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Reconstructing the structure of directed and weighted networks of nonlinear oscillators
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The formalism of complex networks is extensively employed to describe the dynamics of interacting agents
in several applications. The features of the connections among the nodes in a network are not always provided
beforehand, hence the problem of appropriately inferring them often arises. Here, we present a method to
reconstruct directed and weighted topologies of networks of heterogeneous nonlinear oscillators. We illustrate
the theory on a set of representative examples.
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I. INTRODUCTION

The study of complex networks provides a rigorous for-
malism [1–4] to describe phenomena involving populations of
interacting agents in fields as diverse as physics, engineering,
biology, chemistry, social science, and the Internet [5–8].

Often in applications, the topology of the interactions
(links) among the agents (nodes) in a network is not known a
priori. In these cases the structure of the network must be
reconstructed from measurements of the nodes’ dynamics;
a problem often known in the literature as network recon-
struction or network inference. The need for network infer-
ence strategies arises in several contexts, e.g., reconstructing
functional activation or repression links in gene regulatory
networks [9–11] or causal relationships in stochastic processes
[12], understanding the structure of social interactions in
a group from communication data [13–15], and inferring
functional relationships between areas in the brain from
electroencephalogram (EEG) data [16] or in physiological
systems [17].

A notable case of interest is that of reconstructing the
structure of networks whose nodes exhibit oscillatory dy-
namics (e.g., neurons, cellular cycles, synthetic biological
oscillators, groups of walking autonomous robots). For these
networks, several reconstruction approaches have been pro-
posed. Examples include the methodology presented in [18],
dealing with the problem of inferring directed and weighted
topologies of networks of Hindmarsh-Rose neurons and
Lorenz oscillators; the strategy discussed in [19], investigating
community detection in undirected and unweighted networks
of Kuramoto oscillators [20]; the techniques developed in [21],
addressing the issue of reconstructing directed topologies of
small networks of coupled phase oscillators; and the method-
ology presented in [22], dealing with the reconstruction of
directed weighted networks of coupled phase oscillators driven
by temporarily constant input signals. Recent approaches to
inferring the structural connectivity of a network from its
dynamics have also been reviewed in [23].

Previous methods suffer from several drawbacks. Often
they can only reconstruct undirected networks and do not
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include an ex post analysis of the reconstructed topology to
isolate the presence of false positives (reconstructed links
that do not exist in the real network), or if they do, no
systematic method is presented on how to select cutoff
thresholds to remove them [19]. The only exceptions are
the works presented in [11,24]. However, such methodologies
require the observed dependency matrix to be either invertible
or diagonalizable, and have order O(n3) of computational
complexity (with n being the number of nodes in the network),
as opposed to our algorithm which does not make any
assumption on the structure of the inferred interactions and
has lower computational complexity (as discussed later in the
text).

The aim of this work is to present REDRAW (reconstruction
of directed and weighted topologies), a method for inferring
directed and weighted topologies of networks of nonlinear
oscillators. REDRAW radically extends the strategy in [19],
which was originally conceived to only detect communities in
undirected and unweighted networks of Kuramoto oscillators
[25,26]. In what follows, we first describe the approach in-
cluding a systematic algorithm to perform the ex post analysis
of the reconstructed network and select appropriate cutoff
thresholds to remove false positives. We then validate the
method on a number of representative examples, including a
set of real-world networks obtained from [27–31], highlighting
its advantages and limitations.

II. MATERIALS AND METHODS

We start by considering a network of n nonlinearly coupled
heterogeneous oscillators described by

ẋi = fi(xi) + c

n

n∑
j=1

aijg(xi,xj ), i = 1,2, . . . ,n, (1)

where xi ∈ Rp is the p-dimensional state of the ith oscillator,
fi denotes its dynamics, g is a generic nonlinear coupling
function, c > 0 represents the global coupling strength among
all nodes in the network, and aij represents the local influence
that node j has on node i. For directed and weighted
topologies, in general aij �= aji with aij � 0 ∀i,j . By means of
standard techniques [20], the system in Eq. (1) can be reduced
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to a network of nonlinear phase-coupled oscillators:

θ̇i = ωi + c

n

n∑
j=1

aij�(θj − θi), i = 1,2, . . . ,n, (2)

where θi ∈ [−π,π ] represents the phase of the ith oscillator,
ωi > 0 is its natural frequency, and �(θj − θi) is a generic
2π -periodic function.

We assume that a dataset of K × n time series of length
T is available. This is obtained by acquiring n time series of
duration T > 0 (one for each of the n oscillators in the network
of interest) during K experiments (or simulations) where nodes
are started from different initial conditions and phase locking
is achieved (see Sec. 1 of the Supplemental Material for the
definition of “phase locking” [32]).

The goal of REDRAW is to reconstruct the topology of
the network by inferring, from the data, the presence and
directions of links between the oscillators. The method also
captures the relative strength of the interactions among nodes
by establishing which links are stronger than others. However,
it does not aim at estimating the precise value of the edge
weights. Note that no perfect knowledge of the system’s
dynamics is necessary for our method. The only assumption
is that the measured phase differences among the oscillators
give an indication of the strength and direction of their mutual
influence.

REDRAW is based on the following six steps.
Step 1. The relative phase �θij,k(t) = θi,k(t) − θj,k(t) ∈

[−π,π ], ∀k = 1, . . . ,K with t ∈ [0,T ] is evaluated for every
pair of nodes in each of the K experiments. Negative values of
�θij,k(t) indicate that node i lags behind node j at time instant
t of the kth experiment.

Step 2. The parameter ζij,k(t), representing the influence of
node j on node i at time t of the kth experiment, is defined as

ζij,k(t) :=
{ 1+h[�θij,k (t)]

2 , �θij,k(t) � 0
0, �θij,k(t) > 0

(3)

and is calculated from the available data for all pairs of nodes
in the network, where h is an even function in the interval
[−π,π ] characterized by the following properties: (i) it takes
its maximum value 1 in the origin [e.g., h(0) = 1]; (ii) it takes
its minimum values −1 at the extremes of its domain [e.g.,
h(−π ) = h(π ) = −1]; (iii) it is monotonically increasing in
the left-half interval [−π,0] and monotonically decreasing
in the right-half interval [0,π ]. Note that ζij,k(t) �= ζji,k(t)
and that ζij,k(t) ∈ [0,1], where ζij,k(t) = 1 represents the
maximum level of influence that node j has on node i. When
�θij,k(t) > 0, agent j lags behind agent i, hence the influence
that the former has on the latter is set to 0.

Step 3. The time average of the influence parameter defined
in Eq. (3) is evaluated for each pair of nodes as

ρij,k := 1

T

∫ T

0
ζij,k(t) dt. (4)

Step 4. The weight of the link directed from node j to node
i is computed for every pair of nodes by averaging the quantity
defined in Eq. (4) over the total number of experiments as

ρij := 1

K

K∑
k=1

ρij,k. (5)

FIG. 1. Illustration of the modified data processing inequality
described in Step 5. Parameter ρzw is set to 0 as long as the three
following conditions are verified simultaneously: (1) ρzw < ρyw , (2)
ρzw < ρzy , (3) ρzw < ν, where ν is a threshold value.

Step 5. Links whose ρij is null are discarded from the
reconstructed network. Non-zero weights ρij are checked
among all triplets of connected nodes so that, on the basis
of their intensity, one can be possibly regarded as a false
connection and set to zero (the corresponding link is then
removed). As an example, consider a triplet of three connected
nodes, say w, y, and z (Fig. 1). If the weight ρzw between w

and z is lower than a certain threshold 0 � ν < 1 and is also
lower than both the weight ρyw between w and y and the
weight ρzy between y and z, then ρzw is set to 0 and the link
between the pair (w,z) is removed as it can be regarded as an
indirect effect of w on z through node y. This is a modified
version of the standard data processing inequality (DPI) often
used in network reconstruction methods [33]. Note that the
higher the value of ν, the fewer connected triplets are found in
the network.

Step 6. Network thresholding: all parameters ρij whose
value is below a certain threshold μ are set to 0, with 0 � μ �
ν (the higher the value of μ, the sparser is the reconstructed
network structure).

Four standard metrics are used to assess the performance of
REDRAW [34]. They are the positive predicted value (PPV),
the accuracy rate (ACC), the true positive rate (TPR), and
the false positive rate (FPR). Denoting with NT P , NFP , NT N ,
NFN , and NT OT := n(n − 1) the total number of true positives,
false positives, true negatives, false negatives, and possible
links among all the nodes in the network, respectively, such
metrics are defined as

PPV := NT P

NT P + NFP

, ACC := NT P + NT N

NT OT

,

TPR := NT P

NT P + NFN

, FPR := NFP

NFP + NT N

.

Since the interactions between n(n − 1) pairs of nodes have
to be inferred for each available experiment, REDRAW has
order O(Kn2) of computational complexity. On the other hand,
since the performance metrics are independent of the number
of numerical experiments available, their application has order
O(n2).

Remark 1. If phase locking is not achieved by the oscil-
lators in the network, either no links or few weak links are
inferred according to Eq. (5). Therefore, the influence that the
phase of each node has on that of the others is negligible,
hence the strength of the interactions among the oscillators is
not sufficiently high for them to form any clusters.

Remark 2. The time interval [0,T ] can be partitioned in L

time windows [tl,tl+1] of length �Tl , with l = 0, . . . ,L − 1
so that the network topology can be reconstructed over
each subinterval to show how the nodes’ interactions evolve
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over time. The choice of �Tl is dependent on the specific
application of interest (e.g., nodes’ temporal dynamics).

III. RESULTS

To validate and illustrate REDRAW we consider a network
of n nonuniform Kuramoto oscillators [35,36], employed as a
model generating the data to test the algorithm. It is obtained
by setting �(θj − θi) = sin(θj − θi − φij ) as an instance of
Eq. (2), described by

θ̇i = ωi + c

n

n∑
j=1

aij sin(θj−θi−φij ), i=1,2, . . . ,n. (6)

The phase shift

φij :=
{ φ

aij
, aij > 0

0, aij = 0
(7)

represents how much node i lags behind node j , with φij ∈
[0, π

2 ]. Note that the higher the influence aij that node j has
on node i, the lower the phase shift φij (i.e., the less node i

lags behind node j ). Furthermore, we choose h(θ ) = cos(θ )
in Eq. (3).

In contrast to previous methods, we provide guidelines on
the selection of the thresholds ν and μ in Steps 5 and 6,
by performing a systematic analysis of how the performance
metrics change as the thresholds are varied when inferring
in silico known ensembles (in general different from the
original system to be reconstructed) of nonlinear oscillator
networks (see Sec. 2 of the Supplemental Material for details
on the algorithm employed to select thresholds ν and μ

[32]). Specifically, we applied the algorithm to reconstruct N

randomly generated graphs following the Erdös-Rényi model
[37,38] as well as networks generated using the Barabási-
Albert method [39], for ensembles of nonuniform Kuramoto
oscillators of different size n. Note that any topology and
oscillatory dynamics could be employed, however for the latter
it is sensible to choose the same model as that of the system
it is desired to reconstruct when information is given on the
dynamics of its nodes. For both models, we evaluated what
average values of ν and μ lead to acceptable reconstruction
metrics, and propose that these values should then be selected
when inferring an unknown topology (Fig. 2).

Remark 3. If the uncoupled dynamics is much larger than
the coupling [e.g., ωi � c

n
in Eq. (6)], some oscillators may not

be phase locked with their neighbors even though they share
a connection. Therefore, in the following numerical examples
we assume that the natural frequencies of the oscillators are
all bounded.

We start by applying our method to reconstruct the four
different topologies in Figs. 3(a)–3(d). Specifically, the values
of the natural frequencies ωi were randomly drawn from the
standard uniform distribution on the interval [1,2] rad s−1,
and so were the initial conditions θi(0) from the interval
[−π,π ], i = 1, . . . ,4. The model parameters were set to
c = 10 and φ = π

4 so that phase locking could be achieved.
For each topology, a synthetic dataset of K = 50 experiments
of duration T = 30 s was obtained assuming the structure of
the network to be unknown. Thresholds were set to ν = 0.9
and μ = 0.7 from Figs. 2(a) and 2(c).

FIG. 2. Selection of thresholds for networks of n nonuniform
Kuramoto oscillators. Acceptable ranges within which ν (x axis)
and μ (y axis) should take values when reconstructing an unknown
network of n = 4 (a),(c) or n = 20 (b),(d) oscillators are depicted
as shades-of-grey maps; m denotes the number of metrics for which
acceptable values are achieved when in silico reconstructing known
test topologies. Specifically, (a) and (b) refer to the metrics obtained
when employing random graphs following the Erdös-Rényi model
as test topologies, whereas (c) and (d) refer to those obtained
for networks generated using the Barabási-Albert method. The
parameters of the oscillators were set so as to achieve phase locking.
The lighter the color of the area where (ν,μ) belongs, the higher
m, hence the more sensible the choice of the thresholds. Ideally, the
thresholds to be used when inferring unknown topologies should be
selected within white regions where ν and μ lead to acceptable values
for all the four metrics here employed. See Sec. 2 of the Supplemental
Material [32] for more details.

The reconstructed networks are represented in Figs. 3(e)–
3(h), respectively. For each topology, neither missing links
nor false positives are found, and the directionality of the links
is correctly inferred for all of them (PPV = ACC = TPR =
100%, FPR = 0%). As for the weights, their magnitudes’
relative relationship in the assigned topologies is correctly

FIG. 3. Assigned and inferred topologies, n = 4. The topologies
(a)–(d) represent those used in the numerical simulations to generate
the dataset then employed to test our method. The reconstructed
topologies are respectively depicted in the bottom panels (e)–(h). The
numerical values on the edges of the assigned topologies represent
the values of aij in the model described in Eq. (6), whereas the italic
numerical values on the edges of the inferred topologies represent
parameters ρij estimated by REDRAW.
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FIG. 4. Assigned and inferred topologies, n = 20. The regular
network (a) and that obtained by some long-distance rewiring (b)
on the left-hand side represent the topologies used in the numerical
simulations to generate the dataset then employed to test our method.
The reconstructed topologies are respectively depicted on the right-
hand side (c),(d). Different scales of gray quantify the numerical value
of aij for the assigned topologies, and ρij estimated by REDRAW for
the inferred ones.

inferred as well. For instance, note how a34 < a23 < a12 in
Fig. 3(b) corresponds to ρ34 < ρ23 < ρ12 in Fig. 3(f), or how
a31 = a41 < a12 in Fig. 3(c) corresponds to ρ31 = ρ41 < ρ12

in Fig. 3(g).
The evolution over time of the reconstructed network

with topology represented in Fig. 3(c) was inferred over
time windows of length �Tl = �T = 0.5s, and is shown in
Sec. 4 of the Supplemental Material [32]. Analogous results
are found for the other topologies (data not shown).

Next, we tested REDRAW on larger, more challenging
networks of n = 17 nodes. The structures being considered
were obtained by interconnecting four subnetworks with the
structure represented in Fig. 3(d), either through a central hub
in a geometric graph configuration [40], or as the Ravasz-
Barabási graph [3]. Details on the results obtained for the
reconstruction of such topologies can be found in Sec. 4 of the
Supplemental Material [32].

As a further validation of the methodology, we used
REDRAW to reconstruct the networks of n = 20 nodes shown
in Fig. 4, both assumed to be unknown. The coupling strength
among nodes was set as c = 50, and the thresholds of the
algorithm to ν = 0.65 and μ = 0.60 from Figs. 2(b) and 2(d).
All the other parameters were selected as before.

We find that the directionality and weights of all edges in the
regular network [Fig. 4(a)] are correctly inferred [Fig. 4(c)],

with the only exception of a missing link from node 2 to
node 4.

The introduction of five long-distance edges [Fig. 4(b)] is
well captured by the topology inferred in Fig. 4(d), leading to
the formation of an equal number of clusters [nodes 1–4, 5–8,
9–12, 13–16, and 17–20]. For each of the five nodes being
influenced by one of the additional links (nodes 4, 8, 12, 16,
20), no outgoing links are inferred. This is a result of the model
described in Eq. (6): for instance, the phase of node 4 is lowered
by the influence of node 19, thus leading to higher mismatches
of the former with nodes 5 and 6 (similar reasoning can be
carried out for nodes 8, 12, 16, and 20). However, note that
such edges can be inferred when selecting lower values for the
thresholds.

Lastly, we applied REDRAW to reconstruct some real-
world network topologies from the literature [27–31], and
explored the effects of noise and uncertainty on the measured
phases (see Sec. 5 of the Supplemental Material for the effects
of noise and uncertainty on the measured phases [32]).

The values of the four reconstruction metrics are detailed
in Table I for the various topologies considered in this work,
together with their structural parameters, the value of the
coupling strength c used in Eq. (6) and selected in order for the
network to achieve phase locking, and that of the thresholds
ν and μ used for the reconstruction and selected according to
Sec. 2 of the Supplemental Material [32]. All other parameters
were kept as in the previous examples. Assuming PPV, ACC,
TPR > 50% for the first three metrics and FPR < 10% for the
last one as acceptability criteria, Table I shows the effectiveness
of REDRAW in inferring networks of different size (the criteria
are met in 91% of the cases).

For all the topologies considered in this work, we quantified
the performance metrics for different numbers of experiments
K and observed how, for a sufficiently high number of
repetitions, REDRAW is not sensitive to the specific value of
K . For the sake of brevity, we reported here only results for the
case K = 50; in fact, when K � 50, possible fluctuations of
the metrics are negligible. For more details on the performance
of REDRAW for different numbers of experiments, see Sec. 3
of the Supplemental Material [32].

Remark 4. Suppose an external field drives a set of physi-
cally disconnected nodes towards the same trajectory. If only
the signals generated by such nodes were provided and no
information was given on the presence of the forcing field,
false positives would be inferred by REDRAW. However,
if the signal generated by the forcing field was available as
well, the external source could be treated as an additional
node in the network and the performance of the algorithm
would significantly improve by means of the DPI techniques of
Step 5.

IV. CONCLUSION AND DISCUSSION

We presented an effective reconstruction method to infer
directed and weighted topologies of networks of heteroge-
neous nonlinear oscillators from data on their dynamics. We
tested the strategy on a number of different examples, showing
that in all cases the methodology guarantees good accuracy
and an extremely low number of false positives, which
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TABLE I. Validation of REDRAW. This table shows the four performance metrics obtained for different topologies, together with their own
number of nodes n and edges e, respectively. The values of coupling strength c and thresholds ν and μ employed in the numerical simulations
are detailed as well.

Topologies n e c ν μ PPV (%) ACC (%) TPR (%) FPR (%)

Enzyme-catalyzed reaction pathway [27] 8 7 20 0.90 0.75 100 100 100 0
Songbird brain [28] 12 13 35 0.90 0.65 63 93 77 5
Bank stocks connections [29] 16 32 40 0.80 0.70 56 87 16 2
Regular network 20 40 50 0.65 0.60 100 99 97 0
Rewired network 20 45 50 0.65 0.60 67 92 67 4
Human PPI [30] 23 22 40 0.80 0.50 100 98 45 0
Human PPI [30] 25 27 50 0.80 0.65 56 96 44 2
Hainan Power Grid Company [31] 48 63 150 0.60 0.60 52 97 62 2

might occur when physically disconnected nodes are coin-
cidentally characterized by similar oscillation frequencies and
phases.

REDRAW can be applied to reconstruct the interactions
among any nodes exhibiting oscillatory dynamics, as long as
their phase trajectories are available. In this work, we tested the
algorithm on networks of Kuramoto oscillators only as a case
study. Other possibilities include, for instance, networks of
Lorentz or Rössler oscillators, whose phases can be estimated
by means of the techniques proposed in [41,42].

Currently, we are applying the algorithm to reconstruct
networks of social interactions in groups of individuals moving
in synchrony [43–45]. Such results are beyond the scope of this
work and will be presented elsewhere.
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