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In this paper, we construct a special kind of breather solution of the nonlinear Schrödinger (NLS) equation,
the so-called breather-positon (b-positon for short), which can be obtained by taking the limit λj → λ1 of the
Lax pair eigenvalues in the order-n periodic solution, which is generated by the n-fold Darboux transformation
from a special “seed” solution–plane wave. Further, an order-n b-positon gives an order-n rogue wave under a
limit λ1 → λ0. Here, λ0 is a special eigenvalue in a breather of the NLS equation such that its period goes to
infinity. Several analytical plots of order-2 breather confirm visually this double degeneration. The last limit in
this double degeneration can be realized approximately in an optical fiber governed by the NLS equation, in
which an injected initial ideal pulse is created by a frequency comb system and a programable optical filter (wave
shaper) according to the profile of an analytical form of the b-positon at a certain position z0. We also suggest
a new way to observe higher-order rogue waves generation in an optical fiber, namely, measure the patterns at
the central region of the higher-order b-positon generated by above ideal initial pulses when λ1 is very close to
the λ0. The excellent agreement between the numerical solutions generated from initial ideal inputs with a low
signal-to-noise ratio and analytical solutions of order-2 b-positon supports strongly this way in a realistic optical
fiber system. Our results also show the validity of the generating mechanism of a higher-order rogue waves from
a multibreathers through the double degeneration.
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I. INTRODUCTION

During the past 50 years or so, it has been well established
that the nonlinear effects are responsible for many exciting
inventions. In particular, after the invention of several new
mathematical methods and use of supercomputers with the
help of advanced softwares, we observed an explosive growth
and many new concepts in nonlinear science and several new
nonlinear evolutions equations have been derived in different
branches of science. One of the remarkable solutions admitted
by nonlinear partial dispersive equations is the soliton-type
highly localized solutions. In this work, we consider one such
commonly known model of a dispersive nonlinear medium
with the cubic self-focusing nonlinearity, which is described,
both in optics [1–5] and in general [2,3], by the ubiquitous
nonlinear Schrödinger (NLS) equation for amplitude q of the
field envelope:

∂q

∂z
+ iβ2

2

∂2q

∂t2
− iγ |q|2q = 0, (1)

where q(z,t) is the envelope amplitude of the electric field at
position z in the system, and at time t in the moving frame. The
parameters β2 and γ designate the chromatic dispersion and
Kerr nonlinearity coefficients, respectively. The NLS equation
is one of the well-known completely integrable nonlinear
systems responsible for many technological developments.
Though this equation is well and widely studied in different
branches of science, after the introduction and derivation of
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rogue-wave-type rational solutions, a lot of re-research has
been started on NLS equation, which is evidenced through
a large number of publications in the recent past. This
equation gives rise to commonly known solitons, which
were experimentally generated in nonlinear optical fibers as
temporal pulses [6] and in planar waveguide as self-trapped
beams [7]. The NLS equation has also been derived in many
branches of physics. From the detailed investigations of this
equation during the past 40 years or so, it is well known that
NLS equation admits many types of solutions like solitons,
breathers, similaritons, etc. A variety of optical solitons
were studied in detail through theoretical and experimental
techniques in NLS-type equations, including spatiotemporal
solitons confined in both space and time, solitary vortices,
the Bragg solitons mentioned above and those supported
by non-Kerr nonlinearities (such as quadratic), discrete and
lattice self-trapped modes, breathers, dissipative solitons, etc.
(see, in particular, Refs. [8–20]). Further, this equation is
responsible for many recent technological developments in
the area of modern nonlinear optical fiber, namely many
soliton trials in commercial networks, pedestal free-pulse
compression, soliton laser, soliton-based supercontinuum gen-
eration, etc. Though this equation needs modification depends
on the nature and power of the pulse transmission through
optical fiber, in this paper, we restrict our discussion to
standard NLS equation without any additional perturbation.
This is mainly because, in this work, our prime aim is
to report the type of solutions in the form of breather-
positons (b-positons for short and will be defined later) and
the generation of higher-order rogue waves from multiple
breathers.
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In recent years, a doubly localized solution both in space
and in time dimensions, i.e., rogue wave, of the NLS equation
has been extremely attracted much attentions from theoretical
and experimental concerns, although this kind of quasirational
solution [21,22] was reported more than 30 years ago by a
simple limit of a traveling periodic solution (breather) [23–25].
By comparing with rich observations for the different-order
rogue waves of the NLS equation in water tank [26–30], the
laboratory works in optical system are subjected only to the
order-1 rogue wave [31–34]. The order-1 rogue wave is a limit
of a breather when its period goes to infinity [21,22]; thus,
it can be represented approximately by a peak of the breather
when the period of the breather is sufficiently large. Indeed, the
first observation of the order-1 rogue wave has been realized
in a nonlinear fiber by creation of a breather after injecting a
modulation wave [31], in which a key parameter a is adjustable
through fine-tuning of the initial power P0 and frequency ωmod.
Soon after, this observation has been implemented again in
standard SMF-28 fiber [32]. Note that a breather will convert
into a order-1 rogue wave when parameter a → 0.5. In the
above-mentioned optical experiments, a = 0.42 [31] and a =
0.47 [32], and thus one peak of a breather in two experiments
is an excellent approximation of the order-1 rogue wave of the
NLS.

However, it is a quite challenging task to observe higher-
order rogue waves in a fiber. To date, several methods have
been proposed to generate higher-order rogue waves [35,36].
In principle, the higher-order rogue waves are generated
from multibreathers by double degeneration [35,36]. The first
degeneration of an order-n breather is the limit of eigenvalues
λi → λ1, and the second degeneration is the limit λ1 → λ0.
Here λ0 is a special eigenvalue such that the period of a
breather of the NLS goes to infinity, and then this breather
converts into an order-1 rogue wave. Note that the double
degeneration is also expressed by a similar way as two
steps through modulation frequency: first κj = jκ and then
κ → 0 [36], and the frequency is expressed by an imaginary
eigenvalue lj as κj = 2

√
1 + l2

j . In other words, higher-order
rogue waves can be generated from the collision of several
breathers, and this has been numerically and approximately
demonstrated through profiles of the intersection area of
them [35,37–39]. Using the progressive fusion and fission of
n degenerate breathers associated with a critical eigenvalue
creates an order-n rogue wave. Through this mechanism, we
also proved two important conjectures regarding the total
number of peaks and decomposition rule in the circular pattern
of an order-n rogue wave [35]. For example, Figs. 1–4 of
Ref. [35] provide approximately three patterns of the order-3
rogue waves by using three different eigenvalues. However,
as shown in Ref. [37,38], it is very difficult to control the
“velocity”(or equivalently called “period”) and phase of the
different breathers to realize the effective collision and then
get approximately the different patterns of the higher-order
rogue waves in the strong intersection area. More specifically,
one cannot use initial power P0 and frequency ωmod to
realize approximately the transferring between multibreathers
and higher-order rogue waves, because there are different
periods (or equivalent frequencies) for different breathers,

unlike a single breather that just has one period which can
be adjusted effectively in experiments [31–34]. The initial
field to create multibreathers is a superposition of several
exponential functions on the top of a plane wave [38], which is
a main source of the above difficult point to produce effective
collision of breathers. Thus, from these studies, it is quite
clear that, because of tedious mathematical steps and several
possible patterns, it is quite tricky and challenging to generate
the higher-order rogue waves.

The purposes of this paper are (i) to show theoretically
the two steps of the double degeneration from multibreathers
to higher-order rogue waves of the NLS equation and (ii) to
suggest a new way to observe above-mentioned higher-order
rogue waves in a fiber. To this end, we introduce a special
kind of breather, the b-positon, which is obtained by taking
the limit λj → λ1 of the Lax pair eigenvalues in the order-n
periodic solution, which is generated by the n-fold Darboux
transformation (DT) from a plane wave. Further, an order-n
b-positon gives an order-n rogue wave under a limit λ1 → λ0.
This type of generating mechanism of rogue waves has been
explained clearly in Ref. [35]. The order-n b-positon is a
transmission state between order-n breather to an order-n
rogue wave, in which different breathers have the same period
(or velocity) and can have (or have not) different phases, and
they produce different patterns in the strong interaction area.
In fact, an order-1 b-positon is a single breather. Moreover,
an explicit form of an order-2 Akhmediev breather with
two different modulation frequencies (or equivalently two
imaginary eigenvalues) and shifts has been given in Ref. [40],
and the degenerate Akhmediev breather (see Eq. (7) of this
reference) by a limit of equal eigenvalues has also been
provided explicitly, which is a special order-2 b-positon.
There are two distinct points in our paper, by comparing with
Ref. [40]: (1) eigenvalues are not imaginary, which results in
propagation of the b-positon in an arbitrary direction besides
two axes; (2) we use parameters si (see details in the following
section) instead of shifts to control the phases of the breathers,
which is more convenient to generate more complex and
interesting patterns.

The rest of the paper is organized as follows. After detailed
introduction, method of derivation of breather solutions is
given in Sec. II. In Sec. III, we report the derivation of the
b-positon solutions. The observation of higher-order rogue
waves and b-positons in an optical fiber is discussed in
Sec. IV. Finally, the numerical simulations of the b-positon
are demonstrated in Sec. V, and results are summarized in
Sec. VI.

II. HIGHER-ORDER BREATHER SOLUTIONS

To obtain explicit forms of the higher-order breathers, we
set β2 = −2 and γ = 2 in Eq. (1) for our further discussion.
We shall use determinant representation [41,42] of the n-fold
Darboux transformation to get breathers of the NLS equation.
Based on our previous results [35,43,44], we start with a
special kind of “seed” solution—plane wave,

q[0] = ceiρ, (2)
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in which ρ = at + (2c2 − a2)z,a,c ∈ R,c �= 0. The eigenfunction [35,43,44] associated with eigenvalue λ and above seed
solution is

φ(λ) =
{

cei[ ρ

2 +d(λ)] + i
[

a
2 + λ + h(λ)

]
ei[ ρ

2 −d(λ)]

ce−i[ ρ

2 +d(λ)] + i
[

a
2 + λ + h(λ)

]
e−i[ ρ

2 −d(λ)]

}
. (3)

Here, h(λ) =
√
c2 + (λ + a

2 )2
,d(λ) = [t + (2λ − a)z + S0]h(λ),S0 = s0 + ∑n−1

k=1 skε
2k.

To get order-n breather [44] by using determinant representation [42] of n-fold DT, we select eigenvalue and its eigenfunction
as follows:

f2k−1 =
[
f2k−1,1(λ2k−1)

f2k−1,2(λ2k−1)

]
= φ(λ2k−1) for λ2k−1, (4)

but

f2k =
[
f2k,1(λ2k)
f2k,2(λ2k)

]
=

[−f ∗
2k−1,2(λ2k−1)

f ∗
2k−1,1(λ2k−1)

]
for λ2k = λ∗

2k−1. (5)

Then an order-n breather [44] of the NLS is formulated as

q[n] = q[0] − 2i

∣∣�[n]
1

∣∣∣∣�[n]
2

∣∣ . (6)

Here two matrices are

�
[n]
1 =

⎛
⎜⎜⎜⎜⎜⎝

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 · · · λn−1
1 f11 λn

1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 · · · λn−1
2 f21 λn

2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 · · · λn−1
3 f31 λn

3f31
...

...
...

...
...

... · · · ...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 · · · λn−1
2n f2n1 λn

2nf2n1

⎞
⎟⎟⎟⎟⎟⎠,

�
[n]
2 =

⎛
⎜⎜⎜⎜⎜⎝

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 · · · λn−1
1 f11 λn−1

1 f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 · · · λn−1
2 f21 λn−1

2 f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 · · · λn−1
3 f31 λn−1

3 f32
...

...
...

...
...

... · · · ...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 · · · λn−1
2n f2n1 λn−1

2n f2n2

⎞
⎟⎟⎟⎟⎟⎠.

There are two real variables z,t , three real parameters a,c,ε, and 2n complex parameters λi(i = 1,3,5, . . . 2n − 1),si(i =
0,1,2, . . . n − 1) in q[n]. In general, ε is an arbitrary real parameter in q[n], and we usually set that S0 is a monomial of ε with
ε = 1; i.e., S0 = skε

2k|ε=1 = sk , which controls the central pattern of this breather. However, ε is an infinitesimal parameter in
q[n] when one constructs the higher-order b-positons and rogue waves by the degeneracy limit of eigenvalues, and its coefficients
sk [35] are very crucial to control the pattern of the obtained solutions.

To illustrate this method of the construction of the breather, we would like to provide specific examples. Set n = 1 in Eq. (6),
which gives the one-fold DT, and a new solution

q[1] = q[0] − 2i

∣∣�[1]
1

∣∣∣∣�[1]
2

∣∣ ,
with �

[1]
1 =

∣∣∣∣f1,1 λ1f1,1

f2,1 λ2f2,1

∣∣∣∣ = (λ∗
1 − λ1)f1,1f2,1, (7)

and �
[1]
2 =

∣∣∣∣f1,1 f1,2

f2,1 f2,2

∣∣∣∣ = f1,1f2,2 − f1,2f2,1.

Substituting λ1 = ξ + iη,λ2 = λ∗
1 = ξ − iη,S0 = 0, and

f1 =
[
f1,1(λ1)
f1,2(λ1)

]
= φ(λ1), f2 =

[
f2,1(λ2)
f2,2(λ2)

]
=

[−f ∗
1,2(λ∗

2)
f ∗

1,1(λ∗
2)

]
=

[−f ∗
1,2(λ1)

f ∗
1,1(λ1)

]
,

into Eq. (7), after a tedious simplification, we get an explicit formula of the order-1 breather

q[1] =
(

c + 2η{[w1 cos(2G) − w2cosh(2F )] − i[(w1 − 2c2) sin(2G) − w3 sinh(2F )]}
w1cosh(2F ) − w2 cos(2G)

)
eiρ, (8)
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with w1 = c2 + (hI +η)2 + (ξ+hR+ a
2 )2, w2 = 2c(hI + η),

w3 = 2c(ξ + hR + a
2 ), F = thI + dI z,G = thR+dRz, dR =

Re(d), dI = Im(d), hR = Re(h), hI = Im(h). This is a
periodic traveling wave. It is well-known that the order-1
rogue wave is obtained from q[1] by a limit λ1 → λ0, which
is given in the Appendix. Here λ0 = − a

2 + ic.
Taking n = 2 in Eq. (6), and according to the selections in

Eqs. (4) and (5) of fi(i = 1,2,3,4),λ2 = λ∗
1 and λ4 = λ∗

3, then
an order-2 breather can be expressed by

q[2] = q[2](z,t ; a,c; λ1,λ3; s0,s1,ε) = q[0] − 2i

∣∣�[2]
1

∣∣∣∣�[2]
2

∣∣ . (9)

Here

�
[2]
1 =

⎛
⎜⎜⎜⎜⎝

f1,1 f1,2 λ1f1,1 λ2
1f1,1

f2,1 f2,2 λ2f2,1 λ2
2f2,1

f3,1 f3,2 λ3f3,1 λ2
3f3,1

f4,1 f4,2 λ4f4,1 λ2
4f4,1

⎞
⎟⎟⎟⎟⎠,

and

�
[2]
2 =

⎛
⎜⎜⎜⎝

f1,1 f1,2 λ1f1,1 λ1f1,2

f2,1 f2,2 λ2f2,1 λ2f2,2

f3,1 f3,2 λ3f3,1 λ3f3,2

f4,1 f4,2 λ4f4,1 λ4f4,2

⎞
⎟⎟⎟⎠.

Using this determinant representation, an explicit form of the
order-2 breather has been given in Ref. [43]. Recently, a new
form of this breather is given in Ref. [40]. Moreover, we have
used this method to get an order-3 breather and plotted the
central profiles [35], which provide a good approximation of
an order-3 rogue wave with three distinct (minor difference)
eigenvalues.

In general, an order-2 breather q[2] is an indeterminate form
0
0 when λ3 → λ1. This observation inspires us to consider
the limit of q[n] when λi → λ1 [35] from an arbitrary “seed”
solution q[0]. In the next section, we shall study this degenerate
limit of eigenvalues of order-n breather q[n] in Eq. (6).

III. THE ORDER-N B-POSITON SOLUTION

As we have shown in Ref. [35], an order-n breather q[n]

reduces to an order-n rogue wave by double degeneration:
λi → λ1 and then λ1 → λ0 = − a

2 + ic. However, the cal-
culation of this double degeneration is implemented by one
step as λi = λ0 + ε with the help of symbolic computational
software, and thus ignore the attention of the first limit of q[n].
Here we use this limit to define breather-positon (b-positon
for short): an order-n b-positon is obtained by taking the
limit λi → λ1 of the Lax pair eigenvalues in an order-n
breather, namely q

[n]
b-positon = limλi→λ1 q[n](λ1 �= λ0). Note that

λi → λ1 means λ2i+1 → λ1 and λ2i → λ∗
1(i = 1,2, . . . ,n)

simultaneously because of the selection λ2k = λ∗
2k−1 in Eq. (5).

This solution is an extension of the positon solutions reported
in Matveev’s papers [45,46], because it denotes the degeneracy
of multisolitons under same eigenvalue for KdV and mKdV
equations.

According to the above definitions, under the limit λi → λ1,
an indeterminate form 0

0 associated with q[n] yields an order-n

b-positon by higher-order Taylor expansion, namely

q
[n]
b-positon(z,t) = q[0] − 2i

∣∣�′[n]
1

∣∣∣∣�′[n]
2

∣∣ , (10)

with

�
′[n]
1 =

[
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(
�

[n]
1

)
ij

(λ1 + ε)

]
2n×2n

,

�
′[n]
2 =

[
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(
�

[n]
2

)
ij

(λ1 + ε)

]
2n×2n

,

ni = [ i+1
2 ],[i] denotes the floor function of i. It should be

noted that there are two real parameters a,c, and n + 1
complex parameters λ1,si(i = 0,1,2, . . . ,n − 1) in an order-n
b-positon. It is trivial to find an order-1 b-positon, which is a
single breather. Furthermore, an order-n b-positon yields an
order-n rogue wave when λ1 → λ0 [35].

The first nontrivial b-positon is an order-2 b-positon. To
get a relatively simple form, set n = 2,λ1 = ξ1 + iη1, and
ξ1 = − a

2 in Eq. (10), then an explicit form of q
[2]
b-positon is

given in the Appendix, which is used to plot Fig. 2 with
a = 0. This is similar to the result of Ref. [40]. The order-2
rogue wave is also given in the Appendix through the limit
of q

[2]
b-positon as λ1 → λ0 with a condition on imaginary part of

s0, i.e., Im(s0) = 0. However, it is interesting to note that for
order-2 and order-3 b-positon, set ξ1 �= − a

2 in Eq. (10), we
get tilted propagation of b-positons, and their density profiles
are presented in the Appendix (see Figs. 12 and 14). As a
byproduct, in Fig. 13, a nonzero real part of the s0 in an
order-2 b-positon results in a remarkable shift of the central
profile along the t axis, but a nonzero imaginary part of the s0

produces a shift along the z axis with a deformation of central
peaks. In addition, the distance between two peaks in Fig. 13
is increasing significantly along the time axis by comparing
with the two pictures in the last row of Fig. 12.

To illustrate the further application of the construction for
the order-n b-positon, set n = 3, λ1 = ξ1 + iη1, and ξ1 = − a

2

in Eq. (10), then an explicit form of q
[3]
b-positon is given in the

Appendix. This analytical formula of an order-3 b-positon
is used to plot Figs. 4(a), 16(a), and 16(b) with parameter
a = 0. Moreover, due to the appearance of the si, q

[n]
b-positon can

generate systematically different patterns in the central region
of the b-positon; see examples up to order-5 in Figs. 2–6. These
patterns resemble very much like corresponding rogue waves
when λ1 is close to λ0. Note that, in particular, an order-3
b-positon, which is propagating along the z axis is given by
setting Im(λ1) > c, which is plotted in Fig. 4(d).

We are now in a position to demonstrate intuitively two
limits of double degeneration by a graphical way based on
analytical solutions q[2] and q

[2]
b-positon, i.e., an order-2 breather

to an order-2 b-positon by λ3 → λ1, and then to an order-2
rogue wave by λ1 → λ0.

(1) Figure 1 shows that the overall circular periodic struc-
ture gradually enlarges when λ3 goes to λ1 until it disappears
completely and only one intersection area is preserved, which
is quasiperiodic with respect to the peaks in two rows, when
an order-2 breather becomes an order-2 b-positon.
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FIG. 1. A sketchy demonstration of the limit λ3 → λ1 in an order-2 breather |q [2]|2 (density plot) with a = 0, c = 1
2 , λ1 = 2

5 i, s1 = 0.
The central region of the left (right) column is a fundamental (triangular) pattern. From top to bottom, the ratio of two breathers are 4:5,
8:9, 15:16, and there are 3, 7, 14 peaks in one period of time. The other parameters of the breathers, respectively, are (a) λ3 =

√
7

8 i, s0 = 0,

(b) λ3 =
√

7
8 i, s0 = 1, (c) λ3 =

√
871
80 i, s0 = 0, (d) λ3 =

√
871
80 i, s0 = 1, (e) λ3 = 3

√
41

50 i, s0 = 0, (f) λ3 = 3
√

41
50 i, s0 = 1.
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FIG. 2. A sketchy demonstration of the limit λ1 → λ0 in an order-2 b-positon |q [2]
b-positon|2 (density plot) with λ0 = − a

2 + ic, a = 0, c =
1
2 , s0 = 0. The central region of the left (right) column is a fundamental (triangular) pattern. Note that the left column is a continuous limit
of the left column in Fig. 1, but the right column is not because values of s0 in two figures are different. The other parameters of the
b-positons, respectively, are (a) λ1 = 2

5 i, s1 = 0, (b) λ1 = 2
5 i, s1 = 100, (c) λ1 = 12

25 i, s1 = 0, (d) λ1 = 12
25 i, s1 = 100, (e) λ1 = 72

145 i, s1 = 0,
(f) λ1 = 72

145 i, s1 = 100.
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(a) (b) (c)

FIG. 3. The comparison of an order-2 b-positon |q [2]
b-positon|2 (red dash line) with an order-2 fundamental rogue wave |q [2]

rw |2 (blue solid line)
at z = 0. The order-2 b-positons are generated through the same parameters as Figs. 2(a), 2(c), and 2(e), respectively. The order-2 fundamental
rogue wave is generated by Eq. (A2) with parameters a = 0, c = 1

2 , s0 = s1 = 0. The parameter λ1 of the breathers is 2
5 i in (a), 12

25 i in (b), and
72
145 i in (c).

FIG. 4. The density plots of three patterns in central region of an order-3 b-positon |q [3]
b-positon|2 with s0 = 0, a = 0, c = 1

2 . (a) The fundamental
pattern with s1 = 0, s2 = 0, λ1 = 6

13 i, (b) the triangular pattern with s1 = 50, s2 = 0, λ1 = 6
13 i, (c) the circular pattern with s1 = 0, s2 =

500, λ1 = 6
13 i, (d) the circular pattern with different directions with s1 = 0, s2 = 500, λ1 = 13

24 i.
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FIG. 5. The density plots of four patterns in central region of an order-4 b-positon |q [4]
b-positon|2 with a = 0, c = 1

2 , s0 = s2 = 0, λ1 = 6
13 i.

(a) The fundamental pattern with s1 = 0, s3 = 0, (b) the triangular pattern with s1 = 50, s3 = 0, (c) the circular pattern with an inner fundamental
pattern when s1 = 0, s3 = 5 × 103, (d) the circular pattern with an inner triangular pattern when s1 = 20, s3 = 5 × 104.

(2) Figure 2 shows that the peaks around the central region
gradually leave when λ1 goes to λ0 until the central profile is
survived only and all other peaks disappear, when an order-2
b-positon becomes an order-2 rogue wave.

The difference between the two columns of Figs. 1 and
2 is the fundamental pattern (i.e., one main peak surrounded
by several gradually decreasing small peaks on both sides)
or triplet pattern in the central region. It is a natural request
in two limits of double degeneration to use the same set
of parameters {s0,s1} in the last row of Fig. 1 and the first
row of Fig. 2, in order to emphasize the limit process of
λ3 → λ1 → λ0. However, we use different values of them
in the right column in order to get a higher visibility of
pictures.

Four animations are provided in the Supplemental Ma-
terial [47] for the analytical demonstration of double de-
generacy. The animations demonstrate clearly the tendency
from a breather to a b-positon and from a b-positon to

a rogue wave, which are corresponding to Figs. 1 and 2,
respectively.

It is very clear from Fig. 2 that the conversion between
b-positon and the rogue wave is very similar to the transmission
between the single breather and the order-1 rogue wave, and the
later transmission has been used to observe an order-1 rogue
wave in optical fiber [31–34]. Further, in a higher-order b-
positon (see Figs. 2–6), the effective collision of multibreather
can be reached, and the different patterns in central region,
which are good approximations of the corresponding rogue
waves, can be controlled by the si . For example, the central
profiles in Figs. 2(a), 2(c), and 2(e) look like fundamental
order-2 rogue waves very much, which is verified by the
excellent coincidence of two pulses in each panel of Fig. 3.
Moreover, Fig. 3 also shows that the remarkable decrease in
error when λ1 is approaching λ0. Thus, we can use above
two advantages of the b-positon to observe higher-order rogue
wave in an optical fiber.
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FIG. 6. The density plots of six patterns in central region of an order-5 b-positon |q [5]
b-positon|2 with a = 0, c = 1

2 , s0 = 0, λ1 = 6
13 i. (a)

The fundamental pattern with s1 = 0, s2 = 0, s3 = 0, s4 = 0, (b) the triangular pattern with s1 = 50, s2 = 0, s3 = 0, s4 = 0, (c) the circular
pattern with an inner fundamental pattern when s1 = 0, s2 = 0, s3 = 0, s4 = 5 × 105, (d) the circular pattern with an inner triangular pattern
when s1 = 20, s2 = 0, s3 = 0, s4 = 2 × 106, (e) the circular pattern with inner decomposed peaks when s1 = 0,s2 = 500, s3 = 0, s4 = 5 × 105,
(f) two-ring pattern with s1 = 0, s2 = 0, s3 = 5 × 104, s4 = 0.
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FIG. 7. Pulses of the fundamental pattern of an order-2 b-positon with c = 1
2 , λ1 = 2

5 i, a = s0 = s1 = 0. (a) Output pulse (theoretically
predicted) at z1 = 0, the amplitude is 4.41 at t = 0. (b) Ideal initial input pulse at z0 = −6.80. Note that the amplitude is associated with the
main peak in Figs. 15(a) and 15(b).

IV. OBSERVATION OF HIGHER-ORDER ROGUE WAVES
IN AN OPTICAL FIBER THROUGH THE B-POSITON

Although it is difficult to implement effective collision
[37,38] of two or three breathers in optical experiment, Frisquet
et al. [48] have realized first the collision of two breathers by
injecting a bimodulated continuous wave with two distinct
frequencies, which is expressed by two exponential functions
with two small real amplitudes [48]. However, due to the
nonideal initial pulse in their experiment, there exists a nonig-
norable discrepancy of the main peak of synchronized collision
in theory and observation, and its difference is almost 4 (for
details see Fig. 7(a) of Ref. [48]). Of course, the most accurate
way to observe collision is to inject an ideal (and exact)
initial pulse in terms of a certain initial function q(z0,t) at a
suitable position z0 taken from an exact and analytical solution
of breathers q(z,t) for the NLS equation, and then measure
the intensity or optical spectrum of output pulse at a certain
position z1. Unfortunately, this kind of ideal (and exact) initial
pulse usually has a more complex profile, which is impossible
to be produced by a common optical signal generator.

Recently, a frequency comb and a programable optical filter
(wave shaper) (see Fig. 1 in Ref. [49]) are used to create an ideal
initial pulse according to the profile of an analytical solution,

and then an order-2 breather has been observed successfully
with a typical X-shape signature in the plane of z-t (see Fig. 3 of
Ref. [49]). Very recently, these powerful devices and technique
have been used again to observe one pair of breathers (see
Fig. 5 in Ref. [50]) with same heights but opposite propagating
directions (or called a sup-er-regular breather [51]), from an
ideal initial pulse. Of course, these results are far away from
the order-2 rogue waves of the NLS equation, which are not
their actual objectives [50].

Based on the two advantages of the b-positon, i.e., a conve-
nient conversion to the rogue wave and the easy controllability
of the patterns in the central region in the z-t plane, which have
been pointed out at the end of Sec. III, we introduce following
new way to observe higher-order rogue wave:

(1) Select a suitable values of si, λ1, and λ0 to generate a
certain pattern of the b-positon; next, select suitable positon
z0, and then plot ideal initial pulse q(z0,t) of this b-positon;

(2) Use a frequency comb and a wave shaper to create
above ideal initial pulse q(z0,t), and then inject it into an
optical fiber;

(3) Measure the intensity of output pulses of fiber at one
or several positions z1, z2, z3, . . . , which are functions of t

denoted by I1exp(t), I2exp(t), I3exp(t), . . . , and then compare
them with one or more theoretical curves of analytical

TABLE I. Data of peaks for initial input pulse in Fig. 7.

ti 12.89 23.38 33.87 44.36 54.85 65.33 75.82 86.30 96.78 107.25
h 0.66 1.32 1.69 1.47 1.16 0.93 0.78 0.68 0.61 0.56
�ti – 10.48 10.49 10.49 10.49 10.48 10.48 10.48 10.48 10.48

Notes. �ti = ti − ti−1, ti denotes the time of a peak; h denotes the amplitude of a peak.
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FIG. 8. Pulses of the triangular pattern of an order-2 b-positon with c = 1
2 , λ1 = 2

5 i, a = s0 = 0, s1 = 50. (a) Output pulse-2 (theoretically
predicted) at z2 = 4.42, the amplitude is 1.54 at t = ±4.47. (b) Output pulse-1 (theoretically predicted) at z1 = −4.81, the amplitude is 1.86
at t = 0. (c) Ideal initial input pulse at z0 = −7.43. Note that three amplitudes are associated with the triplets in Figs. 15(c) and 15(d) around
the coordinate origin.

b-positons, i.e., |q(z1,t)|2,|q(z2,t)|2,|q(z3,t)|2, etc, in order to
confirm the agreement between theory and experiment.

(4) Simulate above results of the NLS equation by a
numerical way from ideal initial function, which is taken
from an analytical form q(z0,t) of this b-positon, with high
signal-to-noise ratio (SNR) (or other perturbations), to show
the measurement has high possibility in a realistic optical fiber
system.

These measurements provide a good approximation of
the higher-order rogue waves if we use proper parameters
according to the conditions of the realistic experiment, which
can be done in an optical fiber system given by Fig. 1 in

Ref. [49] or Fig. 3 in Ref. [50]. Of course, λ1 should be close
to the λ0 in order to get an excellent agreement between the
theory and experiment. By comparing with the observation of
the first-order rogue wave in an optical fiber system [31–34],
the main difference here is to inject ideal (and exact) initial
signals into an optical fiber in order to generate different
patterns.

To illustrate this way, we provide ideal (and exact) initial
pulses and theoretical output pulses for the order-2 and
order-3 b-positons according to the analytical forms in the
Appendix with ξ1 = − a

2 , c > η1 > 0. For a given position

zp and sufficiently large t , peaks in |q[2]
b-positon(zp,t)|2 and

TABLE II. Data of peaks for initial input pulse in Fig. 8.

ti 11.69 22.65 33.36 43.96 54.53 65.06 75.58 86.09 96.59 107.08
h 0.66 1.053 1.513 1.701 1.564 1.33 1.11 0.95 0.83 0.74
�ti – 10.96 10.70 10.61 10.56 10.53 10.52 10.51 10.50 10.50

Notes. �ti = ti − ti−1, ti denotes the time of a peak; h denotes the amplitude of a peak.
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FIG. 9. Pulses of the fundamental pattern of an order-3 b-positon with c = 1
2 , λ1 = 2

5 i, a = s0 = s1 = s2 = 0. (a) Output pulse (theoretically
predicted) at z1 = 0, the amplitude is 8.41 at t = 0. (b) Ideal initial input pulse at z0 = −12.4. Note that the amplitude is associated with the
main peak in Figs. 16(a) and 16(b).

|q[3]
b-positon(zp,t)|2 have asymptotical period Tasy = π

h
= π√

c2−η2
1

with respect to time t . In the following context, we set
c = 1

2 , η = 2
5 such at Tasy = 3π

10 ≈ 10.47, which has been
confirmed by the data in Table I–V and curves in Figs. 7–11.
Because of the feature of the frequency comb system and
wave shaper, the input pulse will be a periodic time series
[50], and every periodic unit is an ideal initial pulse in finite
time length as one of curves in Figs. 7–11. Naturally, in
experiment, the output pulses are also periodic in time, and
thus our theoretically predicted output pulse is just a profile
of its periodic unit of time. The asymptotical periodicity of
peaks in one unit reduces the difficulty in the generation of
ideal input pulses in experiment.

The corresponding order-2 and order-3 b-positons are
plotted in Figs. 15 and 16 in the Appendix. Note that we
replot them again by using different values of parameters so
that we can get a higher visibility of curves in Figs. 7–11,
which is more helpful for works on numerical simulation
and optical observation. In Fig. 7, one ideal initial pulse at
position z0 = −6.80 is plotted which will be generated and
then injected into a fiber, and one output pulse at position
z1 = 0 is plotted which denotes the predicted theoretical
results of the fundamental pattern in the central region of

an order-2 b-positon in z-t plane. The latter will be used to
compare with results of measurement in experiment, which
is regarded as an approximate observation of the fundamental
pattern of order-2 rogue wave.

Similarly, for the triangular pattern of the order-2 rogue
wave, the fundamental pattern, triangular pattern, and circular
pattern of the order-3 rogue wave, we have plotted ideal initial
pulses and predicted output pulses in Figs. 8–11. The position
and amplitude of each peak (an order-1 rogue wave) and
distance of two nearest adjacent peaks in positive axis of ideal
input pulse are given in Tables I–V.

It is well known that the modulus square of an order-n
rogue wave has a height (2n + 1)c2 and c2 is the height of its
asymptotic background. Moreover, an order-n rogue wave can
be decomposed into n(n+1)

2 uniform peaks (an order-1 rogue
wave). According to the present values of the parameters, the
heights of the first three order rogue waves are 2.25, 6.25,
12.25. By a close look, the output pulses in Figs. 7 and 9 are
good fits of fundamental patterns of the order-2 and order-3
rogue wave, although their heights are not coincident with
these data very well. However, six amplitudes in Fig. 11 are
not equal remarkably. There are other discrepancies in output
pluses by comparing with rogue waves, which are originated
from the following facts:

TABLE III. Data of peaks for initial input pulse in Fig. 9.

ti 15.16 25.63 36.15 46.67 57.18 67.69 78.20 88.70 99.19 109.69
h 0.37 0.87 1.70 1.12 0.69 0.51 0.43 0.38 0.35 0.33
�ti – 10.48 10.51 10.52 10.51 10.51 10.50 10.50 10.50 10.49

Notes. �ti = ti − ti−1, ti denotes the time of a peak; h denotes the amplitude of a peak.
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FIG. 10. Pulses of the triangular pattern of an order-3 b-positon with c = 1
2 , λ1 = 2

5 i, a = s0 = s2 = 0, s1 = 50. (a) Output pulse-3
(theoretically predicted) at z3 = 8, the amplitudes are 1.43 at t = ±8.65 and 1.46 at t = 0. (b) Output pulse-2 (theoretically predicted)
at z2 = −1.28, the amplitudes are 1.65 at t = ±4.21. (c) Output pulse-1 (theoretically predicted) at (z1 = −8), the amplitude 2.05 at
t = 0. (d) Ideal initial input pulse at z0 = −12.8. Note that the six amplitudes are associated with the six peaks in triangular Figs. 16(c)
and 16(d).

TABLE IV. Data of peaks for initial input pulse in Fig. 10.

ti 13.10 24.34 35.20 45.92 56.56 67.16 77.73 88.29 98.83 109.35
h 0.46 0.97 1.72 1.26 0.79 0.57 0.47 0.41 0.37 0.34
�ti – 11.24 10.87 10.72 10.64 10.60 10.57 10.55 10.54 10.53

Notes. �ti = ti − ti−1, ti denotes the time of a peak; h denotes the amplitude of a peak.

042217-13



WANG, HE, XU, WANG, AND PORSEZIAN PHYSICAL REVIEW E 95, 042217 (2017)

FIG. 11. Pulses of the circular pattern of an order-3 b-positon with c = 1
2 , λ1 = 2

5 i, a = s0 = s1 = 0, s2 = 500. (a) Output pulse-3
(theoretically predicted) at z3 = 7, the amplitudes are 1.16 at t = −7.03 and 1.78 at t = 2.22). (a) Output pulse-2 (theoretically predicted)
at z2 = 0, the amplitudes are 1.69 at t = 0 and 1.28 at t = 8.06. (c) Output pulse-1 (theoretically predicted) at z1 = −7 is the same as the
result of z3. (d) Ideal initial input pulse at z0 = −12.35. Note that the six amplitudes are associated with six peaks in circle of Figs. 16(e)
and 16(f).

TABLE V. Data of peaks for initial input pulse in Fig. 11.

ti 2.12 14.49 25.41 36.04 46.60 57.14 67.66 78.17 88.68 99.18
h 0.30 0.40 0.93 1.71 1.08 0.67 0.50 0.42 0.37 0.34
�ti – 12.33 10.93 10.62 10.56 10.54 10.52 10.51 10.51 10.50

Notes. �ti = ti − ti−1, ti denotes the time of a peak; h denotes the amplitude of a peak.
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FIG. 12. The evolution of an order-2 b-positon |q [2]
b-positon|2 (density plot) on z-t plane with c = 1

2 , s1 = 0, λ1 = 2
5 i. (a) The fundamental

pattern with s0 = 0, a = 0; (b) the titled propagation with a minor rotation when s0 = 0, a = 1
2 ; (c) the fundamental pattern with s0 = 5, a = 0,

which has been shifted along negative direction of t axis about Re(s0) unit by comparing with (a); (d) the fundamental pattern with s0 = i, a = 0,
which has been shifted along negative direction of z axis with deformation of the profile in central region about Im(s0) unit by comparing with
(a). These shifts are originated from contributions of Re(s0) or Im(s0).

(1) As long as λ1 �= λ0, the patterns in the central regions
of an order-2 and an order-3 b-positons are not real rogue
waves, and thus the above discrepancies are possible.

(2) Parameters si in b-positons, which control the decom-
position of the peaks, are not large enough.

(3) In general, two peaks of the b-positon in the z-t plane
are not on a line that is parallel to the t axis, so we cannot
get exact amplitudes of two peaks in one pulse by setting one
value of z.

In order to reduce these discrepancies, we should set λ1

closer to the λ0, and set larger si , and plot more output pulses.
These facts show that the observations of higher-order rogue
waves are indeed difficult work. Moreover, we have to observe
outputs at different positions, which also leads to difficulties
for observations.

V. NUMERICAL SIMULATIONS OF THE
ORDER-2 B-POSITONS

In a realistic optical fiber system, there are various perturba-
tions during the propagation of the optical signals. In particular,
the role of noise and hence the SNR is playing a key role in
optical fiber communication networks. Thus, in order to take
care of this important issue, it is necessary to consider errors
between the theoretical results and the numerical simulations
obtained from ideal (and exact) initial pulses with (or without)
an SNR.

Figures 17 and 19 are simulated numerically for funda-
mental and triangular patterns of the order-2 b-positon with
s0 = 0, a = 0, c = 1

2 , λ1 = 2
5 i. Because of the feature of the

frequency comb system and wave shaper, the input pulse will
be a periodic time series [50], Figs. 18 and 20 are simulated
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FIG. 13. The evolution of an order-2 b-positon |q [2]
b-positon|2 (density plot) on z-t plane with a = 0, c = 1

2 , λ1 = 12
25 i. (a) The fundamental

pattern with s0 = 10, s1 = 0, (b) the triangular pattern with s0 = 2i, s1 = 0. By comparing the two pictures in the last row of Fig. 12, there
exists a larger shift of the central profile and also a significantly increase of the distance of two peaks along the time axis. This effects reflect
the contribution of the nonzero value of s0.

FIG. 14. The tilted propagation of an order-3 b-positon |q [3]
b-positon|2 on z-t plane with a = 1, c = 1

2 , s0 = s1 = s2 = 0, λ1 = 6
13 i. (a) The

density plot, (b) the central profile of (a), (c) three dimensional profile of |q [3]
b-positon|2, (d) the central profile of (c).

042217-16



GENERATION OF HIGHER-ORDER ROGUE WAVES FROM . . . PHYSICAL REVIEW E 95, 042217 (2017)

FIG. 15. Two patterns of an order-2 b-positon |q [2]
b-positon|2 with c = 1

2 ,λ1 = 2
5 i,a = s0 = 0. (a) The fundamental pattern with s1 = 0 (density

plot), (b) the fundamental pattern with s1 = 0 (three dimensional profile), (c) the triangular pattern with s1 = 50 (density plot), (d) the triangular
pattern with s1 = 50 (three dimensional profile). The ideal initial input and output(theoretically predicted) pulses are given in Figs. 7 and 8.

numerically for the periodic extension of above two cases,
which can provide useful information for experiments. The
curves are not recognizable if we also put theoretical results in
Figs. 18 and 20 because the theoretical results almost coincide
completely with the numerical simulations, so we do not add
them here.

We find that there is an excellent agreement between
theoretical (and exact) results and numerical simulations
when SNR � 100, which shows these solutions have strong
robustness to the unavoidable noise at high SNR in the optical
fiber. The significant discrepancies between theoretical and
numerical results occur at the two ends of period due to the
reflection of simulation. This discrepancy is reducible by in-
creasing the period of simulation. Therefore, the fundamental
and triangular patterns in order-2 b-positon are available in
realistic optical fiber system even if there exists a strong noise.
These results strongly indicate the possible observation of the

higher-order rogue waves by using the central patterns of the
b-positons in optical fiber systems.

As we have pointed out in Sec. IV, in order to get more
accurate approximation of the higher-order rogue waves, it is
better to set λ1 of the b-positons to be more closer to λ0. In
other words, we could consider that the b-positon is closer to
the rogue wave in experiment. However, the rogue wave is
extremely unstable, and thus the b-positon with the inclusion
of noise becomes gradually but strongly unstable when λ1

is approaching λ0. Therefore, it is difficult to observe the b-
positon when it is very close to the rogue wave in experiments,
not to mention the rogue wave. The numerical simulations in
Fig. 21 clearly show the increasing trend of the instability when
λ1 is approaching λ0, which can be seen from the additional
small peaks appeared in z-t plane. Furthermore, the X-shape
profile of the peaks are destroyed gradually in panels by the
noise from top to bottom in Fig. 21. Finally, the main peak of
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FIG. 16. Three patterns of an order-3 b-positon |q [3]
b-positon|2 with c = 1

2 , λ1 = 2
5 i, a = s0 = 0. (a) The fundamental pattern with s1 = s2 = 0

(density plot), (b) the fundamental pattern with s1 = s2 = 0 (three dimensional profile), (c) the triangular pattern with s1 = 50, s2 = 0 (density
plot), (d) the triangular pattern with s1 = 50, s2 = 0 (three dimensional profile), (e) the circular pattern with s1 = 0, s2 = 500 (density plot),
(f) the circular pattern with s1 = 0, s2 = 500 (three dimensional profile). The ideal initial input and output(theoretically predicted) pulses are
given in Figs. 9–11.
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FIG. 17. Numerical simulation of the fundamental pattern in central region of an order-2 b-positon |q [2]
b-positon|2 with s0 = s1 = 0, a = 0, c =

1
2 , λ1 = 2

5 i. Red line denotes the theoretical (and exact) result, and square point denotes the result of numerical simulation. The significant
discrepancies occur at the two ends of period due to the reflection of simulation. (a) The initial signal of fundamental pattern without noise at
z = −6.80, (b) The observe signal of fundamental pattern without noise at z = 0, (c) The initial signal of fundamental pattern with noise at
z = −6.80 (SNR=100), (d) The observe signal of fundamental pattern with noise at z = 0 (SNR = 100).

FIG. 18. Numerical simulation of three periods from periodic extension of Fig. 17. In order to get recognizable curve, theoretical results
are not added. (a) The initial signal of fundamental pattern without noise at z = −6.80, (b) The observe signal of fundamental pattern without
noise at z = 0, (c) The initial signal of fundamental pattern with noise at z = −6.80 (SNR = 100), (d) The observe signal of fundamental
pattern with noise at z = 0 (SNR = 100).
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FIG. 19. Numerical simulation of the triangular pattern in central region of an order-2 b-positon |q [2]
b-positon|2 with s0 = 0, s1 = 50, a = 0, c =

1
2 , λ1 = 2

5 i. Red line denotes the theoretical (and exact) result, and square point denotes the result of numerical simulation. The significant
discrepancies occur at the two ends of period due to the reflection of simulation. (a) The initial signal of triangular pattern without noise at
z = −7.43, (b) The observe signal of triangular pattern without noise at z = −4.81, (c) The observe signal of triangular pattern without noise
at z = 4.42, (d) The initial signal of triangular pattern with noise at z = −7.43 (SNR = 100), (e) The observe signal of triangular pattern with
noise at z = −4.81 (SNR = 100), (f) The observe signal of triangular pattern with noise at z = 4.42 (SNR = 100).

rogue wave (see bottom of the same figure) is not recognizable
because it is fully surrounded by noise peaks.

VI. CONCLUSIONS

In conclusion, we have introduced the so-called b-positon of
the NLS equation, which is obtained by taking the limit λj →
λ1 in an order-n breather. In other words, an order-n b-positon
is given by n single breathers with same height and period.
We have provided a formula expressed by the determinants
and the higher-order Taylor expansion in Eq. (10). It converts
into an order-n rogue wave by further limit λ1 → λ0. Here
λ0 is a special eigenvalue in a single breather of the NLS
such that its period goes to infinity, and then this breather
becomes an order-1 rogue wave. We have plotted up to the
order-5 b-positons in Figs. 2–6. Based on analytical formulas,
we have presented a sketchy demonstration of the two limits
from an order-2 breather to an order-2 rogue wave in Figs. 1–3.
In order to show the wide applicability of order-n b-positon in
Eq. (10), we also plotted the tilted propagation of the higher-
order b-positons in Figs. 12–14.

There are two main advantages of the b-positon, i.e.,
a convenient conversion to the rogue wave and the easy
controllability of the patterns in the central region in the z-t
plane. Thus, we have suggested a new way to observe the
higher-order rogue waves, namely, observe the profiles of the
central region of the higher-order b-positon when λ1 is very
close to the λ0, which can be done in an optical fiber system

given by Fig. 1 in Ref. [49] or Fig. 3 in Ref. [50]. The ideal
initial input pulse is created by a frequency comb system
and a programable optical filter (wave shaper) according to
the profile of an analytical form of the b-positon at a certain
position z0. We have also plotted the theoretically predicted
output pulses in Figs. 7–11, which are useful to observe
the higher-order rogue waves in fiber according to suggested
approach in this paper. Three patterns associated with above
output pulses are plotted in Figs. 15 and 16.

The excellent agreements between theoretical and numeri-
cal simulation results in Figs. 17–20, and the tendency of the
instability for the b-positons in Fig. 21 support strongly our
above new approach to observe the b-positons in a realistic
optical fiber system. Our results also show the validity of the
generating mechanism of a higher-order rogue wave from the
double degeneracy of a multibreather.
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APPENDIX

1. Rogue waves

a. Order-1 rogue wave

Taking the limit λ1 → λ0, the single breather yields the first-order rogue wave,

q[1]
rw =

[
4(1 + iT )

X2 + T 2 + 1
− 1

]
ceiρ, (A1)

with

X = 2c[t − 2az + Re(s0)],T = 2c[2cz + Im(s0)].

b. Order-2 rogue wave

Taking the limit λ1 → λ0 and setting Im(s0) = 0, order-2 b-positon yields an order-2 rogue wave,

q[2]
rw =

[
1 − 12

(
F [2]

rw + iG[2]
rw

)
H

[2]
rw

]
ceiρ. (A2)

Here,

F [2]
rw = 5 T 4 + 6 T 2X2 + X4 + 18 T 2 + 6 X2 − 3 + 24 c2[T Re(s1) − XIm(s1)],

G[2]
rw = 12 c2(T 2 − X2 − 1)Re(s1) − 24 c2T XIm(s1) + (T 4 + 2 T 2X2 + X4 + 2 T 2 − 6 X2 − 15)T ,

H [2]
rw = H

[2]
rw1 + H

[2]
rw2,

H
[2]
rw1 = 144c4|s1|2 + 24c2[(T 2 − 3X2 + 9)T Re(s1) + (X2 − 3T 2 − 3)XIm(s1)],

H
[2]
rw2 = (T 2 + X2)3 + 3(3T 2 − X2)2 + 99T 2 + 27X2 + 9,

X = 2c[t − 2az + Re(s0)],T = 2c[2cz + Im(s0)] = 4c2z,

where Re(·) denotes the real part, and Im(·) denotes the imaginary part.

2. b-positons (order-2 and order-3)

a. Order-2 b-positons

Set λ1 = ξ1 + iη1, ξ1 = − a
2 , S0 = s0 + s1ε, and n = 2 in q

[n]
b-positon, an order-2 b-positon is given by

q
[2]
b-positon(z,t ; a,c,η1; s0,s1) =

(
F [2] + 4 iη1 hG[2]

H [2]

)
8c2eiρ.

Here, ρ = at + (2c2 − a2)z,h = h(λ1) =
√
c2 − η2

1,

s0 = s0R + is0I , s1 = s1R + is1I ,

F [2] = F1 cos(2 X0) + F2cosh(2 T0) + F3cosh(T0) cos(X0) + F4cosh(T0) sin(X0) + F5 sinh(T0) cos(X0) + F6,

F1 = −cη4
1, F2 = c

(
c4 − 8 η2

1h
2
)
,

F3 = 4 η1 h2
(
c2 + 2 η2

1

)
, F4 = 8 η2

1hω2X1,

F5 = −8 η2
1hω2T1, F6 = ch2

(
8 η2

1F7 + c2 − 7 η2
1

)
,

F7 = η2
1

(
X2 + s2

0I

) + h2[|s1|2h2 + 2 η1 (Xs1I − s0I s1R)] + 4 T2,

G[2] = cω2 sinh(2 T0) − 4 η2
1hT1cosh(T0) cos(X0) + 2 η3

1 cos(X0) sinh(T0) + 4 η2
1hX1 sinh(T0) sin(X0) + 4 cη1 hT1,

H [2] = 32 c3η1 hH1 + 64 c2η2
1h

2H2 + 8 c2h2H3 + 8 c6cosh(2 T0) − 8 c2η4
1 cos(2 X0),

H1 = 2 η1 T1 sinh(T0) cos(X0) − 2 η1 X1cosh(T0) sin(X0) − hcosh(T0) cos(X0),

H2 = η1 X2 + 4 T2,

H3 = 8 η2
1|s1|2h4 − 16 η3

1s0I s1R h2 + 8 η4
1s

2
0I + c2 + η2

1
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and

X0 = 2hX, X1 = s1I h
2 + Xη1, X2 = X(2s1I h

2 + Xη1), X = t − 2az + s0R,

T0 = 2h(2η1z + s0I ), T1 = 2ω2z + ω3, T2 = ω2z(ω2z + ω3),

ω2 = c2 − 2η2
1, ω3 = h2s1R − η1s0I .

b. Order-3 b-positons with fundamental pattern

Set λ1 = ξ1 + iη1, ξ1 = − a
2 , si = 0, and n = 3 in q

[n]
b-positon, an order-3 b-positon is given by

q
[3]
b-positon(z,t ; a,c,η1) =

(
F [3] + iμ

√
1 − μ2G[3]

H [3]

)
ceiρ,

H [3] = cosh3(T ) + μH1 cosh2(T ) + 2 T μH2 sinh(T ) cosh(T ) + H3 cosh(T ) − 2 T H4 sinh(T ) + μ9 cos3(X)

+μH5 cos(X) − 2 Xμ3H6 sin(X),

H1 = 2 Xμ2(5 μ2 − 4) sin(X) − [6 μ4 − 8 μ2 + 3 − 2 X2μ4 + 2 (2 μ2 − 1)2T 2] cos(X),

H2 = (12 μ4 − 14 μ2 + 3) cos(X) − 2 Xμ2(2 μ2 − 1) sin(X),

H3 = 2 Xμ6(μ2 − 2) cos(X) sin(X) − μ4H31 cos2(X) + H32,

H31 = 3 μ4 − 8 μ2 + 6 − 2 X2μ4 + 2 (2 μ2 − 1)2T 2,

H32 = [(2 μ2 − 1)2T 2 + X2μ4]2 + μ4(5 μ4 − 12 μ2 + 6)X2 + (64 μ8 − 128 μ6 + 88 μ4 − 24 μ2 + 3)T 2,

H4 = μ4(4 μ2 − 3) cos2(X) + 2 Xμ6(2 μ2 − 1) cos(X) sin(X)

+ [μ4(4 μ4 − 6 μ2 + 3)X2 + (8 μ4 − 8 μ2 + 1)(2 μ2 − 1)2T 2],

H5 = [(2 μ2 − 1)2T 2 + X2μ4]2 − 3 X2μ8 + (−24 μ8 + 24 μ6 + 18 μ4 − 20 μ2 + 3)T 2,

H6 = X2μ6 + (2 μ2 − 1)(6 μ4 − 3 μ2 − 2)T 2,

F [3] = F1 cosh(T )3 − μF2 cosh(T )2 + 2 T μF3 cosh(T ) sinh(T ) + F4 cosh(T ) + 2 T (2 μ2 − 1)F5 sinh(T )

−μ9 cos3(X) − μF6 cos(X) + 2 Xμ3F7 sin(X),

F1 = −(2 μ2 − 1)(16 μ4 − 16 μ2 + 1),

F2 = F21 cos(X) + 2 Xμ2F22 sin(X),

F21 = (8 μ4 − 8 μ2 + 1)[2 X2μ4 − 2 (2 μ2 − 1)2T 2] + 2 μ2(8 μ6 − 24 μ4 + 21 μ2 − 4) − 3,

F22 = 8 μ6 − 24 μ4 + 21 μ2 − 4,

F3 = 2 Xμ2(2 μ2 − 1)(8 μ4 − 8 μ2 + 1) sin(X) − (32 μ8 − 80 μ6 + 68 μ4 − 22 μ2 + 3) cos(X),

F4 = μ4[F41 cos(X) + F42 sin(X)] cos(X) + F43,

F41 = −2 (2 μ2 − 1)[X2μ4 − (2 μ2 − 1)2T 2] + 6 μ6 − 3 μ4 + 4 μ2 − 6,

F42 = 2 Xμ2(6 μ4 − 3 μ2 − 2),

F43 = −(2 μ2 − 1)[(2 μ2 − 1)2T 2 + X2μ4]2 + μ4(6 μ6 − 3 μ4 − 8 μ2 + 6)X2

− 3 (2 μ2 − 1)(8 μ4 − 8 μ2 + 1)T 2,

F5 = μ4[(8 μ4 − 4 μ2 − 3) cos(X) + 2 Xμ2(2 μ2 − 1) sin(X)] cos(X) − μ4(4 μ4 − 2 μ2 − 3)X2

+ (2 μ2 − 1)2T 2,

F6 = −3 X2μ8 + (104 μ8 − 232 μ6 + 178 μ4 − 52 μ2 + 3)T 2 + [(2 μ2 − 1)2T 2 + X2μ4]2,

F7 = X2μ6 + (2 μ2 − 1)(6 μ4 − 3 μ2 − 2)T 2,

G[3] = G1 sinh(T ) cosh(T )2 + G2 cosh(T )2 + 8 μG3 cosh(T ) sinh(T ) + 4 T G4 cosh(T )

+G5 sinh(T ) + 8 T μG6,

G1 = 2 (4 μ2 − 1)(4 μ2 − 3),

G2 = 16 T μ (2 μ2 − 1)2[(μ2 − 1) cos(X) − Xμ2 sin(X)],

G3 = Xμ2(μ2 − 1)(2 μ2 − 3) sin(X) + G31 cos(X),

G31 = μ4(2 μ2 − 1)X2 − (2 μ2 − 1)3T 2 + μ2(μ2 − 1)(2 μ2 − 3),
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G4 = (2 μ2 − 1)2T 2 + μ4(4 μ4 − 2 μ2 − 1)X2 + 16 μ2(μ2 − 1) + 3 − μ4[(8 μ4 − 4 μ2 − 1) cos(X)

+ 2 Xμ2(2 μ2 − 1) sin(X)) cos(X],

G5 = 2G51 − 2 μ4[G52 cos(X) + 6 Xμ4 sin(X)] cos(X),

G51 = [(2 μ2 − 1)2T 2 + X2μ4]2 − 3 X2μ8 − (4 μ2 − 1)(4 μ2 − 3)T 2,

G52 = 2 (2 μ2 − 1)2T 2 − μ4(2 X2 − 3),

G6 = [(2 μ2 − 1)3T 2 + μ4(2 μ2 − 1)X2 + μ2(μ2 − 1)(2 μ2 − 3)] cos(X) + Xμ2(μ2 − 1)(2 μ2 − 3) sin(X),

μ = η1

c
, X = 2h(t − 2az), T = 4hη1z, h = c

√
1 − μ2.

3. The tilted propagation of the b-positons (order-2 and order-3)

In order to show the generality of q
[2]
b-position in Appendix 2a, Figs. 12-14 are plotted for tilted propagation of the b-positons.

4. B-positons (order-2 and order-3) for experiments

In this appendix, the evolutions of order-2 and order-3 b-positons associated with observations in Figs. 7-11 are plotted in
Figs. 15 and 16.

5. Numerical simulations for order-2 b-positons

The numerical code for the NLS equation is given in Ref. [20] (see its Appendix B). In Figs. 17–20, the first column denotes
input signals, others denote output signals.

6. The demonstration of instability for the order-2 b-positon by numerical simulation

In this Appendix, we use numerical simulation in Fig. 21 to show the increasing trend of the instability for the order-2
b-positon when λ1 → λ0.

FIG. 20. Numerical simulation of three periods from periodic extension of Fig. 19. In order to get recognizable curve, theoretical results
are not added. (a) The initial signal of triangular pattern without noise at z = −7.43, (b) The observe signal of triangular pattern without noise
at z = −4.81, (c) The observe signal of triangular pattern without noise at z = 4.42, (d) The initial signal of triangular pattern with noise at
z = −7.43 (SNR = 100), (e) The observe signal of triangular pattern with noise at z = −4.81 (SNR = 100), (f) The observe signal of triangular
pattern with noise at z = 4.42 (SNR = 100).
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FIG. 21. The increasing trend of instability for an order-2 b-positon |q [2]
b-positon|2 with SNR = 100 and parameters λ0 = − a

2 + ic, a = 0, c =
1
2 , s0 = 0, s1 = 0. From top to bottom, this b-positon is approaching an order-2 rogue wave as λ1 tends to λ0, which corresponds to the left
column of Fig. 2. The right column is the corresponding density plot of the left. The parameter λ1 of b-positons is 2

5 i in (a), (b), 6
13 i in (c), (d),

12
25 i in (e), (f), and 1

2 i in (g), (h).
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