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Noise-induced polarization switching in complex networks
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The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions,
and has important implications for their functioning and resilience. Here we use a simple three-state dynamical
process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce
polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected
networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an
unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased
noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes,
where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its
polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we
show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes,
which cannot be explained by a simple mean-field description.
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I. INTRODUCTION

Bistable behavior in systems which can operate in two
competing modes is common in a wide range of domains,
from cell biology [1,2] to social dilemmas [3]. Concurrently,
stochastic fluctuations are inherent to most of these systems
[4,5]. In general, many of such systems can be described as
a collection of constituents which interact with one another.
Yet any constituent will be strongly limited in the number
of its interaction partners. Take social networks, where it is
well known that cognitive abilities limit the number of stable
connections available to any individual [6]. In this work, we
address a model capturing bistability, the presence of noise,
and finite connectivity.

Bistability can loosely be seen as the existence of a
“probability barrier” between two preferred states. In bistable
systems of finite size, this barrier can be overcome, and an
obvious effect of noise is to cause fluctuating transitions
between the preferred states. However, noise may also impact
on bistability intrinsically by unfolding a bistable phase into
a monostable one, hence effectively removing the barrier
altogether. This effect has been proved in very different
systems, like autocatalytic chemical reactions [7] and decision
making in financial markets [8]. This effect can be observed
even when dynamical correlations between constituents are
not significant, like in the Ising model on interconnected com-
plex networks [9]. Heterogeneity and nontrivial topological
features in the patterns of interaction can further impact the
dynamics [10–13].

Even in systems without bistability, noise can induce
nontrivial phenomena [14,15]. A paradigmatic example is the
Brownian ratchet, where directed motion can be induced by
combining Brownian motion with an asymmetric potential
[16]. A discretized version of this, the “Parrondo paradox,”
describes the alternation of two processes—each with losing
expectations—which combine to produce a winning result
[17–20]. At the base of the Parrondo paradox is an intrinsic

asymmetry of transition probabilities; increases of a variable
obey different rules than decreases. Such asymmetry leads to
some states becoming more likely than others. Incorporating
(unbiased) noise then acts to nudge the variable to overcome
low probability transitions.

Here we consider the joint effect of dynamical correlations
and noise on bistability. We study a system that is bistable
in the mean field, i.e., when dynamical correlations are
absent. In the mean-field system, bistability is lost for a
sufficient level of noise at which the system acquires a
neutral mean state. When dynamical correlations become
significant, and abrupt irreversible switching from bistability
to polarized monostability is found, the neutral mean state
is not accessible. We consider constituents to be organized
on a network structure, enabling interaction patterns ranging
from the mean field (infinite fully connected network) to
strong correlation (sparsely connected network). We derive
an analytic expression for the fixed points of the mean-field
dynamics and a tree approximation for regular random graphs,
which is solved numerically. Scale-free, Watts-Strogatz, and
multiplex networks are also investigated using numerical
simulations.

The structure of this article is as follows: In Sec. II we
first define the model. Within this model, we then discuss
fully connected systems (Sec. III), for both finite and infinite
system size. For sparse connectivity, we analyze the effect
of dynamical correlations between nodes and explore several
ways in which these can lead to switching of polarization
(Secs. IV and V). We further study the case where two
networks are coupled by a copying process, allowing one
system to influence the state of the other (Sec. VI) and conclude
(Sec. VII).

II. MODEL

To model bistability, we use a simple three-state dynamical
process [2,21,22] in which nodes go from one pole to another
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FIG. 1. Three-state model for bistability. (a) Unconditional ran-
dom process. With probability ε, a node is selected and changes its
state with probability 1/2 as shown. (b) Conditional random process.
At probability 1 − ε, transitions are conditional on the state of a
selected neighbor, e.g., transition u → v for a given node is possible
with probability p3 if the selected neighbor is in w, and no transition
takes place otherwise.

through an intermediate state, and we combine it with noise
affecting all constituents. We consider undirected networks
of N nodes, where each node can be in one of three states,
labeled u, v, and w (Fig. 1). In the following, for simplicity of
presentation, we use these three symbols both for the state
label and for the state density. These states could encode
unmethylated, hemi-methylated, and fully methylated CpG
sites in DNA methylation, or left-wing, undecided, and right-
wing orientation in politics. Transitions between the extreme
states u and w always visit the intermediate state v and can
occur in two ways: type-1 transitions are unconditionally
random and depend only on the state of the affected node
[Fig. 1(a)]. This is analog to Brownian motion, where nodes
perform random walks in the space of configurations. Type-2
transitions are conditionally random, as they depend on the
state of neighbors [Fig. 1(b)]. The dynamics proceeds as
follows: a node i, termed the “target node,” is chosen at
random. With probability ε, respectively, 1 − ε, a type-1 or
type-2 transition is chosen. If type-1 is chosen, any of the
possible transitions for i is selected at equal probability 1/2.
That is, if i is in state u, i will transition to the state v at
probability 1/2, and otherwise remain in u. If i is in state v,
it has equal probability 1/2 to transition to either u or w. If
type-2 is chosen, one of i’s neighbors j , termed the “partner,”
is first selected at random. Depending on the state of j , a
transition will occur at i with the corresponding probability
pl , l ∈ {1, . . . ,4} [Fig. 1(b)]. That is, if i is in state u and j in
w, the probability for i to transition to v is p3, and for other
states of j the transition probability is zero. Note that only four
of the nine combinations of states of i and j lead to conditional
transitions; others are not affected.

III. INFINITE FULLY CONNECTED SYSTEMS

Dynamical correlations between the states of any two nodes
in fully-connected networks with N → ∞ become negligible.
See Appendix A for the analytical treatment of the cases N = 2
and N = 3. In the infinite system limit, the probability for one
node to be influenced repeatedly by any given neighbor in two
consecutive updates decays as 1/N . For sufficiently large N

it becomes appropriate to neglect all correlations and assume
that any node only “feels,” i.e., responds to, the mean densities

ū, v̄, and w̄. With ū + v̄ + w̄ = 1, one is left with two coupled
nonlinear differential equations describing dū/dt and dw̄/dt .

We now show that these equations allow for two stable fixed
points. In the following, we let p1 = p4 = 1 and p2 = p3 ≡ p,
leaving only p � 1 free. We use q̄ for the system average of
any quantity q as well as the symbol M ≡ w − u to denote
net polarization or “magnetization.” With these values, the two
stable fixed points are such that M̄ �= 0 when ε < εc(p). For
ε � εc(p), a stable fixed point exists at M̄ = 0. In the mean
field, the conditional probabilities in Fig. 1(b) can be described
as contingent on mean densities of the three states ū, v̄, and w̄.
In the following expressions we drop the overbar for simplified
notation. The resulting dynamical equations then read

u̇ = f (u,w), (1)

ẇ = g(u,w). (2)

The functions f (u,w) and g(u,w) depend only on the densities
of the states u and w because the density of v results from the
conservation of probability, i.e., v(w,u) = 1 − w − u. Using
the conditions in Fig. 1, the expressions on the RHS of Eqs. (1)
and (2) are

f (u,w) = (1 − ε)pu(1 − 2w − u) + ε(1 − w − 2u), (3)

g(u,w) = (1 − ε)w(1 − 2u − w) + ε(1 − 2w − u). (4)

For these simplified equations, there is a line of (neutral) fixed
points at u = w = 1/3 for all ε. Linear stability analysis of
these fixed points reveals a bifurcation point at

εc = (1 + 3/
√

p)−1. (5)

For ε < εc any neutral fixed point is an unstable saddle, while
for ε > εc it is a stable node. The characterization of the
remaining fixed points depends on p.

For p = 1, in the diagram of M = w − u [see gray curves
in Fig. 2(a)], two symmetric branches of stable fixed points
exist for ε < εc = 1/4, which approach ±1 as ε → 0. In this
case, solving for f (u,w) = g(u,w) = 0 yields the fixed points

u = 1
2 (1 − ε′ ±

√
1 − 2ε′ − 3ε′2), (6)

w = 1
2 (1 − ε′ ∓

√
1 − 2ε′ − 3ε′2), (7)

where we have defined ε′ ≡ ε/(1 − ε) for simplified notation.
The difference w − u becomes

M = w − u = ±
√

1 − 2ε′ − 3ε′2. (8)

For p < 1, εc diminishes and the branches of stable fixed
points become asymmetric [gray curves in Fig. 2(b)]. An
additional line of unstable fixed points appears, which joins
the bifurcation point and the upper branch of stable fixed
points. In the regime of low noise, i.e., ε → 0, the system
approaches one of the stable fixed points w − u = ±1. As the
noise level is increased, the state of the system follows the
corresponding branch of stable fixed points, until it eventually
reaches w − u = 0. In the case of the lower branch, i.e.,
w − u < 0, the approach is continuous. In the case of the
upper branch, i.e., w − u > 0, there is a jump discontinuity
[compare Fig. 2(b)]. However, in all cases, the neutral value
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FIG. 2. Polarization as a function of noise. (a) Symmetric process,
p = 1, on a degree regular random graph with k = 3 (bold black
lines) when initializing in the two extremal states w̄ = 1 and ū = 1,
respectively, and infinite, fully connected network (gray curves). Solid
(dashed) gray lines show stable (unstable) fixed points; vertical orange
mark indicates the bifurcation point εc(p) = (1 + 3/

√
p)−1 = 1/4

for the fully connected network. (b) Similar to (a) but for p = 0.2, i.e.,
for a nonsymmetric dynamics. Dashed vertical line marks the abrupt
transition from M̄ < 0 to M̄ > 0. The vertical orange line marks
εc(0.2) ≈ 0.13. Light blue symbols mark the distribution maxima
obtained through the tree approximation (Fig. 6) for k = 3. Arrows
mark the path taken by M̄ when starting from M̄ = −1 and ε = 0,
then first increasing ε towards unity and then again reducing ε to zero.
(c) Similar to (b) but for scale-free degree distribution with α = 2.4
and 〈k〉 ≈ 3. Hysteresis in (c) is similar as in (b), arrows not shown.
System size for simulations: N = 5000 (see Appendix B), in (b) near
the transition: N = 20 000.

of w − u = 0 is approached monotonically as the noise
level is increased. The effect of noise, hence, is to reduce
the polarization of the system state and eventually yield a
configuration where the three possible states of the nodes u, v

and w are equally likely.

IV. SPARSELY CONNECTED SYSTEMS

How does noise influence bistability in the presence of
dynamical correlations? To answer this, we explore networks
where dynamical correlations are important, hence connec-
tivity is low (k 
 N ), but system size is large (N � 1). We
first simulated graphs where each node has identical degree
k. Dynamical correlations are visually reflected in the phase
portrait (Fig. 3) where trajectories are distorted compared to
the fully connected system (Fig. 3) and often cross themselves
or one another.

For p = 1, which makes the model symmetric regarding
the states u and w, we yield a symmetric bifurcation diagram
when initializing the system in the extremal states M̄ = ±1,
as expected. This diagram is qualitatively similar to the

(b)(a)

FIG. 3. Phase portraits for fully and sparsely connected systems.
(a) Fully connected system with p = 0.2 and ε = 0.02, i.e., in the
bistable phase. Gray open, red filled, and red open circles represent
initial conditions, stable fixed points, and unstable fixed points,
respectively. Colors of curves distinguish trajectories. (b) Similar
to (a) but for a degree-regular random graph with 〈k〉 = 3. Panels
were obtained using simulations with 30 000 nodes.

one obtained for the fully connected system. However, the
bifurcation point in the network, referred to as ε∗(p), has now
moved to considerably lower values of ε∗(p = 1) ≈ 0.13 <

εc(p = 1) [Fig. 2(a)], an effect of the dynamical correlations
retained by demanding small 〈k〉. Bistability has become more
sensitive to noise.

Second, we introduce asymmetry (0 � p < 1), which
means that conditional transitions (i.e., contingent on either
u or w at neighboring sites) back and forth between u and
v are now less frequent than conditional transitions between
v and w. This changes the picture qualitatively [Fig. 2(b)] as
compared to the symmetric case: while the system remains
bistable at low noise (ε < .04, p = 0.2), the lower branch
of fixed points is more sensitive to ε and collapses when
ε is increased. The system switches abruptly—i.e., changes
the sign of M—to a w-dominant configuration, and remains
polarized there, even as noise is increased further. To verify
that the transition is abrupt, i.e., first order, we simulated
the corresponding double well − ln[ρ(M)] where ρ(M) is
the probability density function of M and checked that the
potential well at negative M disappears without merging with
that at M > 0; see Fig. 12.

Reducing ε again below ε∗(p) does not restore the u-
dominant state, the system remains polarized at M̄ > 0. Only
when ε → 1 does the system approach the neutral state
where M̄ = 0. Henceforth, we use the terms “vulnerable”
and “resilient” for the corresponding branches of the system.
The “vulnerable” branch is the one that collapses abruptly
when noise is increased, while the “resilient” branch remains
in its overall polarization, albeit with a gradual reduction in
magnitude.

Third, we ask whether such abrupt switches also occur in
heterogeneous graphs. We synthesized random networks with
scale-free degree distributions P (k) ∝ k−α , α ≈ 2.4, which
gave similar 〈k〉 ≈ 3 as in the previous simulation for the
degree regular network. The qualitative features are preserved
[Fig. 2(c)]: bistability is present at low noise, but an abrupt
switch from M̄ < 0 to M̄ > 0 occurs at a value of noise
significantly lower than that of the bifurcation in the fully
connected graph for comparable p. Heterogeneous degrees
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FIG. 4. Dynamics on the nervous system of C. elegans. Electric
and chemical synaptic connections [23] (279 nodes). (a) Time-
averaged values of M for individual nodes after completion of the
transient. Nodes were sorted by increasing M for the simulation of
ε = 0.02 (orange curve, see legend). This ranking was maintained
when plotting the results for other values of ε. Colors (red to purple)
correspond to increasing values of ε ∈ {0.01, . . . ,0.07}. Inset: Several
representative time series of network average M̄ ≡ w̄ − ū when
initializing all nodes at M = −1 at t = 0. Time is measured in units
of system updates. (b) Black points indicate the degree of each node.
Note the logarithmic vertical axis. The nodes to the very right have
degree zero and are therefore not shown on the log scale. Note that
degree-zero nodes have no interactions with other nodes, therefore
they are not bistable (w − u ≈ 0 in panel a for these nodes).

imply that the expected state of any individual node may also be
different from that of any other. Indeed, states not only depend
on a node’s degree, but additionally on the broader context
nodes play within the network. To illustrate this, we run the
dynamical process on the nervous system of C. elegans [23]
(Fig. 4). When extracting any node’s stationary temporal mean
state, we find that a node’s neighborhood defines its rank, i.e.,
relative mean state within the network, and this rank is roughly
unchanged, even when varying noise or initial conditions.
Further, random graphs with Poissonian degree distributions
as well as the two-dimensional square lattice (Fig. 5) again
gave qualitatively similar behavior as in Figs. 2(b) and 2(c).
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FIG. 5. Transitions for additional network structures. Similar to
Fig. 2(c) (N = 5000) but for a Poissonian degree distribution with
〈k〉 = 3 (shown in a) as well as a square lattice (shown in b).

V. CAUSE OF POLARIZATION
SWITCHING—ANALYTICAL APPROXIMATION

To explore further the origin of the polarization switch-
ing we developed an analytical approximation for sparsely
connected networks. We focus on a sparse degree regular
network, i.e., k 
 N . The discussion on the N = 2, N = 3
(see Appendix A), and fully connected systems highlights that
any mean-field approach ignoring dynamical correlations is
bound to fail. Further, any approximation should incorporate
states formed by more than two nodes, given that two nodes do
not show any change of sign in polarization whereas systems
with more than two nodes do.

We consider that a node and its k nearest neighbors
form a cluster of k + 1 nodes and k links, and use a tree
approximation, in which any two nodes are connected only by
one path; see Fig. 6. In general, the configuration space of node
states for this cluster spans sk ≡ 3k+1 different configurations.
We refer to any of the cluster states i as χi and to the probability
of this state being occupied as �i . The steady-state solutions
could be computed by writing the dynamical equations for the
transition probabilities between these states.

However, this would ignore all interaction with the
surroundings of the cluster. In order to achieve a better
approximation, consider the following: When all nodes have
equal connectivity, choosing a target node and its partner is
equivalent to choosing a link and assigning one of the two
nodes involved as the target node. Now consider all links within
the cluster (shown in red in Fig. 6) as well as those outside the
cluster (shown in black). There are k ways to choose an internal
link, and the target node will always lie within the cluster.
There are k(k − 1) ways to choose external links; however, the
target node will only lie within the cluster at probability 1/2.
Together, the probability of an internal updating is then

pint = 1 − pext = k

k + k(k − 1)/2
= 2

1 + k
. (9)

We now need to evaluate separately the selection of internal
and external links. Selecting an internal link and target node
generates a transition matrix for all cluster states. A given state
χi thereby has a probability P (χi → χj ) to transition to state
χj . This probability is straightforward to determine, given the
schematic in Fig. 1 and noting that any possible transition

k=3

1

34

 1 2 3 4
 u u u u
 u u u v
 u u u m
 u u v v
 u u v m
 u u m m
 . . . .
 . . . .

2

FIG. 6. Tree approximation. Example for connectivity k = 3.
Bethe lattice where a central node is connected to three nearest
neighbors, which themselves are each connected to three nearest
neighbors. We distinguish internal and external links, which are
indicated by red and black, respectively. Also shown are several
configurations of unique four-node states, i.e., those that do not map
onto one another by permutations of the individual single-node states.
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is constrained to states that differ only by one elementary
move. For example, the transition {uuuv} → {uuuw} is
possible when node four is selected as the target site and its
probability is then ε/2. Conversely, the transition probability
P ({uuuv} → {uuuu}) = (1 − ε)p + ε/2 since a coordinated
move is now possible.

Updating an external link can modify any but the central
node of the cluster. We now need to consider the updating of
external cluster states, i.e., clusters with central nodes located

at sites 2, . . . ,k + 1 w.r.t. the original cluster. These updates
require some bookkeeping: for a given cluster state χi not
all external cluster states will be possible. A sum needs to be
carried out over nodes j ∈ {2, . . . ,k + 1}, where the respective
states of the pairs (1,j ) constrain the possible external cluster
states. Given this subset of states, all possible transitions are
again enumerated. It is then back-tracked how these transitions
affect the respective node j , which in turn leads to an update
of the internal cluster state.

The temporal evolution, in time units of N node updates, of the occupation probability �i hence is

�̇i = pint

⎡
⎣

n∑
j=1

�jP (χj → χi) − �iP (χi → χj )

⎤
⎦

+ (1 − pint)
k+1∑
x=2

⎡
⎣∑

j

�jP ({sq}|s1,s
′
x)P

(
χs1,s ′

x ,{q} → χs1,sx ,{q}
) − �iP ({sq}|s1,sx)P

(
χs1,sx ,{q} → χs1,s ′

x ,{q}
)
⎤
⎦. (10)

Here

P ({sq}|s1,sx) ≡ �1,x,{q}∑
{q} �1,x,{q}

(11)

is the conditional probability that the remaining nodes {q}
are in the states {sq} given that nodes 1 and x are in the
single-node state s1 and sx , respectively. The sum in the
denominator extends over all configurations of external states
that are compatible with the single node states at sites 1 and x

and serves as a normalization.
Notably, all configurations χi of the internal cluster can

contribute to the first term of Eq. (10), while only those
configurations �j which are compatible with a given central
node state s1 and a state sx at a given peripheral node
contribute in the second term. Note further that in the first
term only linear contributions in the occupation probabilities
�i occur, while the second term involves also product terms
of probabilities �i .

The approximation now consists in the closure of corre-
lations up to the size of the cluster. It is implicitly assumed
that longer-range correlations do not contribute and can be
neglected.

Equation (10) constitutes a set of nonlinear equations in the
occupation probabilities �i and has to be solved numerically.
The density of states is initially peaked at low and high values
of w − u, with the high-u state the most likely. As noise is
increased, one peak gradually disappears and a single-peak
distribution results. The crucial features of the density of states
can be represented more compactly by extracting the peaks of
the distribution function (Fig. 13). For the cluster consisting
of four sites, excluding the surroundings, Fig. 13(a) shows the
dependence of maxima on the noise ε. Indeed, the distribution
is bimodal at low ε, whereas for larger noise (ε > 0.15) the
distribution is unimodal. We compare this to the solution where
also the surroundings are taken into account [Fig. 13(b)]. Now
the peaks for the u-dominant state decay more rapidly, and the
pattern is much more skewed than in Fig. 13(a). At a value of
ε ≈ 0.04 the distribution is unimodal, and peaks are present
for the w-dominant state. This result should be compared to

the simulation result in Fig. 2(b), where similar qualitative
features are present.

Importance of clustering—We note that the mean-field
calculation based on the star motif assumes a tree-like topology
and hence disregards effects of clustering and long-range con-
nections. To distinguish those effects, we performed additional
analysis by implementing Watts-Strogatz networks [24] to
interpolate between a regular ring lattice and a random graph.
As a result of repeated rewiring [Fig. 7(a)], which gradually
reduces clustering by increasing long-range connectivity, the
switching ε∗(p) systematically moves towards larger values
of noise [Fig. 7(b)]. We see this as an evidence of the role of
long-range connections in enabling the presence of two stable
states at small values of noise. Bistability can be suppressed
by increased locality with associated node-node dynamical
correlations.

This interpretation further implies the existence of dynami-
cal correlations reaching beyond the immediate neighborhood
of a given node. This is again in line with the results from
the neural wiring diagram of C. elegans [23] (Fig. 4), where
we consider the long-term average of each individual network
node and find that a node’s degree alone is not a sufficient
predictor of its average state within the network [compare
Figs. 4(a) and 4(b)]. Remarkably, even when changing ε,
nodes maintain their relative polarization w.r.t. the remaining
network; i.e., the curves shown in Fig. 4 are approximately
still smooth when noise is varied.

VI. TWO-LAYER MULTIPLEX NETWORKS

Finally, we form a multiplex network by combining two
layers A and B, where nodes can change their state by
influences from either of the layers and the layers have distinct
model parameters. For simplicity, we consider each layer to
consist of statistically equivalent regular random graphs. We
allow the dynamics in layer A to be defined by the parameters
used previously (i.e., p1 = p4 = 1, p2 = p3 = 0.2), where
M̄ > 0 gives its resilient branch. When uncoupled, layer A
would hence behave as described above. In layer B, rates
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FIG. 7. Effect of clustering. (a) Transitions for varying levels of
disorder for k = 4, ε∗ increases with disorder. The fully disordered
system is a regular graph of degree k = 4. System size: N = 2000.
(b) Summary of ε∗ for the simulations of varying connectivity (k =
4, 6, 20) as a function of clustering coefficient.

are taken to be smaller: p1 = p4 = 0.1, p2 = p3 = 0.5 and
swapped regarding u and w. Hence, B’s resilient branch is
characterized by M̄ < 0 [Fig. 8(a), inset]. Both subsystems
are initialized as M = 1 and allowed to reach a steady state.
We couple A and B by requiring a randomly chosen fraction
cf of nodes to have shared states in the two layers, i.e., their
state in one network is copied to the other network at any
update. The remaining fraction of nodes never transfer their
states from one layer to the other. At every time step, A or
B is chosen at equal probability, and a random node of that
network is updated as before.

At low noise ε, both systems are w-dominant (Fig. 8).
As ε is increased, the behavior depends on cf . For weak
cf , B will eventually transition to its resilient configuration,
where M < 0. Notably, this transition is still abrupt for small
cf [Fig. 8(a), red curves]. As cf is moderately increased
(purple curves), the abrupt switch of B is first reduced and
eventually disappears, but B still shows changing sign of M .
The associated reduction of jump size appears to be continuous
in the sense that the magnitude of the jump occurring at the zero
crossing is gradually reduced as cf is increased. Conversely,
layer A is also impacted upon by B, since the magnitude
of M̄ in A is somewhat reduced by the coupling. As cf is
increased further, even the change of sign finally disappears
(blue curves). For sufficiently large coupling (e.g., cf = 0.64)
the curves of A and B assimilate and the magnitude of M̄ at low
noise becomes maximal: the copying process between layers

0
1

0.005
0.045
0.055
0.16
0.64

0 0.1 0.2

0
1

ε

pa=.2, pb=.2
pa=.2, pb=.4
pa=.4, pb=.4
pa=.3, pb=.3

(a)

(b)

u v w
.2

u v w

1
.2 1
.5

.5

.1

.1

A

B

FIG. 8. Dynamics in a two-layer multiplex with variable cou-
pling. (a) Both layers A (dashed lines) and B (solid lines) are
initialized at M = 1 for different values of ε (see schematic, inset).
The plot legend (top right) indicates various values of coupling cf

increasing from 0.005 to 0.64 for colors ranging from red to blue.
Vertical arrow indicates the approximate position of ε∗ for the isolated
system B. N = 2000. (b) Transition for perfect coupling and various
combinations of model parameters. Parameters pA and pB correspond
to the parameter p in the model (Fig. 1) for the two-layer networks A

and B. Updating a node in one subsystem will also update the node
in the other subsystem. Curves obtained for subsystems of N = 2000
nodes each and degree k = 3. Mixing two layers has the main effect
of averaging the rates of the two subsystems, seen by comparing the
cases of pa = 0.2, pb = 0.4 to pa = 0.3, pb = 0.3.

is now so efficient that they act as a single layer with enhanced
effective degree k̃ > 3 and intermediate effective parameters
[see Fig. 8(b)]. Hence, the effect of combining layers is to
dilute the correlations between any two neighbors by the larger
number of influences from their enlarged neighborhood. The
relative frequencies of updating (e.g., the rates pl) in the two
layers determine which of the two will be able to impose its
state on the other.

We explored variants of this setup (Fig. 9). When assuming
that now all nodes are coupled between the two layers (cf = 1),
but copying of states proceeds at a certain probability cr < 1
at every move, the dynamics remains qualitatively similar but
changes quantitatively [Fig. 9(a)]. To determine whether cr or
cf is more efficient in destabilizing B’s resilient state, we fix
the product crcf and then vary the two rates simultaneously
[Fig. 9(b)]. This analysis shows that large cf is able to pull
layer B through the switch, i.e., fixed coupling is preferable
in destroying a coherent configuration of B by the coupling
to A. We further explored the case where systems A and B
have similar setup but vary in the strength of p [Fig. 9(c)]. For
uncoupled A and B, both initialized in the vulnerable state, the
system of smaller p will transition at lower ε. When coupling
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FIG. 9. Dynamics in a two-layer multiplex with alternative cou-
plings. Dashed (solid) lines represent systems A and B, respectively.
(a) Similar to Fig. 8 but keeping cf = 1 maximal, i.e., all nodes
are capable of copying their states. Now cr is varied as shown in the
legend. (b) Similar to Fig. 8 but keeping the product crcf = 0.1 fixed.
Parameters of different curves as shown in the legend. (c) Coupling
two systems as shown in inset. cr = 1. Numbers near lines and in
the legend represent the fraction of nodes permanently coupled (cf ).
System sizes in all panels: N = 2000.

A and B, the systems will eventually transition at the same
value of ε but the jump size remains different for the two.

VII. CONCLUSIONS

Elementary interactions in biology or social systems are
often between two entities: Within DNA, contacts between
one genomal region and another may lead to reactions, e.g.,
in epigenetics [1,21]. In recent work it has been shown that
the dynamics in such systems can often lead to bistable

system states, where constituents jointly reach a polarized
state, e.g., fully methylated or unmethylated configurations
in DNA methylation [2,22]. In social networks, one individual
may influence another’s opinion. Classical models, e.g., the
Voter-type dynamics [25], eventually drift towards a unique
absorbing state, which is set by the system parameters. We
here propose that a simple modification of the Voter model to
a three-state model can already give rise to bistable opinion
dynamics: given overall “resetting” of the general opinion to
one of the extremal states, a large system will maintain that
state indefinitely. Smaller opinion networks may transition
stochastically between the two extremal states.

Notably, when connectivity is extensive, the system’s
dynamics could be described within the mean field. However,
connectivity is often limited: in cell biology, the range of
interaction may be set by the protein superstructure formed
by the DNA, limiting available interaction partners. In social
networks, it is well known that the number of stable ties
a mammalian can form in a social network is constrained
by its cognitive capacity [6,26,27]. For humans, limits of
social connectivity were proposed to be between 100 and 200
[6,26,27], but typical connectivity, e.g., in e-mail communica-
tion is generally much lower (below 10) [27]. It hence becomes
important to ask which role dynamical correlations between
the states of neighboring constituents play in the dynamics and
the effects of noise.

We analyzed noise-induced polarization switching caused
by dynamical correlations in a simple three-state model for
bistability. Our findings may however generalize to other
models that induce similar dynamics. The switching occurs
only when dynamical correlations are present (low connec-
tivity) and can then be described as a first-order irreversible
transition from bistability to monostability. Without dynamical
correlations, the switching disappears and noise can induce
only a neutral mean state.

Our analysis suggests that this polarization switching exists
in the intermediate regime where local dynamical correlations
are present and nonlocal coupling allows for bistability to
be maintained. Purely local systems, that is, highly clustered
networks, do not show signatures of the switching. When two
networks interact, the dominant one imposes its resilient state
on the other as the coupling increases. This suggests that the
propensity of a system to switch polarization under noisy
environments can be both counterbalanced or enhanced by
its matching with another dominant system.

Conceptually, our findings could be seen as an extreme
case of Parrondo’s paradox [17–20]. Within this analogy,
unbiased noise is a neutral game which transforms a second
biased game from overwhelmingly losing to winning when
the two are combined. In contrast to Parrondo’s paradox, the
implications of our findings may be far less subtle: modulating
noise could be exploited as a simple mechanism to trigger
strong behavioral changes in systems with bistability, e.g.,
in epigenetics or economics. For several systems coupled
within an overall noisy environment, those with higher rates
of asymmetric conditional reactions will not only be more
resilient but may often dominate other systems that are coupled
to them. Our work might allow for a new perspective on a wide
range of transitions in noisy bistable systems such as those that
are found in biology or the social sciences.
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APPENDIX A: FULLY CONNECTED FINITE SYSTEMS

For small systems consisting only of few sites and
links connecting each pair of sites, the steady state can
be computed exactly. As each node can take one of three
states, the n-particle state space consists of 3n states; i.e.,
the basis increases exponentially with the number of sites.
However, considering permutation symmetry the basis reduces
to m(n) = (n2 + 3n + 2)/2 states, i.e., the basis then increases
only approximately quadratically with the number of sites.

The smallest interacting system is that consisting of only
two nodes, connected by a link. Hence, there are m(2) = 6
basis states. By evaluating all m(2) × m(2) transition proba-
bilities P (χi → χj ) for transitions between n-particle states
χi and χj with i,j ∈ {1, . . . ,m} we write a dynamical equation
for the occupation probabilities �i :

�̇i =
n∑

j=1

[�jP (χj → χi) − �iP (χi → χj )]. (A1)

Solving for �̇i = 0 and considering the vector M ≡
(M1, . . . ,Mm) of “magnetization,” where Mi ≡ wi − ui for
each n-particle state, we obtain the average “magnetization”
M̄ ≡ ∑

i �iMi as a function of noise ε and the asymmetry
parameter p, M̄ = M̄(ε,p).

As a function of ε, for any given value of p ∈ [0,1] we
find that, when n = 2, M̄ maintains its sign for all values
of noise ε [Fig. 10(a)]. Conversely, for n = 3, M̄ has a zero
crossing as ε is increased. Retaining only terms linear in ε we
approximate the curve M̄(ε,p) and, by setting M̄(ε,p) = 0,
reach an approximate expression for the zero crossing ε0(p)
as a function of p:

ε0(p) = p2(1 + p)

2 + 19p + 24p2 + 19p3 + 2p4
. (A2)

We find that the function ε0(p) increases monotonically with
p [Fig. 10(b)] and approaches a finite value ε0(1) = 1/33 as
p → 1, p < 1. When p = 1 the system is symmetric and there
is no zero crossing.

Hence, even infinitesimal asymmetry p �= 1 in the model
(Fig. 1) can induce a noise-dependent change of sign akin to
the original Parrondo paradox. Here, however, the states are
the joint states of multiple sites. The effect of noise is to enable

FIG. 10. Finite system. (a) Zero crossing of M̄ for p = 0.2.
Dashed black curve shows the analytical solution for n = 2, where
no zero crossing is observed. Dashed blue curve shows the analytical
approximation for n = 3 [Eq. (A2)] (neglecting nonlinear terms in
ε). Solid blue curve shows the full numerical solution for n = 3,
where all powers of ε were retained. The zero crossing for n = 3
is indicated by the label ε0. (b) n = 3, the level of noise ε where
a zero crossing for M̄ occurs for different values of p. Dashed and
solid blue curves again show analytical approximation [Eq. (A2)] and
numerical solution, respectively.

transitions that are unlikely without noise and can eventually
drive the system towards another attractor.

Examining larger systems (n > 3) numerically, we find the
zero crossing and qualitative behavior of M̄ to be similar to
that of n = 3. However, when considering a comparison with

System size, N

ε

0

0
0.

05
0.

1

p=0.1
p=0.2
p=0.5

1 ×104 2 ×104

FIG. 11. System size dependence. Simulation for regular graph
with k = 3, but varying system size and p. Each curve represents one
value of p (marked in legend) and points are simulation results for the
transition between u-dominant and w-dominant states. Lines serve as
guide to the eye and connect the points obtained by the simulations.
Vertical dashed line indicates N = 5000, a value we find sufficient
for finite size effects to be considered small, unless stated otherwise
in the text.
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FIG. 12. Potential wells. For each value of noise ε long simula-
tions with n = 59 nodes and k ≈ 3 
 n were carried out. As these
systems are comparably small, sufficiently many fluctuations between
the quasistable states at negative and positive M occur and allow
computation of the probability density function P (M = w − u).
Curves ranging from blue to red show the function − log[P (w − u)]
for a range of ε (indicated on the right vertical axis). Inspecting the
PDFs shows that the minimum at M < 0 becomes increasingly weak
and finally disappears. As ε increases, the PDFs obtain an overall
slant towards positive M . (Details are found in Appendix C.)
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FIG. 13. Maxima of probability distribution function. (a) Star
topology consisting of four sites, as shown schematically in Fig. 6 as
red links. Solid points show the respective local maxima obtained by
inspecting the density of states in the tree approximation (Sec. V).
Thin line shows the average value of w − u. (b) As in (a) but
interacting with surrounding sites, i.e., as in Fig. 6 including the
black links. Note the more abrupt decrease of the u-dominant state,
i.e., maxima for w-dominant states persist in noise regions where
u-dominant states are absent. Note the increase of the average w − u

w.r.t. the star topology. (c) Similar to (a) but for a star consisting of
five sites. (d) Similar to (c) but for a star consisting of five sites. Note
that the maxima at u > w have now disappeared.

the noise effect in the Parrondo paradox, as system size is
increased, the system at hand will hardly reside in a state near
M̄ . This is because for the model (Fig. 1) bistability is inherent,
whereas bistability is absent in the Parrondo paradox.

APPENDIX B: NETWORK SIZE DEPENDENCE OF ε∗

We explored different network sizes to ensure that the
system sizes used for our analysis were sufficiently large, and
the results reported did not depend on system size (Fig. 11).

APPENDIX C: FIRST ORDER TRANSITION IN
NONSYMMETRIC DYNAMICS ON DEGREE REGULAR

RANDOM GRAPHS

To obtain the PDFs in Fig. 12, a relatively small system size
(n = 59 nodes) was chosen. The dynamics was simulated until
a sufficient number of transitions between the extremal states
had taken place, to be able to obtain an approximation of the
statistical occupation of the different values w − u. For larger
system sizes the transitions were very rare or did not occur
at all during the computation. We, however, checked smaller
system sizes and found compatible results.

APPENDIX D: POLARIZATION IN TREE
APPROXIMATION

For the tree approximation, which was discussed in Sec.
V, for star topologies with several numbers of sites we
computed the occupation probabilities for all star states, both

p=0.1
p=0.2
p=0.4

Degree, k

δ = 0
δ = 0.005
δ = 0.01
δ = 0.02

(a)

(b)

0.01

0.1

0.01

0.1

Δ
(k

)=
ε c-ε

*
Δ

(k
)=

ε c-ε
*

1 10 100

FIG. 14. Transition point vs degree and noise bias. (a) Difference
of fully connected, infinite system bifurcation point εc and regular
graph transition point ε∗ for varying values of degree k and different
values of p. System sizes: 8000 for p = 0.1 and p = 0.4, 4000 for
p = 0.2. (b) System with noise bias, i.e., for u → v and v → w noisy
transitions were increased to ε + δ while the opposite direction was
decreased to ε − δ. Values of δ as indicated in plot. System sizes:
N = 5000, except for δ = 0, where N = 5000 was used.
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for the isolated star (red links in Fig. 6) as well as the tree
approximation (all links in Fig. 6), where the star is embedded
in a Bethe lattice. Weighting by their relative occupation
probabilities, the self-consistent star states were then binned by
their respective values of w − u. For the resulting distribution
function of w − u we extracted the local probability maxima.
We then repeated this analysis for many values of ε. The
resulting pattern of maxima (Fig. 13) shows transitions from
bimodal to unimodal statistics.

APPENDIX E: DYNAMICS ON DEGREE REGULAR
NETWORKS WITH 〈k〉 > 3

For fixed p < 1, we monitored the abrupt transition from
bistability to monostability in degree-regular networks of

increasing 〈k〉. Over approximately two orders of magnitude of
〈k〉 such transitions are always found (Fig. 14). As 〈k〉 → N ,
the transition point ε∗(p) approaches the bifurcation point
εc(p) of the fully connected system. We find the difference
�(k) ≡ |εc(p) − ε∗(p)| to decrease algebraically as |εc(p) −
ε∗(p)| ∼ k−s(p) with 0 < s(p) < 1 weakly increasing with the
asymmetry parameter p. The algebraic dependence of �(k) on
degree can be removed by a noise bias, where ε is replaced by
ε + δ (ε − δ) for transitions towards w (u). Such noise bias is
found to give a specific degree cutoff, where εc = ε∗ is met. It is
important to note that for sufficiently small degree, even under
the action of a noise bias, a substantial offset �(k) remains.
This means that our results are not limited to the special case
of unbiased (neutral) noise but are valid for a larger class of
models.
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