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In this paper we investigate how so-called quorum-sensing networks can be desynchronized. Such networks,
which arise in many important application fields, such as systems biology, are characterized by the fact that
direct communication between network nodes is superimposed to communication with a shared, environmental
variable. In particular, we provide a new sufficient condition ensuring that the trajectories of these quorum-sensing
networks diverge from their synchronous evolution. Then, we apply our result to study two applications.
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I. INTRODUCTION

The problem of studying the emerging behaviors in com-
plex networks has attracted the attention of many scientists
from different fields. A key motivation for this is that the
study of these emerging dynamics is important for a number
of applications, including social networks [1,2] and biology
[3–5].

Over the past few years, a large body of literature has
been devoted to unveiling the mechanisms that are responsible
for coordinated behaviors. Of particular interest among the
physics community has been the study of a particular form of
coordination: synchronization; see, e.g., Refs [6–10]. In such
papers (and related references) several conditions have been
devised ensuring that a network synchronizes.

The common underlying assumption in many works on
network synchronization is that nodes directly communicate
with each other via some form of diffusive coupling. In
many applications arising in networks from both nature and
technology, however, this form of communication is often
superimposed to a communication via a shared (environ-
mental) variable. Bacteria, for instance, produce, release,
and sense signaling molecules. Such molecules can diffuse
in the environment and are used by bacteria for population
coordination. This mechanism is known as quorum sensing
[11]. In a neuronal context, a mechanism, where the coupling
between individual network nodes (e.g., oscillators) is not
direct but is rather implemented through a common medium,
involves local field potentials [4,12].

From a system dynamics viewpoint, quorum-sensing net-
works have been recently studied in Ref. [13], where it has
been shown that the shared environmental variable plays
a key role for network synchronization by implementing
a sort of distributed filter sensed as input by all network
nodes. We now address the different question of how these
quorum-sensing networks can be desynchronized. This is a
relevant question in many application fields. For example,
the loss of a coordinated behavior is sometimes synonymous
of a poor network design as it might cause amplification of
disturbances and noise (see, e.g., Ref. [14]). In some other
contexts, instead, desynchronization is desirable. For instance,
it is believed that pathological synchronization among bursting

*grusso@ie.ibm.com

neurons in the basal ganglia-cortical loop might be linked to
the tremors seen in patients with Parkinson’s disease [15–17].

A. Related Work

In this section, we review some works on network desyn-
chronization and quorum-sensing networks relevant for this
paper. We also outline the main contributions of this paper in
the context of the related literature.

1. Quorum sensing

Literature devoted to the study of the emerging behaviors
in quorum-sensing networks (e.g., [18–21]) is sparse when
compared to that on diffusive topologies. Moreover, in some
cases, results are obtained by neglecting the dynamics of the
quorum and environmental variables, as well as the global
effects of nonlinearities. This sparsity of results appears to
be surprising as quorum-sensing mechanisms, besides their
pervasiveness in natural systems, could also be used to
somehow optimize the topology of technological networks.
For example, the use of a shared variable significantly reduces
the number of links required to achieve a given level of
connectivity [19].

2. Desynchronization

A key technique to study network desynchronization is
the master stability function (MSF) [22], which provides a
condition for desynchronization based on the calculation of
the maximum Floquet or Lyapunov exponents for the generic
variational equation obtained from network dynamics (see
also Refs. [23–27] and references therein). Recently, the MSF
approach has been also extended to the case of a global
variable coupling the oscillators and to the case of global
coupling between nodes, see Refs. [28,29] and references
therein. Finally, an approach to control desynchronization has
been presented in Ref. [15]. In such a paper, the authors recast
desynchronization as an optimization problem. Other de-
synchronization control methods include, e.g., double-pulse
stimulation [30], nonlinear time-delayed feedback [31], and
phase resetting [32,33]. Also, in Ref. [34] an energy-optimal
stimulus was used to control neural spike timing, while in
Ref. [35] a stimulation-based approach has been developed
to control synchrony in neural networks. Notable works on
desynchronization has also been carried in, e.g., Refs. [36–38].
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3. Contribution in the context of current literature

While being directly inspired by the current literature on
network desynchronization, this work offers the following
contributions:

(1) this paper considers network dynamics that are globally
coupled via a quorum-sensing (global or shared) variable.
With respect to this, the key is that it considers the global
variable having its own dynamics, modeled via a set of ODEs.
Such a dynamics, in turn, depends on the quorum variable
and on the state variables of the network nodes (also modeled
via ODEs);

(2) a sufficient condition is provided for desynchronization
in quorum-sensing networks;

(3) finally, this paper also illustrates via two applications
how the results can be effectively used to predict the onset of
desynchronization.

The paper is organized as follows. We start in Sec. II with
defining the models considered in this paper and formalizing
the problem statement. In Sec. III we give two new lemmas,
which are then used in Sec. IV to devise our main result
on the desynchronization of quorum-sensing networks. The
effectiveness of our approach is shown in Sec. V, where we
use our results to study desynchronization in networks from
two motivating applications. Concluding remarks are offered
in Sec. VI. Finally, for the reader’s convenience, the key
mathematical tools used to prove our results are given in the
Appendix.

II. MATHEMATICAL FORMULATION
AND PROBLEM STATEMENT

The goal of this section is to introduce the networks
considered in this paper and to give a definition for network
desynchronization. Such a definition is based on the concept
of trajectories divergence.

A. Trajectories divergence

We now formalize the notion of divergence between two
solutions (or trajectories) for the generic nonlinear dynamical
system Eq. (A1). In order to do so, let x(t) be a solution of
Eq. (A1) and assume that the solution exists for ∀t � t0. Then,
we denote by Bδ(x(t)) some open ball (or neighborhood) of
radius δ > 0 around x(t) at time t . We are now ready to give
the following definition.

Definition 1. Let x(t) and x∗(t) be two different solutions of
Eq. (A1), with x∗(t0) ∈ Bδ(x(t0)). We say that x∗(t) is diverging
with respect to x(t) if there exists some K �= 0 and some d �=
0 such that |x∗(t) − x(t)| � K̄2ed2(t−t0), ∀t such that x∗(t) ∈
Bδ(x(t)).

In the rest of the paper, we will simply say that the
dynamics Eq. (A1) is diverging with respect to x(t) if the
above definition is fulfilled for all the trajectories x∗(t) such
that x∗(t0) ∈ Bδ(x(t0)). We now offer the following remarks:

(1) the set Bδ(x(t)) defines, over time, an open bundle
around the trajectory x(t);

(2) a geometric interpretation of Definition 1 is given in
Fig. 1. In such a figure, two neighboring trajectories are
shown, i.e., x(t) and x∗(t), with x∗(t) diverging with respect
to x(t).

FIG. 1. Geometric interpretation of Definition 1. Two trajectories,
x(t) [with initial condition x(t0)] and x∗(t) [with initial condition
x∗(t0)] are shown. The open sets Bδ(x(t)) define, over time, an
open bundle (in blue in the color figure online) around x(t). The
two trajectories have nearby initial conditions, i.e., x∗(t0) belongs
to Bδ(x(t0)). The distance between trajectory x(t) and x∗(t) increases
and this causes x∗(t) to exit from the bundle defined by Bδ(x(t)). Note
that Definition 1 does not provide any insight on how the distance
|x∗(t) − x(t)| evolves once x∗(t) is outside of the bundle.

B. Network model and desynchronization

Throughout this paper, we will consider networks where a
set of agents, modeled via a set of smooth ordinary differential
equations, communicates with each other. In addition to this
direct node-to-node link, nodes also communicate indirectly,
through a shared (environmental) variable, which is also
modeled by a set of ODEs. The structure of these networks
is schematically shown in Fig. 2. For the applications of
interest in this paper and discussed in Sec. V, the shared
variable will either be a service with which network nodes
interact or a shared molecule concentration surrounding certain
biochemical entities.

Formally, the networks that we will consider will be
described with the following smooth differential equation:

ẋi = f (t,xi) + �(t)u

⎛
⎝∑

j∈Ni

(g(xj ) − g(xi))

⎞
⎠ + hx(t,xi,z),

ż = r(t,z) + hz(t,z,X), (1)

∀t � t0, t0 � 0, where: (i) xi ∈ Rn is the state variable for the
i-th network node and i = 1 . . . ,N ; (ii) X(t) = [xT

1 , . . . ,xT
N ]T

is the stack of the nodes state variables and X(t0) := X0;
(iii) f (·,·) : R+ × Rn → Rn models the nodes intrinsic dy-
namics; (iv) z ∈ Rm is the shared variable with which all net-
work nodes interact, z(t0) := z0 and r(·,·) : R+ × Rm → Rm

models the intrinsic dynamics of such a variable; (v) hx(·, · ,·) :

1

N3

2

Environmental/shared 
variable

FIG. 2. Networks considered in this paper. Network nodes inter-
act with each other and with a shared environmental variable. Both
network nodes and the shared variable are modeled via a set of ODEs.
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R+ × Rn × Rm → Rn and hz(·, · ,·) : R+ × Rm × RnN →
Rm model the interaction between network nodes and the
shared variable; (vi) u(·) : Rn → Rn is a smooth function
describing the direct coupling between nodes; (vii) �(t) is an
n × n time varying function modeling the coupling strength;
(viii) the function g(·) : Rn → Rn is a smooth output function
for network nodes; (ix) Ni is the set of neighbors to node i.

In the rest of this paper we assume that, for some
xs(t) ∈ Rn, a solution of the form S̃(t) = [S(t)T ,z(t)T ]T ,
S(t) := 1N ⊗ xs(t), exists for network Eq. (1). The solution
S̃(t) is characterized by the fact that all the network nodes
evolve onto the same trajectory, xs(t). For this reason, we
will say that S̃(t) is the synchronous solution of Eq. (1).
The goal of this paper is to provide a sufficient condition for
network desynchronization. This can be formalized in terms
of divergence of the network trajectories with respect to S(t),
i.e., with respect to a component of S̃(t).

Definition 2. We say that Eq. (1) desynchronizes if there
exists at least one dynamics transversal to the synchronization
manifold, which is diverging with respect to S(t).

Intuitively, Definition 2 implies that all the solutions of
Eq. (1) starting close to the synchronization manifold locally
diverge from the synchronous solution. This will be useful for
proving Theorem 1, when we will prove desynchronization
by showing that at least one eigen-direction transversal to the
synchronization manifold is diverging.

In the rest of the paper, we will simply say that Eq. (1) is
desynchronizing if it fulfills Definition 2. Please note that the
property given in Definition 2 is a local differential property
as it is defined for all the trajectories, which are sufficiently
close to the solution of interest. Note also that the definition
involves only the trajectories of the network nodes (xi’s),
without specifying the behavior of the environmental variable,
z(t).

III. DIVERGING LEMMAS

We now introduce two lemmas that will be used in Sec. IV
to prove the main result of this paper. The lemmas make use of
the concept of matrix measure, μ, which is formally introduced
in the Appendix.

With the lemma below we provide a sufficient condition for
Eq. (A1) to be diverging with respect to some desired solution,
say xd (t).

Lemma 1. Assume that for system Eq. (A1), there exists
some matrix measure and some d �= 0 such that

μ

(
−∂f

∂x
(t,xd )

)
� −d2,

∀t ∈ R+. Then, Eq. (A1) is diverging with respect to xd (t).
Proof. See the Appendix. �
With the next lemma, we will instead consider a dynamical

system composed by two interconnected subsystems (say
subsystem a and subsystem b) described by the following
smooth differential equation:

ṗ = a(t,p,q),

q̇ = b(t,q,p), (2)

where a(·, · ,·) : R+ × Rn × Rm → Rn and b(·, · ,·) : R+ ×
Rm × Rn → Rm. Let [pd (t)T ,qd (t)T ]T be the desired solution
for Eq. (2). The following result provides a sufficient condition
for the divergence of subsystem a with respect to pd (t).

Lemma 2. Consider system Eq. (2) and let q∗(t) be the
solution of q̇∗(t) = b(t,q∗,pd ). Then, subsystem a is diverging
with respect to pd if the reduced-order auxiliary system,

ẏp = a(t,yp,q∗(t)),

is diverging with respect to pd (t).
Proof. See the Appendix. �
We remark that, in Lemma 1, ∂f

∂x
is the n × n Jacobian

matrix of the vector field of system Eq. (A1), i.e., f (t,x).
Therefore, such a lemma is essentially a condition on the
matrix measure of the Jacobian of system Eq. (A1).

IV. DESYNCHRONIZATION IN QUORUM-SENSING
NETWORKS

We are now ready to state the main result of the paper, which
provides a sufficient condition for the desynchronization of
Eq. (1).

Theorem 1. Assume that for Eq. (1) there exists a matrix
measure, μ, some d �= 0 and some i, 2 � i � N , such that

λiμ

(
�(t)

∂u

∂x
(0)

∂g

∂x
(xs)

)

+μ

(
−∂f

∂x
(t,xs) − ∂hx

∂x
(t,xs,z)

)
� −d2, (3)

∀z ∈ Rm. Then, Eq. (1) desynchronizes.
Proof. We will prove desynchronization by proving that

there exists at least one diverging eigen-direction transversal
to the synchronization manifold. Following Lemma 2, desyn-
chronization can be proved by proving desynchronization of
the following reduced order auxiliary system:

ẏi = f (t,yi) + �(t)u

⎛
⎝∑

j∈Ni

(g(yj ) − g(yi))

⎞
⎠ + hx(t,yi,z(t)).

(4)
Note that the synchronous solution of Eq. (1) is also a solution
of Eq. (4). We will prove desynchronization by proving
that for network Eq. (4) there exists at least one diverging
eigen-direction transversal to the synchronization manifold.
Linearizing the dynamics Eq. (4) around the synchronous
trajectory yields

δ̇yi = ∂f

∂y
(t,xs)∂δyi + �(t)

∂u

∂y
(0)

×
∑
j∈Ni

[
∂g

∂y
(xs)δyj − ∂g

∂y
(xs)δyi

]
+ ∂hx

∂y
[t,xs,z(t)]δyi,

where δyi = yi − xs(t). Now, let δY := [δyT
1 , . . . ,δyT

N ]T , we
can then rewrite the whole network dynamics as

δẎ =
{
IN ⊗

[
∂f

∂y
(t,xs) + ∂hx

∂y
(t,xs,z)

]}
δY

−
[
L ⊗ �(t)

∂u

∂y
(0)

∂g

∂y
(xs)

]
δY. (5)
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Since the network topology is undirected, we have that L

is symmetric. Therefore, by means of Lemma 4 (see the
Appendix) we have that there exists an N × N orthogonal
matrix Q (QT Q = IN ) such that � = QT LQ, where � is
the N × N diagonal matrix, having on its main diagonal
the eigenvalues of L. Define the coordinate transformation
δY ∗ = (Q ⊗ In)−1δY . In the new coordinates, Eq. (5) becomes

δẎ ∗ = (Q ⊗ In)−1

[
IN ⊗

(
∂f

∂y
(t,xs) + ∂hx

∂y
(t,xs,z(t))

)

−
(

L ⊗ �(t)
∂u

∂y
(0)

∂g

∂y
(xs)

)]
(Q ⊗ In)δY ∗,

which can be written as

δẎ ∗ =
[
IN ⊗

(
∂f

∂y
(t,xs) + ∂hx

∂y
(t,xs,z(t))

)

− � ⊗ �(t)
∂u

∂y
(0)

∂g

∂y
(xs)

]
δY ∗, (6)

or, equivalently,

δẏ∗
i =

[(
∂f

∂y
(t,xs) + ∂hx

∂y
(t,xs,z(t))

)

− λi�(t)
∂u

∂y
(0)

∂g

∂y
(xs)

]
δy∗

i , (7)

i = 1, . . . ,N , y∗
i ∈ Rn and where Lemma 3 has been used

(see the Appendix). Indeed, by means of such a result we have
(Q⊗In)−1(IN ⊗( ∂f

∂y
(t,xs) + ∂hx

∂y
(t,xs,z(t))))(Q⊗In) = (IN ⊗

( ∂f

∂y
(t,xs)+ ∂hx

∂y
(t,xs,z(t)))) and (Q ⊗ In)−1[L ⊗ �(t) ∂u

∂y
(0) ∂g

∂y

(xs)](Q ⊗ In) = � ⊗ �(t) ∂u
∂y

(0) ∂g

∂y
(xs).

Now, the network desynchronizes if at least one of the
dynamics transversal to the synchronization manifold is
diverging. In turn, the dynamics transversal to such a subspace
are those in Eq. (7) with i = 2, . . . ,N . That is, following
Lemma 1, the network is diverging if for some i, 2 � i � N ,
it happens that

μ

(
−∂f

∂y
(t,xs) − ∂hx

∂y
(t,xs,z(t)) +λi�(t)

∂u

∂y
(0)

∂g

∂y
(xs)

)

� −d2.

Since λi’s are positive for all i = 2, . . . ,N , we have [39]

μ

(
−∂f

∂y
(t,xs) − ∂hx

∂y
(t,xs,z(t)) + λi�(t)

∂u

∂y
(0)

∂g

∂y
(xs)

)

� μ

(
−∂f

∂y
(t,xs) − ∂hx

∂y
(t,xs,z(t))

)

+λiμ

(
�(t)

∂u

∂y
(0)

∂g

∂y
(xs)

)
.

The proof is then concluded by noticing that, by hypotheses,
at least one of the dynamics transversal to the synchronization
manifold is diverging. This proves the result. �

Remote Service

5

6

4

8

9

7

N2

3

1

Sensed 
Variable

FIG. 3. A motivating application, where a sensor network es-
timates a quantity of interest and sends the estimate to a remote
service.

V. APPLICATIONS

A. When distributed sensing cannot be trusted

The so-called internet of things (IoT) revolution is allowing
us to connect objects in ways that were not even imaginable
a few years ago. This is leading to interesting applications
for smart cities as it gives the possibility of creating per-
vasive networks of actuators and sensors deployed in urban
environments. The goal of such networks is typically that of
monitoring a given quantity of interest (e.g., air quality, gas
leakages, weather, etc.), gather some aggregate information
from field data, and send this information to base stations.
Here, the aggregate data are further analyzed in order to
provide new smarter user services. The setup outlined here
is schematically shown in Fig. 3, where a network consisting
of N devices is deployed to the field in order to sense some
distributed quantity. The aggregate information is then sent to
a base station, which performs additional filtering, forwards
these data to analytics algorithms, and provides feedback to
the devices. Our motivating question is then: When can we
trust the information provided by the network?

The network in Fig. 3 can be modeled as a quorum-sensing
network, where: (i) the IoT devices deployed to the field are the
network nodes; (ii) the base station has the role of the shared
environment. In this section, we will consider the following
network:

ẋi = q̄(t) − xi + γ1(t)
∑
j∈Ni

[
k
(
x3

j − xj

) − k
(
x3

i − xi

)]

+ γ2(t)(z − xi),

ż = −z + 1

N

N∑
i=1

(xi − z), (8)

where i = 1, . . . ,N , xi ∈ R, q̄(t) is the quantity that is being
sensed by the network of devices. In Eq. (8), γ1(t) and γ2(t) are,
respectively, the time varying node-to-node and node-to-base-
station coupling strengths, while k is the gain of the coupling
protocol between nodes.

042312-4



HOW TO DESYNCHRONIZE QUORUM-SENSING NETWORKS PHYSICAL REVIEW E 95, 042312 (2017)

Please note that Eq. (8) can be recast onto Eq. (1)
with f (t,x) := q̄(t) − x, �(t) := γ1(t) and u(x) := x,
g(x) := k(x3 − x), hx(t,x,z) := γ2(t)(z − x), r(t,z) := −z,
hz(t,z,X) := 1/N

∑N
i=1(xi − z). The task for which the net-

work is designed is to ensure that all nodes will sense
xd := q̄(t), i.e., that nodes converge toward the solution
Xd = 1N ⊗ q̄(t). We will now use Theorem 1 to obtain a
straightforward sufficient condition ensuring that the network
will be diverging with respect to Xd . Following Theorem 1,
desynchronization can be characterized in terms of the net-
work algebraic connectivity, λ2. Specifically, the condition of
Theorem 1 with i = 2 implies that the network desynchronizes
if there exists some matrix measure, μ, such that

λ2μ(kγ1(t)(3q̄(t)2 − 1)) � −μ(1 + γ2(t)).

Since network nodes are one-dimensional, this translates to

λ2kγ1(t)[3q̄(t)2 − 1] � −1 − γ2(t). (9)

That is, if the above condition occurs, then the network will
be diverging with respect to Xd , thus implying that the network
will no longer properly sense q̄(t). Now, Eq. (9) provides
an explicit condition on the node-to-node communication
network topology (via λ2) and coupling design (via γ1(t),
γ2(t), and k). Specifically, if network topology and coupling
are not well blended together, then the network will not
properly sense q̄d , i.e., it will not perform the task for which
it has been designed. Also, please note that the higher the
γ2, then the more difficult it will be to fulfill the condition in
Eq. (9), thus helping to prevent network desynchronization.
Assume that k = γ1 = γ2 = 1. As a test-bed network, we
consider a small-world network of N = 50 nodes generated by
following the method in Ref. [40]. We calculated numerically

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

3

x1

y 1

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

3

x2

y 2

FIG. 4. Time evolution for the small-world network considered
in Sec. V A. Time is on the x axis and xi’s are on the y axis. In the top
panel the network nodes’ behavior is shown for q̄ = 2.5: such a panel
shows that all the nodes properly sense the quantity of interest. In the
right panel, the nodes’ time behavior is instead shown for q̄ = 0.25.
In such a panel, nodes are not able to sense the quantity of interest as
no agreement is reached. Initial conditions for the network nodes are
taken from a standard distribution.

the eigenvalues of the Laplacian and found that, in this case,
the algebraic connectivity for the network of our interest is
10. Therefore, our condition for desynchronization becomes
10[3q̄(t)2 − 1] � −2. This means that if the quantity of
interest q̄(t) becomes too small, then the network will not be
able to properly sense it. This prediction is confirmed in Fig. 4.

B. Desynchronization of biochemical networks

Over the past few years, synchronization of biochemical
systems has attracted much research efforts both from the
theoretical [41] and experimental [42] viewpoints. Specifi-
cally, the importance of synchronization for such networks has
motivated a large body of results aimed at providing sufficient
conditions for network synchronization (see, e.g., Refs. [6,43]
and references therein). We now address the following mo-
tivating question: Given a synchronized biochemical network
of interest, which are the mechanisms that lead to the loss of
synchronization? This is a relevant question for a large number
of biochemical applications, with a remarkable example being
the fact that desynchronization is believed to be an indicator of
metabolic diseases (see, e.g., Refs. [17,44]). We now consider
the following network:

ẋi = −δxi + k1yi − k2(ET − yi)xi + γ1(t)u

⎡
⎣∑

j∈Ni

(xi −xj )

⎤
⎦

+ γ2(t)
K1z

K2 + z
,

ẏi = −k1yi + k2(ET − yi)xi,

ż = −
N∑

i=1

K1z

K2 + z
+ i(t), (10)

where in this case the shared environmental variable models
a biochemical reaction between a set of N > 1 enzymes
sharing the same substrate (see, e.g., Ref. [45]). The nodes’
dynamics in Eqs. (10) are particularly relevant in systems
and synthetic biology as it models a general externally
driven transcriptional module. Such transcriptional modules
are ubiquitous in biology, natural as well as synthetic, and
their behavior was recently studied in Ref. [46] in the context of
“retroactivity” (impedance or load) effects. The state variables
xi’s are the concentrations of generic transcription factors,
say (Xi’s). The state variables yi’s are the concentrations of
complex proteins-promoters, say Yi’s. The production of each
yi is stimulated by the corresponding xi . The time evolution
of the substrate is modeled by the dynamics of z(t) and its
production is stimulated by a time dependent input function
i(t), which is a positive function. Please refer to Ref. [46] for
a detailed discussion on Eq. (10). In the same paper it is also
shown that the quantities Et − yi are always positive and that
the system evolves on the positive orthant. In Ref. [47], the
transcription module has been analyzed to show that it can
be entrained by any periodic input. Furthermore, in the same
paper, the authors also proved that network Eq. (10) can be
always synchronized if the coupling between nodes is linear
and diffusive. Unfortunately, when modeling biochemical
networks, it is often the case where the coupling is not linear
and diffusive but it is rather a sigmoid function (modeling
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transcriptional interactions; see, e.g., Ref. [45]). Motivated
by this, we now investigate the effects on such a coupling
function on the synchronization properties of the network. We
will consider network nodes being coupled via a decreasing
sigmoid function; i.e., u(x) := 1/(1 + ex). We will then use
Theorem 1 to provide an effective sufficient condition to
determine when the network will desynchronize.

We will now use again Theorem 1 to provide a sufficient
condition for desynchronization in terms of λ2. The first step
to apply Theorem 1 is to choose a matrix measure to verify
Eq. (3). In analogy to Ref. [47], in what follows we will the
matrix measure induced by the vector-1 norm, μ1. In order to
apply our result, first note that

μ1

(
�(t)

∂u

∂x
(0)

)
= −γ1(t)

1

4
,

while

μ1

(
−∂f

∂x
− ∂hx

∂x

)
= μ1

([
δ+k2(ET −yi) −(k1 + k2xi)
−k2(ET −yi) k1 + k2xi

])

= max[δ + 2k2(ET − yi),2(k1 + k2x)].

Due to the physical constraints of the system, we have
δ + 2k2(ET − yi) � δ2k2ET and 2(k1 + k2x) � 2(k1 + k2X̄),
where X̄ is the maximum of x(t) (note that system trajectories
are bounded if i(t) is a bounded signal; see Ref. [47]).
Therefore, μ1(− ∂f

∂x
) � max {δ + 2k2ET ,2(k1 + k2X̄)}.

Thus, following Theorem 1, the network will desynchronize
if

−λ2
γ1(t)

4
< − max[δ + 2k2ET ,2(k1 + k2X̄)],

i.e., if γ1 and/or λ2 become sufficiently large. Note that, in
this case, the condition for desynchronization does depend on
γ2(t).
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FIG. 5. Order parameter as a function of γ1. Values of γ1 on the
x axis and the order parameter R on the y axis. The increase of this
parameter causes a loss of synchronization for both Network 1 (top
panel) and Network 2 (bottom panel). Note that Network 1 starts
to desynchronize after Network 2, thus confirming our theoretical
predictions.
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FIG. 6. Time is on the x axis and xi’s on the y axis. The time
evolution for Network 1 (top panel) and Network 2 (bottom panel)
is shown when γ1 = 10. The two panels show that two groups (or
clusters) of synchronized nodes emerge.

In order to validate our theoretical prediction, we consider
two small-world networks of 50 nodes, say Network 1 and
Network 2. The two networks are characterized by two
different algebraic connectivity values (λ2 = 0.1 for Network
1 and λ2 = 13 for Network 2). The network parameters
that we considered were i(t) = 1 + sin(t), k1 = ET = δ =
K1 = K2 = 1, k2 = 0.1, γ2 = 1. In order to characterize
quantitatively the level of synchronization of the networks we
used the order parameter R := (〈M2〉−〈M〉2)/(〈v2

i 〉−〈vi〉2),
defined following Ref. [18], where: (i) M(t) := 1/N

∑N
i=1 xi ;

(ii) 〈·〉 denotes the time average; (ii) ·̄ denotes the average over
the network nodes. In Fig. 5 the order parameter is plotted
as a function of γ1 for both Network 1 and Network 2. As
shown in such a figure, the increase in γ1 causes a network
transition from a synchronized state toward an unsynchronized
state. Moreover, as expected from our theoretical predictions,
Network 1 starts to desynchronize after Network 2. Essentially,
this is due to the fact that Network 2 has a larger algebraic
connectivity than Network 1. Finally, in Fig. 6 the networks
behavior is shown when γ1 = 10. As shown in such a figure,
the increase in γ1 causes a loss of network synchronization. In
particular, two separate groups (or clusters) of nodes emerge,
with each group being synchronized onto a different trajectory.
The emergence of why this phenomenon happens will be the
subject of future research.

VI. CONCLUSIONS

In this paper we presented a sufficient condition for
the desynchronization of quorum-sensing networks. After
presenting our main result, we showed the effectiveness of
our approach by considering two networks arising in the
contexts of distributed sensing and biochemical networks. In
presenting new conditions for network desynchronization, our
work also opens new questions. Of particular interest is the
understanding of why, for some specific dynamics like those
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arising in biology, desynchronization leads to clustering effects
where two or more clusters of synchronous nodes emerge.
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APPENDIX

1. Mathematical tools

In this Appendix we introduce the notation, definitions, and
matrix properties that will be used in the rest of the paper. This
appendix also provides an introduction to concepts related to
graphs and Laplacian matrices, which will be used in the paper.

2. Matrix notation and properties

In this paper, 1N will denote the N -dimensional column
vector having all elements equal to 1, and IN will denote the
N × N identity matrix. Finally, ⊗ will be used to denote the
Kronecker (or direct) product. The following two technical
results will be useful in the rest of the paper (see, e.g.,
Ref. [48]).

Lemma 3. The following properties hold for the Kronecker
product: (i) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD); (ii) if A and B

are invertible, then (A ⊗ B)−1 = A−1 ⊗ B−1.
Lemma 4. For any n × n real symmetric matrix, A, there

exist an orthogonal n × n matrix, Q, such that QT AQ = U ,
where U is an n × n diagonal matrix.

3. Matrix measures

We recall (see, for instance, Ref. [49]) that, given a
vector norm on Euclidean space (| · |), with its induced
matrix norm ‖A‖, the associated matrix measure (or loga-
rithmic norm, see Refs. [50,51]) μ is defined as μ(A) :=
limh→0+ 1

h
(‖I + hA‖ − 1). The above limit is known to exist,

and the convergence is monotonic; see Refs. [50,52]. Some
matrix measures are reported in Table I.

Recently, matrix measures have been used to devise upper
bounds for the distances between trajectories of a dynamical
system of interest. Specifically, let

ẋ = f (t,x), x(t0) = x0, t0 � 0 (A1)

be a smooth n-dimensional dynamical system evolving onto
Rn, with J (t,x) being the system Jacobian. Then, as shown in
Refs. [47,53], trajectories of Eq. (A1) globally exponentially
converge toward each other if there exists a matrix measure,

TABLE I. Common matrix measures for a real n × n matrix,
A = [aij ]. The i-th eigenvalue of A is denoted with λi(A).

Vector norm, | · | Induced matrix measure, μ(A)

|x|1 = ∑n

j=1 |xj | μ1(A) = maxj (ajj + ∑
i �=j |aij |)

|x|2 = (
∑n

j=1 |xj |2)
1
2 μ2(A) = maxi [λi( A+AT

2 )]

|x|∞ = max1�j�n |xj | μ∞(A) = maxi (aii + ∑
j �=i |aij |)

μ, such that μ(J (t,x)) is uniformly negative. This approach
is known as contraction analysis and it has been recently
extended to the case of Caratheodory systems [54]. Contraction
principles in metric functional spaces can be traced back
to Banach and Caccioppoli (see, e.g., Ref. [55] for further
details). In the field of continuous-time dynamical systems
theory, ideas closely related to contraction can be found
in Refs. [56,57]. See also Refs. [58–61] for an historical
overview. Recent results for the synchronization of complex
networks via contraction can be instead found in Refs. [62,63],
while Ref. [64] identifies some open problems of contraction
methods for nonlinear systems.

4. Graphs

We now revise some key notions from graph theory that will
be used in this paper [65]. Let G := {V,E} be an undirected
graph, where V is the set of N > 1 vertices (or nodes) and
E ⊆ V × V is the set of edges. We denote by Ni the set of
neighbors to the ith network node and we let di be the number
of its neighbours (i.e., di , also known as degree of node i, is
the cardinality of Ni). We will denote by A the N × N graph
adjacency matrix: the element aij of A is equal to 1 if nodes i

and j are neighbors, 0 otherwise. The graph Laplacian matrix
L can then be defined as L = � − A, where � is the N × N

matrix having �ii = di . If the graph is undirected then, by
construction, L is symmetric. Moreover, L is a 0 column and
row sum matrix and hence it has at least one eigenvalue equal
to 0. It can be shown (see, e.g., Ref. [65]), if G is connected,
then it only has one 0 eigenvalue and this corresponds to the
eigenvector 1N . In the rest of the paper we will denote by
λi , i = 1, . . . ,N , the eigenvalues of L. The second-smallest
eigenvalue, λ2, is termed as algebraic connectivity and it is
nonzero if and only if G is connected.

Proof of Lemma 1

Pick any solution x(t) ∈ B[xd (t)] and consider the vir-
tual displacement, say δx, between x(t) and xd (t). Then,
the following exact differential relation holds (see, e.g.,
Refs. [47,53,66]):

δẋ =
[
∂f

∂x
(t,xd )

]
δx.

By Coppel’s inequality (see, e.g., Ref. [39]), we have that

|δx| � |δx0|e
∫ t

t0
[−μ(− ∂f

∂x
(τ,xd ))dτ ]

.

Therefore, by hypotheses we have

|δx| � |δx0|e
∫ t

t0
d2dτ = |δx0|ed2(t−t0) := K̄2ed2(t−t0),

thus proving the result.

Proof of Lemma 2

In order to prove the lemma, consider the following
auxiliary system, which was first introduced in Ref. [67]:

ẏp = a(t,yp,q∗),

q̇∗ = b(t,q∗,pd ),

and note that, as shown in Refs. [13,47], the desired solution
[pd (t)T ,qd (t)T ]T is a trajectory of this auxiliary system (to see
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this, it suffices to substitute yp with pd in the dynamics above).
Note also that, for the auxiliary system, q∗(t) is an exogenous
input to the dynamics of yp(t). Therefore, following Ref. [13]
the dynamics of yp can be studied by just considering the
reduced order auxiliary system,

ẏp = a[t,yp,q∗(t)].

Note that, by hypotheses: (i) pd (t) is a particular solution of the
reduced order auxiliary system; (ii) the reduced order auxiliary

system is diverging with respect to pd (t). Therefore, we have

|yp(t) − pd (t)| � K̄2ed2(t−t0). (A2)

Finally, since the solutions of Eq. (2) are particular solution of
the reduced order auxiliary system, Eq. (A2) implies that

|p(t) − pd (t)| � K̄2ed2(t−t0),

thus proving the result.
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