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Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics
and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can
induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model
of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in
inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase
synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and
interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized
oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf
bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors
the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the
emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling
not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.
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I. INTRODUCTION

Complex patterns are observed in a wide variety of
natural systems including physical, biological, and chemical
systems [1–7]. A system of coupled oscillators serves as an
excellent framework to unravel and to enhance our understand-
ing on the underlying dynamics of many complex systems. For
example, studies revealed that the large scale synchronization
observed in neural networks is linked to several neurological
diseases like essential tremor and tremor in Parkinson’s
disease [1–3]. Similarly, the suppression of normal sinus
rhythm of pacemaker cells and other oscillation suppressions
can now be understood in terms of the interaction of oscillators
in the network [4,5]. Oscillation death (OD) observed in
coupled oscillators has been interpreted as a background
mechanism of cellular differentiation and amplitude death is
being used as a mechanism for stabilization of physical or
chemical systems [6,7].

Spontaneous symmetry breaking (SSB) [8] is a phe-
nomenon that can facilitate the onset of a rich variety
of complex patterns observed in several natural systems.
In SSB, asymmetric states arise from symmetric systems
spontaneously as a control parameter is varied. In other
words, the resultant asymmetric states do not show invariance
under certain symmetry operations despite the equations of
motion of the system exhibiting such an invariance. SSBs
can be widely observed in various natural systems including
physical, biological, and chemical systems [8–16]. In the
physical context, the understanding of SSB is central to the
development of particle physics and many body theory [8].
Considering biological systems, SSB is crucial for cell
movement, polarity, and developmental patterning and is
closely related to functional diversification on every scale,
from molecular assemblies to subcellular structures, cell types
themselves, tissue architecture, and embryonic body axes [12].
The phenomenon of SSB helps in the formation of Turing

patterns in organisms [15]. SSB also leads to the complex
pattern formation in brain dynamics [16].

Among the various types of interactions considered in the
literature, attractive (excitatory) and/or repulsive (inhibitory)
couplings are found in a variety of biological, chemical,
and physical systems. For example, in the case of neural
networks [17,18], the suprachiasmatic nucleus in the brain
is proposed to have attractive and repulsive couplings [17] and
in neurons [18] excitatory and inhibitory synaptic couplings
are known to exist. The combination of positive and negative
feedbacks can be seen in genetic networks [19,20] as well.

In this article, we consider a system of two coupled
identical oscillators, namely the paradigmatic Stuart-Landau
limit cycle oscillators, with both attractive and repulsive
couplings, and investigate the effect of the trade-off between
them resulting in a rich variety of dynamical behaviors and
interesting multistabilities. The attractive coupling is known
to have the tendency to align the oscillators in an in-phase
synchronized (IPS) state [21]. In contrast, the repulsive
coupling has the tendency to align the oscillators in an
out-of-phase synchronized (OPS) state [21]. We here deduce
the explicit expressions of these states, namely IPS, OPS, and
also OD states and study their stability with respect to the
attractive and repulsive coupling strengths. It is to be noted
that the explicit expressions for the IPS and OD states of
coupled Stuart-Landau oscillators are well reported [22–24]
whereas the explicit expression for the OPS state has not yet
been reported for coupled dynamical systems other than the
phase only models. Further, with numerical analysis, we show
the existence of SSB state due to the trade-off between the
attractive and repulsive couplings in a homogeneously coupled
system. Also, we demonstrate that the attractive coupling
favors the emergence of an antisymmetric OD state via a
Hopf bifurcation whereas the repulsive coupling favors the
emergence of a similar state through a saddle-node bifurcation.
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We also find the reentrance of the in-phase synchronized state
as the strength of the repulsive coupling is increased, which is
a counterintuitive behavior.

The plan of the paper is as follows. In Sec. II, we present
the model under consideration. In Sec. III, we will investigate
the existence and stability of different states in the symmetric
and antisymmetric subspaces. In Sec. IV, we illustrate the
bifurcations leading to the oscillation death state and elucidate
the appearance of symmetry breaking oscillations through
the trade-off between attractive and repulsive couplings.
Then in Sec. V, we consider the spontaneous symmetry
breaking OD state in the attractively coupled system and show
that the introduction of repulsive interaction destabilizes the
spontaneous symmetry breaking OD state. Finally in Sec. VI,
we summarize the above results.

II. MODEL

We consider the coupled version of a simple, paradigmatic
model, namely the Stuart-Landau oscillator [21], representing
a normal form of the Hopf bifurcation [25,26]. It is known that
weakly nonlinear oscillators can be modeled by the Stuart-
Landau equation [25] near Hopf bifurcation. For example, the
usefulness of such a model in studying neural networks has
been explored in [27,28]. A system of two coupled Stuart-
Landau oscillators with combined attractive and repulsive
couplings is represented by

żj = f (zj ) + ε1(Re[zk − zj ]) − iε2(Im[zk − zj ]), (1)

where the state variables zj = xj + iyj ∈ C, f (zj ) = (λ +
iω − |zj |2)zj , j,k = 1,2, and k �= j . In (1), λ and ω correspond
to the Hopf bifurcation parameter and natural frequency of the
systems, respectively. Note that the attractive coupling (pos-
itive feedback) among the identical oscillators is established
through the variables xj , while the repulsive coupling (negative
feedback) is achieved through the variables yj .

The emerging dynamics of the system (1) in the presence
of either the attractive coupling alone [6,22] or the repulsive
coupling [29–31] has been well studied. Efforts have also been
taken to study the underlying dynamics in the presence of both
attractive and repulsive couplings mostly in the phase oscil-
lators (cf. [32–38]), which include the conformist-contrarian
models [33,34], models with spin glass type interactions [36]
and models with dynamically varying attractive and repulsive
interactions or adaptive interaction [37,38]. In contrast, we
consider both the amplitude and phase effects in demonstrating
our results. Considering such general oscillators, only a very
few works have been reported in the presence of both the attrac-
tive and repulsive couplings [39–41] under different contexts.
The phenomenon of spontaneous symmetry breaking leading
to heterogeneous dynamical nature (asymmetric states) due
to the trade-off between the two couplings has not yet been
demonstrated in any of these works.

In most of the earlier works (cf. [32–34]), the coupling is
designed in such a way that few of the oscillators in the network
experience attractive coupling while the remaining experience
repulsive coupling. In our case, both the systems in Eq. (1) are
coupled with both attractive and repulsive interactions through
different variables. The homogeneously coupled system in (1)
with attractive-repulsive interactions exhibits (i) permutational

or translational symmetry z1 → z2 and (ii) permutational
parity symmetry z1 → −z2. In the following, we show that in a
certain range of parameters, the dynamics of the homogeneous
system (1) becomes heterogeneous due to the SSB. We
also note here that the attractive-repulsive couplings in (1)
explicitly break the rotational symmetry present in the isolated
Stuart-Landau oscillators.

III. DYNAMICS AND STABILITY OF DIFFERENT STATES

To study the dynamics of the considered coupled system,
we first rewrite Eq. (1) in terms of the symmetric (z+) and
antisymmetric (z−) variables

z+ = (z1 + z2)

2
, z− = (z1 − z2)

2
. (2)

Equation (1) in terms of these new variables is given by

ż+ = 1
2 [f (z+ + z−) + f (z+ − z−)],

ż− = 1
2 [f (z+ + z−) − f (z+ − z−)]

− 2ε1Re(z−) + i2ε2Im(z−). (3)

In the in-phase subspace, Z+ = {(z+,z−)|z− ≡ 0}, and in
the antisymmetric subspace, Z− = {(z+,z−)|z+ ≡ 0}. Thus in
the symmetric and antisymmetric subspaces, the dynamical
equations can be reduced, respectively, to

ż+ = f (z+), ż− = 0, (4)

and

ż− = f (z−) − 2ε1Re(z−) + 2iε2Im(z−), ż+ = 0. (5)

Note that the dynamical equation in the symmetric subspace is
similar to the independent Stuart-Landau oscillator so that the
periodic oscillations in this subspace are found to be identical
to the one observed in the isolated Stuart-Landau oscillator.
But in the antisymmetric subspace, the orbits differ from the
one observed in the isolated Stuart-Landau oscillator. In the
following, we present the explicit expressions for the different
oscillatory states, steady states, and their stabilities.

(a) Dynamical states in symmetric subspace. Solving
Eq. (4) given above, the periodic orbits in the symmetric
subspace can be written as

z∗
+ =

√
λeiωt . (6)

Remembering z− = 0 in the symmetric subspace, we can write

z∗
1 = z∗

2 =
√

λeiωt . (7)

To know the stability of the above periodic orbit, we perturb it
with slowly varying amplitudes in the form

z1 =
√

λeiωt + η(t), z2 =
√

λeiωt + ζ (t), (8)

where η(t) and ζ (t) are the perturbing terms and η = η1 +
iη2 ∈ C and ζ = ζ1 + iζ2 ∈ C. Now substituting (8) in the
system of equations (1) and by linearizing the resultant
equations, we get

η̇ = (−λ + iω)η − λη∗e2iωt + ε1Re(ζ − η) − iε2Im(ζ − η),

ζ̇ = (−λ + iω)ζ − λζ ∗e2iωt + ε1Re(η − ζ ) − iε2Im(η − ζ ).

(9)
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FIG. 1. Boundaries of stable regions of IPS, OPS, and OD states.
The area below the line (red line) with filled circles corresponds to the
stable IPS state. The area that lies between the ε2 axis and the curve
(blue line) with filled squares represents the stable region of OPS state
and the area that lies above the smooth line (green line) corresponds
to the OD state. The boundaries corresponding to IPS and OPS states
are obtained through Floquet multipliers. The boundary of the OD
state is obtained from the linear stability of inhomogeneous steady
states (14).

Integrating the above equation until t = T = 2π
ω

, we
determine the Floquet multipliers ρi (i = 1, . . . ,4) from the
fundamental matrix [42,43]. As long as the four eigenvalues
lie within the unit circle on the complex plane, the periodic
orbit is stable.

From the Floquet multipliers that are obtained for different
values of ε1 and ε2, we have depicted the boundary of stable
regions of symmetric periodic orbits [in-phase synchronized
state (IPS)] in Fig. 1. The area under the curve (line) with filled

circles is the stable region of the IPS state. From the figure, it
is obvious that the introduction of ε2 shortens the stable region
of IPS state and after a critical value of ε2, the IPS state is not
stable for any value of ε1.

Other than the above symmetric periodic oscillations, a
trivial steady state (z1,z2) = (0,0) is found to exist in the
symmetric subspace, which is unstable for all parametric
values. So it is not interesting physically.

(b) Dynamical states in the antisymmetric subspace. We
have also deduced the solution of the corresponding dynamical
equation in the antisymmetric subspace (5) with some effort
as

x−(t) = e(λ1+ε̄)t cos(θ )

{C + e2t(λ1+ε̄)[Q0 + Q1 cos(2θ ) − Q2 sin(2θ )]}1/2
,

y−(t) = −1

ω
(ε̄ −

√
ω2 − ε̄2tan(θ ))x−(t), (10)

where θ = √
ω2 − ε̄2 t − δ, ε̄ = ε1 + ε2, λ1 = λ − 2ε1, and C

and δ are integration constants. The other constants Q0, Q1,
and Q2 are

Q0 = 1

λ1 + ε̄
, Q1 = ε̄(λ1ε̄ + ω2)

ω2
(
λ2

1 + 2ε̄λ1 + ω2
) ,

Q2 = ε̄λ1

√
ω2 − ε̄2

ω2
(
λ2

1 + 2ε̄λ1 + ω2
) . (11)

The solution in (10) is found to be periodic when ω > ε̄. In
this case, we can write the state variables xi and yi , i = 1,2,

in the asymptotic limit (t → ∞) as

x
p

1 (t) = cos(
√

ω2 − ε̄2t)

(Q0 + Q1 cos(2
√

ω2 − ε̄2t) − Q2 sin(2
√

ω2 − ε̄2t))1/2
,

y
p

1 (t) = −1

ω

(ε̄ cos(
√

ω2 − ε̄2t) − √
ω2 − ε̄2 sin(

√
ω2 − ε̄2t))

(Q0 + Q1 cos(2
√

ω2 − ε̄2t) − Q2 sin(2
√

ω2 − ε̄2t))1/2
, (12)

with x
p

2 = −x
p

1 and y
p

2 = −y
p

1 .

When ω < ε̄, the solution in (10) implies that the system
tends toward a steady state. In this parametric range, it can be
rewritten as

x−(t) = 1√
2

1 + e−2θ ′

D1
,

y−(t) =
[

−ε̄

ω
+

√
ε̄2 − ω2

ω

(
e−2θ ′ − 1

e−2θ ′ + 1

)]
x−(t), (13)

where D1 = [2Ce−2t(λ1+ε̄)−2θ ′ + 2Q0e
−2θ ′ + (Q1 − iQ2) +

(Q1 + iQ2)e−4θ ′
]1/2 and θ ′ = √

ε̄2 − ω2t + iδ. In the asymp-
totic limit t → ∞, x− and y− tend to constant values leading
to a pair of steady states given by

x∗
1 = ±ω

(
(λ1 + ε̄) + √

ε̄2 − ω2

2ε̄(ε̄ + √
ε̄2 − ω2)

)1/2

,

y∗
1 = − (ε̄ + √

ε̄2 − ω2)

ω
x∗

1 , (14)

with x∗
2 = −x∗

1 and y∗
2 = −y∗

1 . In the above, the ± in x∗
1 ap-

pears due to the fact that if (x−(t),y−(t)) is a solution of Eq. (5),
( − x−(t), − y−(t)) will also be a solution. Stabilization of
such inhomogeneous steady states leads to the phenomenon of
oscillation death (OD) [7,24,44,45].

Now we have to look at the stability of the above obtained
states. For this purpose, we perturb the antisymmetric periodic
solution as

x1 = x
p

1 + η1, y1 = y
p

1 + η2,

x2 = −x
p

1 + ζ1, y2 = −y
p

1 + ζ2, (15)

where ηi,ζi , i = 1,2 are the perturbation terms. By substituting
them in the system of equations (1) and by linearizing, we
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obtain

η̇1 = (
λ − 3x

p

1
2 − y

p

1
2)

η1 − (
ω + 2x

p

1 y
p

1

)
η2 + ε1(ζ1 − η1),

η̇2 = (
λ − x

p

1
2 − 3y

p

1
2)

η2 + (
ω − 2x

p

1 y
p

1

)
η1 − ε2(ζ2 − η2),

ζ̇1 = (
λ − 3x

p

1
2 − y

p

1
2)

ζ1 − (
ω + 2x

p

1 y
p

1

)
ζ2 + ε1(η1 − ζ1),

ζ̇2 = (
λ − x

p

1
2 − 3y

p

1
2)

ζ2 + (
ω − 2x

p

1 y
p

1

)
ζ1 − ε2(η2 − ζ2).

(16)

Note that the solution given in (12) is periodic with respect
to the period 2π√

ω2−ε̄2 . The corresponding out-of-phase oscilla-
tions (OPSs) are found to be stable in the area enclosed by the
line with filled squares and the ε2 axis (see Fig. 1).

Whenever ω < ε̄, the solution (10) tends to a pair of
antisymmetric steady states as given in (14). We have studied
the stability of these states and found that the corresponding
eigenvalues are given by

μ1,2 = −2r∗2 + λ ±
√

r∗4 − ω2,

μ3 = −2r∗2
, μ4 = −2r∗2 − 2�ε + 2,λ, (17)

where r∗2 = x∗
1

2 + y∗
1

2 = λ − �ε + √
ε̄2 − ω2 and �ε =

ε1 − ε2. The stable region of such inhomogeneous steady
states is also depicted in Fig. 1. These steady states exist
when ε1 > ω − ε2 [as the solution given in (10) does not
represent oscillatory dynamics but represents a stable steady
state]. From Fig. 1, it is also clear that upon varying the value
of ε1 there exists a direct transition from a stable antisymmetric
oscillatory state (OPS) to a stable OD state (indicated by a solid
line) beyond a critical value of ε2(≈0.76). On the contrary, for
lower values of ε2 (ε2 < 0.76), these inhomogeneous steady
states are not stabilized immediately upon destabilization of
the OPS state.

IV. SPONTANEOUS SYMMETRY BREAKING
OSCILLATIONS

Theoretical studies in the earlier section deals only with
explicit expressions for the states that exist in symmetric
and antisymmetric manifolds, whereas the explicit expressions
characterizing the existence of asymmetric states could not be
deduced in the previous section. However, while studying the
dynamics of system (1) numerically, we are able to observe that
the system also has states that are asymmetric. In connection
with this, in this section we show the emergence of asymmetric
states or spontaneous symmetry broken states with suitable
bifurcation diagrams.

To begin with, we have depicted the bifurcation diagram of
system (1) in the absence of the repulsive coupling (ε2 = 0) in
Fig. 2(a), where the stabilization of the oscillatory branch in
the range ε1 = (1,5) is shown. This oscillatory branch refers
to the IPS state given in (7) where its amplitude takes up the
value

√
λ.

Since the system loses its rotational symmetry while ε1 �= 0
and ε2 = 0, an increase in the value of ε1 in the region R2 leads
to a state which does not have rotational symmetry, namely the
oscillation death (OD) state deduced in (14). Figure 2(a) shows
that this OD state stabilizes through a Hopf bifurcation.
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x
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543210
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0
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IPS

HB OD

1

x
1

21.510.50

1

0

-1

(a)

(b)

FIG. 2. Bifurcation diagrams of the system given in Eq. (1)
for λ = 1.0, ω = 2.0 and for (a) ε2 = 0, (b) ε2 = 0.4. Here the
bifurcation diagrams are obtained with respect to ε1, by using the
software XPPAUT. The lines with filled circle and square represent the
maxima and minima of the stable IPS and OPS states, respectively,
and the lines (blue colored) with empty circle and square represent
the unstable nature of the IPS and OPS states, respectively. The
continuous (red) and dashed black lines, respectively, indicate the
stable and unstable steady states. HB represents the Hopf bifurcation
point. R1, R2, R3, and R4 indicate different regions, where R1

corresponds to stable IPS state, R2 indicates multistability between
IPS and OD, R3 indicates stable region of OPS state, and R4 indicates
the multistability between IPS and OPS. (a) Transition: IPS → IPS
+ OD, (b) Transition: OPS → OPS + IPS → IPS → IPS + OD.

Now by introducing a counteracting repulsive coupling,
we have plotted the bifurcation diagram as a function of ε1

in Fig. 2(b) for ε2 = 0.4. It shows the emergence of a new
branch of stable oscillatory solution in the region R3 and
the temporal behavior of this oscillatory state confirms it to
be an antiphase or out-of-phase synchronized (OPS) state
represented by Eq. (12). The repulsive coupling facilitates
the emergence of OPS oscillations by destabilizing the IPS
oscillations in the region R3. By increasing the strength of
the attractive coupling ε1, the stabilization of IPS oscillations
can be seen in Fig. 2(b) and the emerging IPS oscillations are
found to coexist with the OPS oscillations in the region R4.
Further larger values of ε1 destabilize the OPS in the region
R1 and stabilize the OD state in the region R2 as is evident
from Fig. 2(b).

Now we will discuss the observed dynamical transitions
for a further larger value of ε2, namely ε2 = 1.0. We have
plotted the bifurcation diagram illustrating the stable nature of
various dynamical states in Fig. 3. We can infer from Fig. 3 that
the stable range of OPS states (indicated by lines connecting
filled squares) is increased (it is found to be stable in the
regions R3, R5, and R4) and it touches the boundary of the
OD region. This elucidates that as noted during the theoretical
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FIG. 3. Bifurcation diagram of the system given in Eq. (1) for λ =
1.0, ω = 2.0, and for ε2 = 1.0. The stable and unstable IPS, OPS, and
OD states are represented as in Fig. 2. Here, we see the appearance of
a new branch, namely a symmetry breaking oscillatory (SBO) branch
which gets stabilized through an inverse torus bifurcation (TR). The
stable part of this branch is represented by lines (magenta colored)
with filled triangles and their unstable nature is represented by empty
triangles. Regions R2, R3, and R4 have the same representation as
given in Fig. 2. R5 represents the stable region of SBO state and OD
state alone is stable in R6.

analysis given in Sec. III there exists a direct transition from an
antisymmetric oscillatory state to an antisymmetric OD state
where the OD state appears through a saddle-node bifurcation.
Thus, in contrast to the dynamical transition discussed in Fig. 2,
here the strong repulsive coupling favors the onset of the OD
state through a saddle-node bifurcation. This is in contrast to
the OD state which appears through a Hopf bifurcation for
lower values of the repulsive coupling as shown in Fig. 2. It
is also evident from Fig. 3 that the range of the IPS state gets
reduced and is found to be stable only in the regions R4 and R2

as a result of the repulsive coupling. The stable region of the
IPS state is suppressed not only for smaller values of ε1 but also
for higher values of ε1 (Note that the branch corresponding to
the IPS state is unstable not only in the regions R3 and R5 but
also in the region R6.) Such a bidirectional destabilization of
the IPS state is surprising, as one would expect that the stability
of this state in the lower range of ε1 alone will be affected by the
increase in ε2. But we observe a counterintuitive phenomenon
in Fig. 3 where the IPS state is unstable for larger values of ε1

also, that is in the region R6. This type of destabilization of the
IPS state destroys the multistability between the oscillatory
IPS state and the OD state.

Another important dynamical behavior that can be observed
from Fig. 3 is the one that arises before the stabilization of the
IPS state. In this region R5, there arises a new oscillatory
branch (represented by magenta colored line with filled
triangles in Fig. 3) that has not been identified in our theoretical
studies. We label it as the symmetry breaking oscillatory
(SBO) branch or asymmetric branch and is stabilized through
an inverse torus bifurcation. Due to the above bifurcation,
quasiperiodic oscillations are found to coexist with unstable
SBO limit cycles near the boundary of R3 with R5 and at the bi-
furcation point TR, a transition from quasiperiodic oscillations
to stable limit cycle oscillations occurs. In the stable regions of
quasiperiodic and periodic SBO oscillations, the permutational
or translational symmetry (z1 → ±z2) of the system is broken
spontaneously as will be elucidated in the following.
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FIG. 4. Figures (a)–(h) show the temporal behavior and phase
portraits of the states observed in Fig. 3, namely the OPS state, SBO
state, and IPS state. These figures have been plotted for (a) and (b)
ε1 = 0.7 (OPS state), (c) and (d) ε1 = 0.77 (SBO state, quasiperiodic
oscillations), (e) and (f) ε1 = 0.79 (SBO state, periodic oscillations),
and (g) and (h) ε1 = 0.85 (IPS state).

To demonstrate that the newly observed branch is attributed
to symmetry breaking oscillations, in Figs. 4(a)–4(h) we have
plotted the temporal behavior and phase portraits of all the
oscillatory states observed in Fig. 3. The plots are arranged in
the order in which they appear while increasing the value
of ε1 in Fig. 3. We have depicted the temporal behavior
and the phase portrait of the OPS state, respectively, in
Figs. 4(a) and 4(b) for ε1 = 0.7. From Fig. 3, it is evident
that the SBO state coexists with the OPS state in the range
of ε1 = (0.77,0.81). Stabilization of SBO state occurs via the
emergence of quasiperiodic oscillations at the boundary of R3

and R5, as shown in Figs. 4(c) and 4(d). Inside the region R5,
this SBO state becomes periodic and its temporal behavior
and the corresponding phase portrait are shown in Figs. 4(e)
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FIG. 5. Bifurcation diagram of the system given in Eq. (1) for
λ = 1.0, ω = 2.0, and for ε2 = 1.5. The stable and unstable nature of
IPS, OPS, and OD states are represented as in Figs. 2 and 3. Similarly,
the representations R2, R3, and R6 are used as in Figs. 2 and 3.

and 4(f) for ε1 = 0.79. Further, an increase in ε1 leads to the
IPS oscillations as shown in Figs. 4(g) and 4(h) for ε1 = 0.85.

Now by comparing the temporal behaviors of different
oscillatory states in Figs. 4(a)–4(h), it is clear that the OPS
oscillations and IPS oscillations preserve the z1 → ±z2 (or
x1 → ±x2 and y1 → ±y2) symmetries of the system. The ex-
act matching of the x1-y1 trajectory with the x2 − y2 trajectory
in Figs. 4(b) and 4(h) also corroborates the same. On the other
hand, for the SBO states, Figs. 4(c) and 4(e) indicate that the
amplitudes of y1 and y2 (also x1 and x2) are different from each
other thereby elucidating the violation of permutational and
permutational parity symmetries z1 → ±z2. Further, Figs. 4(d)
and 4(f) show that the trajectory x1 − y1 does not at all
match that of x2 − y2. This type of heterogeneous dynamics in
the homogeneously coupled system represents the underlying
spontaneous symmetry breaking of the system. As this state
emerges by breaking the symmetry of the considered system
given in Eq. (1), this state is called the symmetry breaking
oscillatory (SBO) state.

Increasing the value of ε2 to 1.5, the associated bifurcation
diagram is depicted in Fig. 5. Here the OPS oscillations that
appear for lower values of ε1 lose their stability through
saddle-node bifurcation and give rise to the OD state. Further,
the range of stable OPS states no longer widens for even
larger ε2. On the other hand, suppression of the OPS state
is complemented with the spread of the stable OD region.

This is because on increasing the values of ε1 and ε2, the
tendency of explicit rotational symmetry breaking dominates
all the other observed dynamical states. The stable range of
IPS states is also suppressed to a large extent and it does not
touch the boundary of the OPS oscillations in R3 as can be seen
in Fig. 5. As the SBO states arise at the boundary of the IPS
oscillations with OPS oscillations (see R5 in Fig. 3), the SBO
oscillations no longer exist in this case. It is also to be noted
that the antisymmetric OD state appears through a saddle-node
bifurcation even for lower values of ε1 than that in Fig. 3 for
ε2 = 1.0. This elucidates the fact that the repulsive coupling
facilitates the transition from the OPS to the OD state through
a saddle-node bifurcation.

We have also depicted the bifurcation diagrams with respect
to ε2 for various values of ε1 in Figs. 6(a)–6(c). We find from
Fig. 6(a) that when ε1 = 0, there are two stable states, namely
(i) antiphase oscillations and (ii) the OD state. The transition
from the former to the latter occurs through a saddle-node
bifurcation. Increasing the value of ε1 to ε1 = 0.78, we have
plotted the bifurcation diagram in Fig. 6(b). It is evident from
the figure that only the IPS state is stable for lower values of
ε2 and then in R4, the OPS state gets stabilized along with the
IPS state. Further increase in ε2 destabilizes the IPS branch as
seen in the region R3 of Fig. 6(b). After the region R3, we find
that in the region R5, the asymmetric state gets stabilized along
with the OPS state. Increasing ε2 further, the IPS state again
becomes stable by the destabilization of the SBO state. Thus it
leads to the reentrance of the IPS state as a function of ε2 which
is explicitly dealt with in Sec. IV B. For further larger values of
ε2, Fig. 6(b) shows that the OD state is the only stable state. The
bifurcation diagram for ε1 = 1.5 is depicted in Fig. 6(c), which
clearly shows that the only stable states for this value of ε1 are
(i) IPS and (ii) OD states. By increasing ε2, we observe a tran-
sition from the IPS oscillatory state to the steady state through
a Hopf bifurcation, whereas in the previous cases [in Figs. 6(a)
and 6(b)] we observed a transition from the OPS state to the OD
state through a saddle-node bifurcation for lower values of ε1.

A. Trade-off between attractive and repulsive couplings in
(ε1,ε2) space

From the numerical results, the stable regions of observed
dynamical states are now illustrated in the (ε1, ε2) space in
Fig. 7(a). It clearly shows that the repulsive coupling does
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FIG. 6. Bifurcation diagrams for different values of ε1: (a) ε1 = 0.0, (b) ε1 = 0.78, (c) ε1 = 1.5 with λ = 1.0 and ω = 2.0. The representation
of different states such as IPS, OPS, SBO, and OD are made similar to Figs. 2 and 3. The various regions are also named in a similar fashion
used in the earlier figures. (a) Transition: OPS → OD, (b) IPS → IPS + OPS → OPS → OPS + SBO → IPS + OPS → IPS + OD → OD,
(c) IPS → IPS + OD → OD.
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FIG. 7. (a) Stable regions of different states in the (ε1, ε2) parametric space. In (b), for different values of ε1,ε2, we have calculated the
transient time (Ttr) that the system will take to reach either of the symmetric states, namely OPS and IPS oscillatory states by noting the
time at which the amplitudes of z1 and z2 become the same. To obtain (b), we have fixed the initial conditions as z1(0) = 1.0 + 0.1i and
z2(0) = 2.0 + 0.5i.

not favor the stabilization of the IPS state and the attractive
coupling does not favor the existence of the OPS state. But
both the couplings favor the existence of the antisymmetric
OD state, in the strong coupling limits.

Having known the tendencies of attractive and repulsive
couplings, now we look into the competing effects of these
two couplings in Fig. 7(a). When both ε1 and ε2 ( �= 0) are
small, the competition among the two opposing tendencies are
weak so that an increase in ε1 for a particular lower value
of ε2 causes the destabilization of OPS oscillations while it
simultaneously stabilizes the IPS oscillations. On the contrary,
an increase in ε2 for a particular value of ε1 gives rise to a
destabilization of the IPS state and stabilization of the OPS
state. But when both ε1 and ε2 are increased, the competition
among the attractive and repulsive couplings becomes strong.
Hence, while increasing ε1 for a particular large value of
ε2, the OPS oscillations will not lose their stability at the
onset of the IPS oscillations. The OPS oscillations retain their
stability after the IPS state becomes stable and so there arises
multistability among the OPS and IPS oscillations. Thus the
trade-off between attractive and repulsive couplings facilitates
the coexistence of inherently contrasting oscillating states,
namely the in-phase and out-of-phase oscillatory states.

On increasing the values of both ε1 and ε2 further, the
competition among them becomes more intense resulting in
an intricate dynamics. In this case, in addition to the observed
multistability between IPS and OPS states, we observe another
interesting phenomenon, namely SSB. In particular, in the
range ε2 ∈ (0.89,1.3), an increase in ε1 does not lead to the
sudden appearance of the IPS state in the OPS region giving
rise to a multistability between the IPS and OPS states. In
this range of ε2, the permutational or translational symmetry
of the coupled system (1) is broken spontaneously giving rise
to symmetry broken oscillatory state before the IPS state gets
stabilized.

The above tendency of SSB not only exists for larger values
of ε1 and ε2 but exists for lower values as well. However, the
SBO states are not stable in these regions. Thus for lower
values of ε1 and ε2, the asymmetric states are found to appear

as transients along the boundary of the IPS oscillations with the
OPS oscillations. At this boundary, such asymmetric transient
behavior persists for a considerably longer period of time. To
validate this observation, we have illustrated the transient time
[see Fig. 7(b)] taken by system (1) to reach either the OPS or
IPS oscillatory state starting from the fixed initial conditions
z1(0) = 1.0 + 0.1i and z2(0) = 2.0 + 0.5i. Excluding the OD
regions, it is evident from the figure that the transient time
is lesser everywhere (yellow or shaded ones) except at the
boundary of the IPS state with the OPS state which can be seen
by a set of dark (black) spots at their boundary in Fig. 7(b)
corroborating the existence of a larger transient region. By
comparing this curve with Fig. 7(a), it is evident that it lies at
the boundary of the IPS state with the OPS state. The unshaded
areas in Fig. 7(b) denote the stable regions of the SBO state
where the system remains in this state over infinitely long
time. Thus it is clear from the above discussion that the trade-
off between attractive and repulsive couplings leads to the
manifestation of SSB in the coupled oscillators.

In order to explain how the trade-off between the considered
couplings result in the SBO states, we express the state
variables zj ’s in polar form zj = rj (t)eiθj (t). In Figs. 8(a)–8(c),
we have depicted the snapshots of the system in terms of
these polar coordinates for the OPS, SBO, and IPS states,
respectively. It is known that the nature of the repulsive
coupling is to separate the oscillators apart from each other.
In separating the two oscillators apart, the repulsive coupling
finds a restriction implied by the symmetry of the underlying
evolution equation (that is the permutational symmetries).
Thus the two oscillators are restricted to evolve in the same
orbit but with π phase difference. This can be seen clearly
in Fig. 8(a), a snapshot obtained for ε2 = 1.0 and ε1 = 0.7.
This figure shows that the phase of the first (filled circle)
and second (filled square) oscillators (θ1, θ2) are separated
by an angle π and the radius r1 and r2 are found to be the
same. In contrast, the attractive coupling tends to align the
components of the coupled system to evolve in phase with
each other. Thus an increase in the value of the attractive
coupling to ε1 = 0.79 tends to bring the two oscillators closer
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FIG. 8. The state of the two oscillators at a particular time in polar coordinates. Here, filled blue circles represent the state of the first
oscillator and the filled red squares represent the state of the second oscillator at a particular time. Panel (a) is plotted for ε1 = 0.7, ε2 = 1.0,
panel (b) is plotted for ε1 = 0.77, ε2 = 1.0 and panel (c) is plotted for ε1 = 0.85, ε2 = 1.0.

and it is evident from Fig. 8(b) that the phase difference
among the oscillators is reduced. But the repulsive coupling
strongly competes with the effect of the attractive coupling
in this region and prevents the oscillators from evolving in
phase with each other. Because of this trade-off between the
repulsive and attractive couplings, the symmetry of the system
is broken spontaneously for appropriate coupling strengths
and renders r1 and r2 to be different in Fig. 8(b). Hence, we
find the trajectories of z1 and z2 to be different in phase space
as depicted in Figs. 4(d) and 4(f). Increasing ε1 further, the
attractive coupling becomes more dominant so that the two
oscillators now follow the same path and their phases are also
found to be the same as is evident from Fig. 8(c).

It is also observed in Fig. 7(a) that the OPS state is not
destabilized with the stabilization of the SBO state. In other
words, the strong trade-off between the attractive and repulsive
couplings leads to a symmetry broken state for only certain
initial conditions and for other initial conditions the system
tends towards the symmetric OPS state (note that although the
symmetric state is stable along with the asymmetric state,
the symmetry in this parametric region is still said to be
spontaneously broken). Then there may arise a question of
how can the OPS state retains its stability for certain initial
conditions in the stable region of the SBO state and what are
the initial conditions that lead to SBO and OPS states? The
answer to the question is as follows: if the initial condition
of the system is almost antisymmetric [that is the regions in
which the signs of x1(0) and x2(0) are opposite or that of y1(0)
and y2(0) are opposite], the system can be easily stabilized to
the OPS state where the tendency to align the oscillators to
in-phase is weak. But if the initial conditions are symmetric
[the regions in which both x1(0) and x2(0) are of the same sign
and y1(0) and y2(0) are also of the same sign], the tendency to
align the oscillators to in-phase is strong so that for these initial
conditions the trade-off leads to symmetry broken oscillations.
To illustrate these facts clearly, we have plotted the basins of
attraction for different values of ε1 and for ε2 = 1.0 in Fig. 9.
Here the OPS state is the only stable state for ε1 = 0.75 as
all initial conditions lead to it as shown in Fig. 9(a). Now
increasing ε1 to 0.77, the SBO state simultaneously becomes
stable and here we find that the basins of attraction of the OPS
state lie in the regions where x1(0) and x2(0) are antisymmetric

[that is, the second and fourth quadrants of x1(0) − x2(0)
space]. But in the first and third quadrants, x1(0) and x2(0)
are of the same sign [note that y1(0) (=0.5) and y2(0) (=0.2)
are also of the same sign] and so the tendency of aligning the
oscillators in phase is strong here, which leads to the SBO state.
Similarly, in the multistable region of IPS and OPS states, the
basin of attraction of the IPS state lies in the same region where
the basin of attraction of the SBO state exists. To illustrate the
above, we have increased ε1 to 0.84 and 1.0 and depicted
the basins of attraction of the IPS and OPS states and that
of the IPS and OD states in Figs. 9(c) and 9(d), respectively.
From both figures, we observe that the basin of attraction of the
IPS state is concentrated in the first and third quadrants. This
shows that the tendency of aligning the oscillators to in phase
is strong in these regions of x1(0) − x2(0) space. This is the
reason why we observe the stabilization of the SBO state for
only such symmetric initial conditions and stabilization of the
OPS state for other initial conditions. Thus it is clear from the
above that the trade-off between the repulsive and attractive
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FIG. 9. The basins of attraction for different values of ε1 and for
ε2 = 1.0, ω = 2.0, and λ = 1.0: Here, we have fixed y1(0) = 0.5 and
y2(0) = 0.2 and found the basins of attraction of different states by
varying x1(0) and x2(0). Panels (a)–(d) are plotted respectively for
ε1 = 0.75, 0.77, 0.84, and 1.0.
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FIG. 10. (a) (i)–(iv) are plotted to demonstrate the reentrance of IPS state along the line L1 in Fig. 7(a) for different values of ε2. (b) (i)–(iii)
are plotted by varying ε1 along the line L2 in Fig. 7(a), showing the swing by mechanism exhibited by OD state.

couplings breaks the symmetry of the system spontaneously
and gives rise to SBO states.

B. Reentrant synchronization

Another observation that can be inferred from Fig. 7(a)
is the reentrance of the in-phase synchronized state through
the repulsive coupling. This is evident from Fig. 7(a) when
it is scanned along the line L1. We have also illustrated the
above through the temporal behaviors of the system as a
function of ε2 in Fig. 10(a). The latter shows that the IPS
oscillations which appear for ε2 = 0.5 [see Fig. 10(a) (i)]
become destabilized by the increase of ε2, thereby leading
to the OPS state as it was shown in Fig. 10(a) (ii) for ε2 = 0.8.
Further increase in ε2 makes the IPS state [Fig. 10(a) (iv)]
reappear after the SBO state [Fig. 10(a) (iii)]. It is well known
that the repulsive coupling has the tendency to oppose the IPS

oscillations whereas here we observe that the increase in the
repulsive coupling gives rise to the IPS state. This reentrance
of the IPS state can also be observed from Fig. 6(b). Such a
reentrance of a dynamical state as a function of a parameter is
referred to as a swing-by mechanism by Daido et al. [46] in
the presence of nonisochronicity.

A similar swinglike behavior can also be observed with
reference to the OD state while we scan along the line L2
in Fig. 7(a), where we find that for ε1 = 0.55, OD occurs as
shown in Fig. 10(b) (i). An increase in ε1 stabilizes the IPS state
(in addition to the stable OD state) as shown in Fig. 10(b) (ii)
for ε1 = 0.7. Further increase in ε1 causes a destabilization
of the IPS state and the OD alone is stable as shown in
Fig. 10(b) (iii). Thus for appropriate initial conditions near
the basin of attraction of the IPS oscillatory state, a swinglike
behavior is observed in the OD state by varying ε1 as shown
in Fig. 10(b).
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FIG. 11. Bifurcation diagrams for different values of ε2: (a) ε2 = 0.0, (b) ε2 = 0.5 for λ = 3.5 and ω = 2.0. The OD state that appears after
the pitchfork bifurcation in (a) is asymmetric and is called the symmetry breaking death (SBD) state which is suppressed in (b). In the region
of such asymmetric OD state, the antisymmetric OD state is not stable. Due to the above, we have shown the results of stability analysis on the
stable regions of antisymmetric OD state in (c) which shows the stable region of SBD state (deep pink shaded region) inside the stable region
of OD state (green shaded region).
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V. SUPPRESSION OF ASYMMETRIC OD STATE FOR λ > ω

In the absence of repulsive coupling, it has been shown
recently that there exists a spontaneous symmetry breaking
OD state for λ > ω. Such a state has been called the secondary
OD state in [22]. The appearance of such an asymmetric
steady state has also been shown in Fig. 11(a) for ω = 2.0
and λ = 3.5. In this figure, the antisymmetric OD state is
found to appear through saddle-node bifurcation as a function
of ε1. Such an OD state soon loses its stability through a
pitchfork bifurcation and it stabilizes the asymmetric fixed
points which are of the form (x∗

1 ,y∗
1 ,x∗

2 ,y∗
2 ) = (a∗

1 ,b
∗
1,a

∗
2 ,b∗

2),
where a∗

1 �= ±a∗
2 and b∗

1 �= ±b∗
2. These asymmetric fixed

points also break the symmetry of the system spontaneously
and these states can be called symmetry breaking death (SBD)
states. We here study whether the introduction of ε2 can support
this asymmetric state or not. For this purpose, we set ε2 = 0.5
and explore the bifurcation diagram in Fig. 11(b). The figure
clearly shows the disappearance of the SBD state and confirms
that the introduced ε2 does not support the SBD states. We have
also made sure of the above statement through the theoretical
results, and in Fig. 11(c) we have plotted the stable range of
the OD state from the results of stability analysis given in (17).
The green shaded regions in Fig. 11(c) represent the stable OD
region. Figure 11(c) shows that inside the green shaded region,
there exists a region (pink shaded) in which the OD state is
not stable. Now by comparing it with Fig. 11(a), we find that
this pink shaded region corresponds to the stable region of the
SBD state. Thus the figure clearly proves the suppression of
stable SBD region with an increase of ε2.

VI. SUMMARY

In this article, we have considered a simple paradigmatic
model of two coupled Stuart-Landau limit-cycle oscillators

with attractive and repulsive couplings and investigated the
dynamical behaviors as a result of the competing effects
of the two couplings. The system of coupled Stuart-Landau
oscillators studied in this paper has permutational symmetries
and these symmetries were found to be spontaneously broken
in a certain parametric region. We have shown that the
underlying reason for the appearance of such asymmetric states
is the trade-off between the attractive and repulsive couplings,
where the tendency of inducing in-phase oscillations competes
with the tendency of inducing out-of-phase oscillations. We
have also shown the appearance of multistabilities between
OPS, SBO, and IPS oscillations. Further, we have shown that
for λ < ω, the attractive coupling favors the emergence of the
antisymmetric OD state via a Hopf bifurcation whereas the
repulsive coupling favors the emergence of an antisymmetric
OD state through a saddle-node bifurcation. We have also
found the reentrance of the IPS state as the strength of the
repulsive coupling is increased, which is a counterintuitive
behavior, despite the suppression of the IPS state for lower
values of the repulsive coupling. Importantly, the explicit
expressions of the dynamical states such as IPS, OPS, and
OD states have also been obtained to study their stability.
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