic model is proposed to model signed networks and the expectation-maximization—based
parameter estimation method is deduced to find communities in signed networks. In addition, to efficiently analyze
signed networks without any a priori information, a model selection criterion is also proposed to automatically
determine the number of communities. In our experiments, the proposed method is tested in the synthetic and
real-word signed networks and compared with current methods. The experimental results show the proposed
method can more efficiently and accurately find the communities in signed networks than current methods.
Notably, the proposed method is a mathematically principled method.
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I. INTRODUCTION

A network is an abstract representation of several individ-
uals represented as a set of nodes and of their relationships
represented as a set of links between the nodes. Currently,
networks have been widely used as a way to represent the
patterns of connections between the components of complex
systems [1,2], for example, the internet, in which the nodes
denote the computers and the links denote data connections
[3], food webs in which the nodes denote the species in an
ecosystem and the links denote predator-prey interactions [4],
and so on [5-8].

In the past decade there has been a surge of interest
in both empirical studies of networks and development of
mathematical and computational tools for extracting insights
from networks [1,2,9]. One common approach to the study of
networks is to analyze the community structure of networks
[10-12]. The community is a dense subnetwork within a larger
network, which may correspond to a functional unit within
a complex system. For example, in metabolic networks, a
community can correspond to a circuit or pathway that carries
out a certain function [13,14]. In social networks, a community
can correspond to a common location or workplace [15].

Currently, the problem of community detection in net-
works is receiving wide attention [11,12] and proves to
be computationally challenging. Until now, a large number
of community detection methods have been proposed to
address to the problem, and their representatives include the
spectral methods [16], the Kernighan-Lin algorithm [17], the
clique percolation method [18], the Girvan-Newman algorithm
[18], the modularity-based optimization methods [19,20],
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the maximum flow community algorithm [21], stochastic
blockmodel-based methods [22], and others. However, most
of current methods are only applied to the unsigned networks
in which the links describe only whether the relationships
between two nodes exist or not, and it is difficult for them
to find the communities in the signed networks with positive
links and negative links.

In contrast to the extensively studied unsigned networks, the
signed networks contain more information by extending the
single relationship to the positive and negative relationships
(modeled as positive links and negative links, respectively),
wherein the positive links may represent like, trust, or support
membership and the negative links may represent dislike,
distrust, or oppose membership. Community detection in the
signed networks is to find ¢ antagonistic communities so that
most positive links lie in communities and most negative
links lie between communities. In this sense, a community
is consistent with a cluster defined in balance theory in
social science [23,24], where a strongly (or weakly) balanced
network can be divided into two (or c¢) clusters, so that all
links within clusters are positive and all links between clusters
are negative. Unfortunately, the real-world signed networks
are usually unbalanced due to the frustration (negative links
within clusters and positive links between clusters). For this
reason it is a great challenge to design an efficient community
detection method for the signed networks.

With the increase of signed networks such as social
networks [25] and personality and psychopathology networks
[26], many methods have been proposed to find the com-
munities in signed networks. Doreiian and Mrvar proposed
a frustration-based method according to the social balance
theory (referred to as DM), in which the communities are found
by minimizing the sum of the negative link quantity within
communities and positive link quantity between communities
[27]. Then DM was improved to partition weighted signed
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networks by Larusso et al. [23]. Very similarly, Bansal et al.
proposed a community detection algorithm by maximizing
the agreement (the number of positive intracluster links and
negative intercluster links) or minimizing the disagreement
(the number of negative intracluster links and positive inter-
cluster links), referred to as AG [28]. Traag et al. proposed a
modularity-optimization-based algorithm by improving mod-
ularity function for signed networks [29]. Based on a Markov
stochastic process, Yang et al. proposed an random-walk
based method, referred to as FEC [30]. Anchuri et al
proposed a generalized spectral method for signed network
partition [25]. Recently, multiobjective evolutionary methods
have been applied to signed network decomposition [31,32].
The aforementioned community detection methods for signed
networks can be regarded as the discriminative method, which
divide nodes into different communities based on either
predefined optimization objectives (such as modularity) or
heuristics (such as a random walk model). The performances
of these methods are seriously affected by the predefined
objectives or heuristics.

In recent years, statistical inference methods have been
receiving great interest since they can give excellent results
and are mathematically principled [33,34]. In this study, we
propose a statistical inference method for community detection
in signed networks (referred to as SISN), in which a proba-
bilistic model is presented to model signed networks and an
expectation-maximization (EM) -based parameter estimation
method is deduced to find communities in signed networks.
In addition, to efficiently analyze the signed networks without
any a priori knowledge, a model selection criterion is given to
automatically determine the number of communities in signed
networks. Compared with current methods, the proposed
method is principled and more expected due to its efficiency.

II. MODEL AND METHOD

The proposed method, namely, SISN, mainly includes three
keys, which are the network model, parameter estimation, and
model selection. For the network model, we present a new
probabilistic model which can efficiently model the signed
networks with community structure. For parameter estimation,
based on the EM algorithm, we derive the specific equations
of model parameters and posterior distribution of hidden
variables. The communities in signed networks can be inferred
by analyzing the learned posterior distribution. The aim of
model selection is determining the number of communities
in the signed networks without any a priori knowledge. In
this study, we derive a model selection criterion based on the
minimum description length principle for our model. The SISN
works well for both directed and undirected signed networks,
but is more simpler in the directed case, so we introduce the
SISN by the directed case.

A. Model

A signed network consists of n nodes which are
connected by directed links. All links fall into two categories:
positive links and negative links, which represent the
positive or negative relationships between two individuals,
respectively. Accordingly, a signed network can be represented
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mathematically by an adjacency matrix A where A;; =1 or
—1 if there is an positive or negative link from node i to node
Jj, otherwise A;; = 0.

Assume that the nodes belong to one of ¢ communities;
the community membership between nodes and communities
can be represented by the variable z;, which indicates the
community the node i belongs to. The variable z; is usually
referred as “hidden” or “missing” data in the statistical
inference since they are unknown and cannot be measured
directly. For the problem of community detection, the goal is to
infer them from the observed network. To infer the community
memberships, a probabilistic model must be proposed to model
the communities and their properties, then vary the parameters
of model to find the best fit to the observed network.

In this study, the proposed probabilistic model param-
eterizes the probability of each possible configuration of
communities assignments and links as follows.

Let 6% be the probability that a directed positive link from
a particular node in community r connects to node i, 6,; be the
probability that a directed negative link from a particular node
in community 7 connects to node i, and 92 be the probability
without any link from a particular node in community r
connects to node i. And 9;’; +0,; + Oroi = 1. In our model,
a community is a set of nodes that have similar connection
patterns to other nodes.

Let 7, be the fraction of nodes in the community r, or
equivalently the probability that a randomly chosen node falls
into the community r. The parameters 7, and 6,; satisfy the
following normalization conditions:

in, =1, > oon=1, (1)
}

r=1 se{+,—.,0

where s € {l, — 1,0}. The quantities in our model fall into
three categories: observed data A;;, hidden variable z;, and
model parameters 7,.,6;;.

The proposed model is also a good generative model of
a signed network with community structure, which could
generate a signed network according to the following steps:

(1) Assign the nodes to the communities according to
multinomial distribution with parameter 7.

(2) Generate a positive link, negative link, or no link from
node j to node i according to multinomial distribution with
parameter 6,;, wherein the node j belongs to the community r.

B. Parameters estimation

In general, the standard method fitting model to a given
network is likelihood maximization, in which the probability
that the network is produced by the model is maximized with
respect to the model parameters. The fitting problem requires
us to maximize the likelihood P(A,z|m,0) with respect to
and 0, which can be done by the following equations:

P(A.zlm.0) = P(Alz.m.0)P(z|m), @
N _ o 5(Aij,0)
P(Alz.m.0) = [ T @ Do, = ;)™
ij

3)
P(z|m.0) =[], 4
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Finally,

P(A,z|m,0) = l—[ |:7Tz,- l_[(gzir,j)a(A,-‘,,n

i J
— = ij»0
x (0 )40 ;)" )], 5)

where §(x,y) is Kronecker function. In fact, we usually do not
work with the likelihood itself but with its logarithm:

¢ =1nP(A,z|7,0)

= Z |:11’1 Ty, —+ Zln(eztj)a(A”’1)(917,1')8(&]’71)
i j

M%ﬁ”ﬂ. ©)

However, the maximization faces the difficulty because z
is unknown, and this means the value of the log likelihood
is also unknown. The difficulty can be solved by making a
good guess at the value of z given the network A and the
model parameters ,6. More specifically, we can calculate the
posterior distribution P(z|A,r,0) and, based on the posterior,
calculate an expected value ¢ for the log likelihood by
averaging over z thus:

7= Z Z P(z|A, 7 9)2 |:lnrrz

z1=1 =1

n Zln(B;j,j)‘S(A""’1)(9;,1-)“”’1)(92,]~)5(A”’0)}
J
= Z P(z; = r|A,7t,9){ Inm, + Z[S(Ai,-,l)
ir J
X lnefj +48(A;;, — Db + S(Aijvo)lner?j]}
= Zqi,{ Inw, + 2[5(141‘.,',1)111 0
ir J

+8(Aij, —1)In6; +8(A;;,0)In 92].]}, (7

where to simplify the notation we have defined ¢;, = P(z; =
r|A,m,0), which is the posterior probability that the node i
belongs to the community 7.

The expected log likelihood is the best estimation of ¢,
and the position of its maximum is the best estimation of
model parameters. However, finding the maximum still faces
a problem due to the calculation of g requiring the value of 7,
0 and the calculation of 7, 6 requiring g. The problem can be
solved by an iterative way that evaluates both simultaneously.
This approach is the EM, algorithm which is commonly
applied to the problem of missing data.

Given m,0, and the observed network A, the posterior
probabilities ¢ of the community memberships z of nodes
can be calculated according to the following equation:

P(A,z; =r|m,0)

ir=Pzi=rlAn0) = —————. 8
q (zi =r|A,m,0) PAIT.0) (®)
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The factors on the right are given by summing over the possible
values of z in Eq. (5):

P(A,zi = r|m.,0)

- Z e Z 8(z;,r)P(A,z|m,0)

z1=1 zn=1

= Z Z S(ZI,r)l_[ |:7'rzk

z1=1 =l

_ _ 3(Ag;,0)
x 1_[(9;: )5(Ak/ 1)(9 )S(Ak/ 1)(910k J) k i|
J

_ +8(Aij, 1) (g —\8(Aij,—1) (g0 \8(Aij,0)
== T e,y |

J

X[ﬂZnhH(%)“Akf’“w;j)‘”‘”’“(92»‘“’“’”)}

ki h=1 j
9
and

P(A|m,0)

= ZZ P(A,z|,0)

z1=1 zp=1

_ l_[ Znh 1_[ (9+ 8(Ayj, 1)(9 )S(Ak, _1)(90 )S(Ak,-,O)}

k h=1
(10)
where 6(x,y) is the Kronecker function. Substituting Egs. (9)
and (10) into Eq. (8), finally:
; CNS(As — 8(Ai;,0)
S (CHRRCAR R
j

_ 5(A;,07°
;ﬂh ]_[ [(Q;E)B(A”’1)(9hj)5(A"f’71)(9}?j) (/ )]
J

qir = (11)

here g;, satisfies the normalization condition ) _, g;» = 1.

Once the value of the g is calculated, the expected log
likelihood Eq. (7) can be evaluated. Accordingly, the values
of 7,0 can be found by maximizing Eq. (7) by introducing
Lagrange multipliers to enforce the normalization conditions
Eq. (1) and differentiating. Finally,

m:%Z%, (12)
9;; _ D ‘;‘%i;;rl)%‘r’ (13)
Qr;: Zi 5(;;:,(];1)(]ir, (14)
60, = 254, 0ir ‘;A’;’O)q” (15)

Equations (11)—(15) are the keys of our algorithm. Iterating
these equations to convergence, the outputs are g;,, 9”, 0,
and 6°.
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C. Model selection

At present, the specific number of communities, ¢, which is
alsoregarded as a priori knowledge, need to be given before the
above algorithm runs. However, for the real-world networks,
the prior knowledge is usually unknown for us. Since there is
the linear relationship between the number of communities,
¢, and the number of model parameters, c(3n + 1), how to
determine the value of c¢ is naturally the problem of model
selection. Here we derive a model selection criterion based on
a minimum description length principle for our model.

According to the minimum description length principle, the
code length describing the network data is composed of two
parts, where the first part describes the coding length of the
network generated by the model, and the second part gives
the length for coding all parameters of the model. The length
of the coding network is the negative log likelihood, —¢. To
code the parameters, a precision € has to be prespecified. The
parameters, which are smaller than €, are not coded and get
a description length of zero; otherwise coding the parameters

n,,@rl .0, and 90 needs ln(”’) ln( ) In( ”) and In( ”)

respectively. As a result, the total length H for coding the
model is as follows:

C 7'[r
H= —z+z::1n <?>8(m > €)
+ s Ori \so-
+ZZ[1n( )5(9 e)+ln(€>5(9ri>e)

r=1 i=1

0°
+ In (f)a(e,“,. > e)]. (16)

Choosing with precision € is tricky but very important.
Smaller € may cause longer code for parameters, and hence
it will always prefer models with small c. In fact, it is shown
that the networks are organized in a hierarchical way, and the
choice of € gives a lever for viewing networks in different
resolutions. The precision is usually empirical, and the results
of model selection are robust to the choice of € ranging from
1/0.4n to 1/3n according to our experiments. In this study, €
is set to 1/0.8n, and the specific model selection criterion is
the following equation:

c 7,
H=—¢ 1 5(t, > 1/0.8
+2::n<1/0.8n) (7 > 1/0.8n)

+ ZZln(l/og )5(9; > 1/0.8n)

r=1 i=1

+ZZln<

r=1 i=lI

+ ZZIH(I/OS )5(0,0, > 1/0.8n). (17)

r=1 i=lI

)3(9,, > 1/0.8n)

D. Time complexity analysis

For SISN, Eqgs. (11)—(15) are the most time-consuming
parts, as they dominate the entire learning process. According
to Eq. (11), it takes O(cn?) time to calculate q where c is
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TABLE I. Time complexity of five methods.

Algorithms ~ SISN  FEC[30] DM [27] AG[28] SSL[35]

Complexity O (n*) on®) on®) on®) O(n*)

the number of communities and »n is the number of nodes
in a network. According to Eq. (12), it takes O(cn) time to
calculate 7. According to Eqgs. (13), (14), and (15), it takes the
same time, O (cn?), to calculate 6T, 6, and 6°. When running
the SISN, Egs. (11)—(15) need to be iteratively calculated
until convergence. Assuming the iterative times are 7', when
the specific number of communities, ¢, is given, the time
complexity of the SISN is O(Tcn?). When model selection
is used in the algorithm, the time calculating Eq. (17), O(n?),
should also be considered; the time complexity of the SISN is
O(Tn*) in the worst case.

Here we make comparisons between SISN and four other
methods. The time complexity of five methods is listed in
Table I, where the time complexity is the time complexity
of each method in the worst case. As we can see, the time
complexity of the proposed method, O(n*), is the same as that
of SSL. The time complexity of FEC, O(n?), is the lowest
among the five methods. The time complexity of DM and AG,
O(n), is the highest among five methods.

For the SISN, if the community structure of networks
is clear, the SISN would quickly converge. Here a simple
example is given to intuitively explain the consumed time
of the SISN. We generate a group of networks with 500
nodes and four communities by the network model (18) with
the parameters SG(4,125,300,0.5,0,0); the experiments are
performed on a conventional personal computer with a Intel
Core i5-3230M CPU and 4 GB of RAM. When ¢ = 4 is fixed,
the average run time of the SISN in each network is 17 s. When
Cmin = 2 and ¢,qr = 10, the average time is 312 s.

III. EXPERIMENTS

In this section, we validate the proposed method on the
synthetic signed networks and real-world signed networks,
and make comparisons with the other four methods: DM [27],
FEC [30], AG [28], and SSL [35].

A. Synthetic networks

In our experiments, we use the model in Ref. [30] to
generate synthetic networks, which is defined as follows:

Modelgign = SM(c,n.k, pin. p—, P+), (18)

where ¢ denotes the number of communities in the network, n
is the number of nodes in each community, k is the degree
of node, p;, is the probability of the node connecting to
other nodes in the same community, accordingly, 1 — p;,
denotes the node connecting to other nodes in the different
communities, p_ is the probability of negative links within
communities, and p, is the probability of positive links
between communities. In general, the sign of the links within
communities are positive, and the sign of the links between
communities are negative. For the model, p_ and p. also are
called the noise parameters; when p_ = 0 and p; = 0, that is
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FIG. 1. Results of the five methods in synthetic signed networks
without noises.

say, the generation model is SG(c,n,k, pi,,0,0), the networks
are partitionable or balance. The parameter p;, controls the
link density within the communities. When p;, — 0, their
community structures become increasingly ambiguous so
that it is difficult to identify them. Given a fixed p;,, we
can control the noise level, that is, the number of negative
links between communities and the number of positive links
between communities.

To evaluate the performance of the methods, the normalized
mutual information (NMI) [36] is used as the evaluating
measure in our experiments. Given A and B, which are the
real communities and found communities, respectively, M is
a confusion matrix, and m;; is the number of nodes shared by
the community i in A and by the community j in B. Then the
NMI is defined as

N4y Np

—23" 3 myjlog (it

i=1 j=I

NMI(A,B) = N , (19)

A m; Ng m_;
m; log == + > " m jlog 3+
i=1 j=1

where m; (m_;)is the sum of elements in row i (column j), N4
and Np are the number of communities in A and B, respec-
tively, and n is the number of nodes in the network. NMI = 1
means that the found communities and real communities are
identical and NMI = 0 indicates that the found communities
and real communities are completely different. Accordingly,
the better the performance of the method is, the larger the NMI
is.

At first, we test the algorithms in the synthetic signed
networks without noises. The signed networks are generated
by the model with specific parameters SG(4,32,32, p;,,,0,0)
and vary p;, from O to 1 with the interval 0.1. Finally, 11
groups of networks are generated, and each group includes the
30 synthetic networks. Then we run the five methods in these
networks, and the mean of NMI values are calculated. The
results are shown in Fig. 1.
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FIG. 2. Results of the five methods in the first class of synthetic
signed networks with noises.

As we see in Fig. 1, the SISN and SSL can correctly find
all the communities when p;, >= 0.2 and are insensitive to
the change of parameter p;,. For FEC, when p;, > 0.5, it can
correctly find the communities. DM and AG have nearly the
same performance because their optimized objecting functions
are naturally same and they cannot entirely correctly find the
community. This indicates that our proposed method is more
efficient than FEC, DM, and AG in signed networks without
noises.

Then, we test the algorithms in the synthetic signed
networks with noises. The signed networks are generated in
terms of the following two ways:

(1) SG(4,32,32,0.8, p_,0) and varying p_ from O to 1 with
the interval 0.1.

(2) §G(4,32,32,0.8,0, p+) and varying p, from O to 1 with
the interval O.1.

For each class of signed networks, we randomly generate
11 groups of networks in which each group includes the 30
synthetic networks.

For the first class of signed networks, the results of five
methods are shown in Fig. 2. We can see that all the NMI
values of the SISN are 1 when p_ varies from 0 to 1. This
indicates our method has the best performance among the five
methods. For the SSL, when p_ > 0.5, the performance of the
algorithm begins to drop sharply. For the FEC, its performance
begins to drop sharply when p_ > 0.2. The DM and AG have
the worst performance among the five methods.

For the second class of signed networks, the results are
shown in Fig. 3. As we can see in Fig. 3, the SISN still shows
excellent performance, and all the NMI values are equal to
one when p, varies from 0 to 1. The FEC can find the total
communities except py = 1. The DM and AG have the same
bad performance for noises of networks.

For further validating the performance of the proposed
method, we test our method in the following model parameter
space:

(1) SG4,32,32, pin,0, p+) and varying p;,, p+ from O to 1
with the interval 0.1.
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FIG. 3. Results of the five methods in the second class of synthetic
signed networks with noises.

(2) §G(4,32,32, pin, p—,0) and varying p;,, p— fromOto 1
with the interval 0.1.

Figures 4 and 5 show the performance of the SISN. As we
canseeinFig. 4, when0.1 < p;, < 0.4and 0.6 < p; < 1,the
performance of the proposed method is poor. Similarly, when
0.1 < pin £0.4 and 0.6 < p_ < 1, the performance of the
proposed method is poor. This indicates that the performance
of the SISN is poor only when the links within communities
is very sparse and the noises are very large.

B. Real-world networks

Next, we validate the proposed method on two real-world
networks: the Slovene parliamentary party network [37] and
Gahuku-Gama subtribes network [38]. The Slovene parlia-
mentary party network describes the political relationships
among 10 parties in Slovenia’s parliament in 1994. The
positive links and negative links respectively denote that

NMI

FIG. 4. Results of the SISN varying p;, and p,.
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FIG. 5. Results of the SISN varying p;, and p_.

two parties are similar and dissimilar. The Gahuku-Gama
subtribes network describes the political relationships among
16 Gahuku-Gama subtribes in 1954, which were distributed
in highland New Guinea. The positive links and negative
links in it respectively denote alliance and opposition among
subtribes. The two real-world networks, which have ground
truth community structures, are usually regarded as the bench-
marks for testing the performance of community detection
methods [27,30].

For our method, we set cpi, = 2 and ¢y = 8. Figure 6
shows the results of the SISN in the Slovene parliamentary
party network. Figure 6(a) shows the network structure
including two communities found by the SISN. The circle
nodes belong to one community, and the square nodes belong
to the other community. As we can see, all the positive
links lie in the communities, and all the negative links lie
between the communities. The result is consistent with the
ground truth of the Slovene parliamentary party network.
Figure 6(b) shows the change of the value of cost function
with c¢. As we see, when ¢ = 2, the value of the cost function
is lowest and the optimal model includes two communities.
This indicates the proposed model selection criterion is
efficient.

(b)

FIG. 6. Communities in the Slovene parliamentary party network
found by the SISN.
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FIG. 7. Communities in the Gahuku-Gama subtribes network
found by the SISN.

Figure 7 shows the results of the SISN in the Gahuku-Gama
subtribes network. Figure 7(a) shows the network structure
including three communities found by the SISN. The nodes
with the same shape belong to the same community. As we see
in Fig. 7(a), all the negative links lie between communities, and
the most positive links lie in communities. The result found by
the SISN is consistent with the ground truth of Gahuku-Gama
subtribes network. Figure 7(b) shows the change of value of
the cost function with ¢. We can see that when ¢ = 3, the
value of the cost function is the lowest and the optimal model
includes three communities.

IV. CONCLUSIONS

Community detection is one of the important tasks in
the analysis of signed networks. Currently, many community
detection methods have been proposed to address signed
networks; however, these methods can be regarded as dis-
criminative ways because all of them depend on either
predefined optimization objectives or heuristics. This is the
reason that current methods have difficulty finding the intrinsic
community structure.
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Distinctly, in this study, we propose a probabilistic
inference-based method to find the communities in signed
networks, in which a probabilistic model is first presented
to model the signed networks with communities, and an EM-
based learning method is proposed to estimate the parameters
and to infer the posterior hidden variable. In addition, a
model selection criterion for the proposed model is deduced
to automatically determine the number of communities in the
networks. The proposed method is validated on the synthetic
and real-world signed networks and compared with other
methods. The experimental results show the proposed method
is more efficient for finding the communities in the signed
networks than other methods.

The high time complexity is the drawback of the proposed
method so that it is difficult for the proposed method to
efficiently analyze the large signed networks with tens of
thousands of nodes. This is also an important problem of
most current methods. In this study we focus more on how
to propose a mathematically principled method to find the
intrinsic community structure in the signed networks. We
will consider adopting parallel computing and stochastic
variational inference to estimate the model parameters for
efficiently analyzing the large signed networks in our future
work. In addition, the code of our algorithm is available at
https://github.com/xuehuazhao/network.
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