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We study the correspondence between modulational instability and types of fundamental nonlinear excitation
in a nonlinear fiber with both third-order and fourth-order effects. Some soliton excitations are obtained in the
modulational instability regime which have not been found in nonlinear fibers with second-order effects and
third-order effects. Explicit analysis suggests that the existence of solitons is related to the modulation stability
circle in the modulation instability regime, and they just exist in the modulational instability regime outside of
the modulational stability circle. It should be emphasized that the solitons exist only with two special profiles on
a continuous-wave background at a certain frequency. The evolution stability of the solitons is tested numerically
by adding some noise to initial states, which indicates that they are robust against perturbations even in the
modulation instability regime. Further analysis indicates that solitons in the modulational instability regime are
caused by fourth-order effects.
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I. INTRODUCTION

Modulation instability (MI) is a fundamental process
associated with the growth of perturbations on a continuous-
wave background (CWB) [1]. It can be used to understand
the dynamics of nonlinear waves on a CWB, such as the
Akhmediev breather [2,3], Peregrine rogue wave [4,5], and
Kuznetsov-Ma breather [6,7] and even high-order rogue waves
[8–13]. Different MI gain distributions could bring different
nonlinear excitation pattern dynamics [14]. We presented
rational W-shaped solitons in the modulational stability (MS)
regime [15], and autonomous transition dynamics from the MI
to the MS regime on critical boundary lines between MI and
MS regimes [16]. Recently a few authors have suggested that
baseband MI or MI with resonant perturbations could induce
rogue-wave excitation as a universal property of different
nonlinear models [17–20]. Furthermore, quantitative corre-
spondence relations between nonlinear excitations and MI
were clarified based on the dominant perturbation frequency
for the simplest nonlinear Schrödinger equation (NLSE) [20].
The correspondence between MI and nonlinear excitations will
be very meaningful for controllable excitation [21]. Therefore,
it is meaningful and essential to obtain the correspondence
relation between MI and nonlinear excitations in other physical
cases [22].

High-order effects are usually taken to describe the non-
linear dynamics more precisely for many physical systems.
For example, nonlinear susceptibility will produce high-order
nonlinear effects like the Kerr dispersion (i.e., self-steepening),
the delayed nonlinear response, and even the third-order
dispersion for ultrashort pulses whose duration is shorter than
100 fs in a nonlinear fiber. Recently, we obtained correspon-
dence relations between MI and nonlinear excitations for the
Sasa-Satsuma [16] and Hirota [23] models, which are the
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NLSE with some third-order effects. Those results indicate
that third-order effects cause great variation in MI properties,
which would induce some new nonlinear excitations. We
extend the previous studies to consider the NLSE with both
third-order and fourth-order effects [see Eq. (1)] and perform a
linear stability analysis on a CWB. We find an MS circle in the
MI regime (see Fig. 1). This is topologically different from the
finite-width MS band for the Sasa-Satsuma model [16] and
the MS line for the Hirota equation [23]. We have obtained
many nonlinear dynamics in the NLSE with high-order effects.
For example, rational W-shaped solitons [14] and multipeak
solitons [23] have been reported. It is naturally expected that
there should be much more abundant nonlinear excitation
dynamics in this case.

In this paper, we study the correspondence relation be-
tween MI and fundamental excitations in the NLSE with
both third-order and fourth-order effects. These fundamental
excitations—including mainly the Akhmediev breather, rogue
wave, Kuznetsov-Ma breather, periodic wave, W-shaped soli-
ton train, rational W-shaped soliton, antidark (AD) soliton, and
nonrational W-shaped (WSnr) soliton—can be described by
an exact solution in a generic form. Especially, AD and WSnr

soliton excitations can exist in the MI regime outside the MS
circle, in sharp contrast to the correspondence relation for the
simplest NLSE [20], Hirota equation [23], and Sasa-Satsuma
equation [16]. When the soliton perturbation energy on a
CWB tends to 0, the stable perturbations agree with the
linear stability analysis results. When the soliton perturbation
energy is nonzero, the stable perturbations do not agree with
the linear stability analysis results. It should be emphasized
that the solitons just exist with two special profiles on a
certain-frequency CWB, and the existence of solitons in the
MI regime is caused by fourth-order effects. We further test
the evolution stability of solitons numerically, which indicates
that they are robust against perturbation even in the MI regime.

Our presentation of the above features is structured as
follows. In Sec. II, a linear analysis on a CWB is performed and
a generic exact solution is given for types of fundamental non-
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FIG. 1. Modulation instability (MI) gain G distribution on the
background frequency ω and perturbation frequency � plane. MS,
modulation stability. There is an MS circle in the MI band, shown by
the dashed white line. The MI gain value is not 0 for the regime outside
and inside of the MS circle, shown in the lower frame. Parameters
are A = 1, β = 1

6 , and γ = − 5+√
15

48 .

linear excitations. The correspondence between MI and these
fundamental nonlinear excitations is presented. Especially, AD
solitons and WSnr solitons can exist in the MI regime, which
is absent for the NLSE, Sasa-Satsuma, and Hirota models. In
Sec. III, we discuss the AD soliton and WSnr soliton in the
MI regime and test their stability numerically. It is found that
solitons just exist with a special profile on a certain-frequency
CWB, and the existence of solitons in the MI regime is caused
by fourth-order effects. Finally, we summarize the results and
present our discussion in Sec. IV.

II. CORRESPONDENCE BETWEEN MODULATIONAL
INSTABILITY AND SEVERAL FUNDAMENTAL

NONLINEAR EXCITATIONS

Many efforts have been made to study nonlinear excitations
in nonlinear fibers with high-order effects, such as the Sasa-
Satsuma equation [15,16,24–27] and Hirota equation [28–30].
The Sasa-Satsuma and Hirota equations are NLSEs with
third-order effects. Some recent experiments and theoretical
studies have suggested that fourth-order effects could play an
important role in soliton dynamics in nonlinear fibers [31].
Moreover, fourth-order effects could play an important role
in anisotropic Heisenberg ferromagnetic systems [32,33]. We
would like to further consider an NLSE with both third-order

and fourth-order effects as [34–39]

iψz + 1
2ψtt + ψ |ψ |2 + iβH [ψ(t,z)] + γP [ψ(t,z)] = 0,

(1)
where the third-order H [ψ(t,z)] = ψttt + 6|ψ |2ψt is the Hi-
rota operator (beginning with the third-order dispersion), and
the fourth-order P [ψ(t,z)] = ψtttt + 8|ψ |2ψtt + 6ψ |ψ |4 +
4ψ |ψt |2 + 6ψ2

t ψ∗ + 2ψ2ψ∗
t t is the Lakshmanan-Porsezian-

Daniel operator (beginning with the fourth-order dispersion).
Here, z is the propagation variable and t is the transverse
variable (time in a moving frame), with the function |ψ(t,z)|
being the envelope of the waves.

When β = γ = 0, Eq. (1) reduces to the standard NLSE,
which can be used to describe picosecond optical pulse
propagation in fibers. When γ = 0, Eq. (1) becomes the
Hirota equation including the third-order dispersion and
|ψ |2ψt term, which was derived in [40]. Moreover, the
general governing equation for optical pulse propagation
in a fiber can be given as [41] iψz = −∑∞

m=1
imβm

m!
∂mψ

∂tm
−

γ (1 + is ∂
∂t

)(ψ
∫ ∞

0 R(t ′)|ψ(t − t ′)|2dt ′), where the first term
on the right-hand side is the linear dispersion, with corre-
sponding coefficients βm, while the second term describes the
nonlinear terms, taking into account their dispersion. Here, s is
the self-steepening coefficient, the nonlinear term γ depends
on the effective core area, and R(t) includes instantaneous
(electronic) and delayed nuclear (Raman) contributions of the
nonlinear material response. The integral in the above equation
is often approximated by taking the series to first order only,
i.e., |ψ |2 − τR , for Raman delay τR . However, in reality, we
need to consider higher-order terms. Then some higher-order
terms of Eq. (1) can be obtained by choosing the higher-order
nonlinear response function R(t) [38].

Additionally, Eq. (1) has been obtained in an anisotropic
Heisenberg ferromagnet with Dzyaloshinskii-Moriya interac-
tion which is restricted to the z direction [32]. Furthermore,
Eq. (1) with β = 0 also can be used to describe an anisotropic
Heisenberg ferromagnet chain without Dzyaloshinskii-Moriya
interaction [33]. In this case, |ψ |2 presents the spin devi-
ation between the spin S and its projection in the z-axis
direction Sz.

Since MI properties can be used to understand differ-
ent excitation patterns on a CWB in nonlinear systems
[15,16,20,23], we perform the standard linear stability analysis
on a generic CWB ψ0 = Aeiθ = A ei(kz+ωt) [A, ω, and k =
A2 − 1

2ω2 + β(ω3 − 6A2ω) + γ (6A4 − 12A2ω2 + ω4) repre-
sent the amplitude, frequency, and wave number of the
background electric field, respectively]. A perturbed nonlin-
ear background can be written as ψp = (A + p)eiθ , where
p(t,z) is a small perturbation which is given by col-
lecting the Fourier modes as p = f+ exp[i(Kz + �t)] +
f− exp[−i(Kz + �t)], where f+ and f− are much less than
the background amplitude A, and � represents the perturbed
frequency. Then one can obtain the MI gain, G = |Im(K)| =
Im�

√
(�2 − 4A2)[1/2 − 3βω + γ (6A2 − 6ω2 − �2)]2, by

linearizing the nonlinear partial equation and solving the
eigenvalue problems. Obversely, there is a low-perturbed-
frequency MI regime (|�| < 2A) in perturbed-frequency �

and background-frequency ω space.
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TABLE I. Types of nonlinear waves in the fourth-order NLS system. Parameters are δ = 2
√

b2 − A2; � = ±2
√

A2 − b2; χk = δ(t + vkz);
χa = �(t + vaz); χs = δ(t + vsz); χp = �(t + vpz); vk , va , vr , vs , vw , and vp correspond to the v1 values in the Appendix under corresponding

conditions; � =
√

s2

s
(s = b + √

b2 − A2, |b| > A); and the phase satisfies cos θk = bs

A
√

s2 , sin θk = i bs−A2

A
√

s2 , cosh μAD = b/A, sinh μAD =√
b2 − A2/A, where b > 0. Other parameters are the same as in the Appendix.

Existence condition Nonlinear wave type Analytic expression

b > A, (ω + β

4γ
)2 − δ2

6 �= α Kuznetsov-Ma breather [1 − 2b[� cos(bv2δz−θk )−cosh(χk )]
A cos(bv2δz)−b cosh(χk ) ]Aeiθ

b < A, (ω + β

4γ
)2 + �2

6 �= α Akhmediev breather [−A − (2A2−2b2) cosh(bv2�z)+i�b sinh(bv2�z)
b cos(χa )−A cosh(2bv2�z) ]eiθ

b = A, (ω + β

4γ
)2 �= α Rogue wave [ 4(2iA2v2z+1)

1+4A2(t+vr z)2+4A4v2
2z2 − 1]Aeiθ

b > A, (ω + β

4γ
)2 − δ2

6 = α Nonrational W-shaped soliton [ −δ2

2A−2b cosh χs
− A]eiθ

b > A, (ω + β

4γ
)2 − δ2

6 = α Antidark soliton [ −δ2

2A+2b cosh(χs−μ2) − A]eiθ

b = A, (ω + β

4γ
) = α, α � 0 Rational W-shaped soliton [ 4

1+4A2(t+vwz)2 − 1]Aeiθ

A

2 < b < A, (ω + β

4γ
)2 + �2

6 = α, α > 0 W-shaped soliton train [ �2

2A−2b cos χp
− A]eiθ

0 < b � A

2 , (ω + β

4γ
)2 + �2

6 = α, α > A2

2 Periodic wave [ �2

2A−2b cos χp
− A]eiθ

Particularly, when 1/2 − 3βω + γ (6A2 − 6ω2 − �2) = 0,
i.e., (

ω + β

4γ

)2

+ �2

6
= α, (2)

the MI gain G = 0, where α = β2

16γ 2 + 1
12γ

+ A2. When α > 0,
the MS regime, Eq. (2), describes an ellipse whose center is
localized at point (− β

4γ
, 0). Its semimajor axis is equal to

√
6α

and parallel to the � coordinate and its semiminor axis is
equal to

√
α in the ω coordinate. When the semimajor axis

is less than 2A and greater than 0, all parts of the ellipse
are located in the MI regime (see Fig. 1). Namely, the MI
band (|�| � 2A) contains a special MS regime which satisfies
Eq. (2), which brings the MS circle in the MI regime. Nonzero
MI gain values exist in areas both outside and inside the circle
(see Fig. 1). It should be noted that the MI gain form fails
to predict the stability of perturbations on the resonant line
(� = 0) [20]. For � = 0 mode perturbation denoted εp̃ (where
ε � 1 is a real constant), we can derive the secular solution

as p̃ = 1 + 24iA2γ [α − (ω + β

4γ
)
2
]z, which demonstrates the

instability property of the resonant perturbation mode. The

perturbations with modes (ω + β

4γ
)
2 = α on the MS circle do

not admit rational growth.
This is topologically different from the MI distribution

for the simplest NLSE, Hirota, and Sasa-Satsuma equations
[16,20,23]. We expect that there could be some exotic
dynamical excitations for this new MI distribution pattern.
Moreover, the MS circle size can be changed by varying the
strength of the fourth-order effect. When the semimajor axis
is greater than 2A, only a part of the ellipse is located in
the MI band (|�| � 2A). In this case, the MS regime which
is located in the MI band is two curves. Moreover, when
α = 0, the MS circle decreases to become an MS point (− β

4γ
,

0) which is located on the resonance line in the MI band.
Furthermore, for α < 0, there is no MS regime in the MI
band. To show the correspondence between MI and nonlinear
excitations conveniently and clearly, we choose Fig. 1 (i.e.,
α > 2A) to study the relation. Similar discussion can be made
for other cases (i.e., 0 < α < 2A, α = 0, and α < 0), and we

have proved that nonlinear excitations are the most abundant
for the case in Fig. 1.

To obtain the correspondence relation between fundamental
nonlinear waves and the MI distribution, we turn our attention
to the exact solutions on the CWB. We derive an exact solution
by means of the Darboux transformation method, which can
describe many types of fundamental nonlinear excitations
on a CWB. The explicit expressions for the solutions are
presented in the Appendix. We can see that solution (A9)
is a superposition of the CW and the perturbation signal
ψs , which represents the nonlinear evolution process of the
perturbation signal. Obviously, the form of solution (A9) and
a linear superposition form of the CW and a perturbation
signal in the linear stability analysis are consistent. Namely, the
dynamic properties of these nonlinear waves can be understood
by linear stability analysis. Furthermore, solution (A10) is a
nonlinear combination of the trigonometric function (cos ϕ)
and hyperbolic function (cosh φ), where ϕ and φ are real
functions of z and t [see Eq. (17)]. Here the hyperbolic function
and trigonometric function describe the localization and the
periodicity of the nonlinear waves, respectively. Hence the
nonlinear wave described by solution (A10) can be seen as a
nonlinear superposition of a soliton and a periodic wave. We
find that solution (A10) contains eight types of fundamental
nonlinear excitations: the Kuznetsov-Ma breather, nonra-
tional W-shaped soliton (WSnr), antidark soliton, Akhmediev
breather, periodic wave, W-shaped soliton train, rogue wave,
and rational W-shaped soliton. The conditions for existence
and the explicit expressions for these fundamental nonlinear
excitations are listed in Table I.

MI is a process associated with the growth of perturbations
on a CWB or other types of background. Here we mainly
discuss the case of MI on a CWB. MI characters on a CWB
are usually obtained by linear stability analysis with the linear
superposition form ψsignal + ψcw (ψsignal and ψcw denote the
perturbation signal and the CWB, respectively). We note that
localized waves on the CWB can also be written in a similar
form. This provides the possibility of explaining the dynamics
of the localized waves on the CWB through MI characters.
Based on a Fourier analysis of the exact solutions of the rogue
wave, Akhmediev breather, Kuznetsov-Ma breather, rational
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FIG. 2. (a) Phase diagram for different types of nonlinear waves
on the modulation instability gain spectrum plane corresponding to
Fig. 1. AB, Akhmediev breather; RW, rogue wave; K-M, Kuznetsov-
Ma breather; PW, periodic wave; WST, W-shaped soliton train; WSr ,
rational W-shaped soliton; AD, antidark soliton; WSnr, W-shaped
soliton. (b) Resonant line in the MI regime, on which AD and WSnr

solitons can exist. Parameters are the same as in Fig. 1.

W-shaped soliton, nonrational W-shaped soliton, W-shaped
soliton train, AD soliton, and periodic wave, we locate these
different fundamental nonlinear excitations on the MI plane
by defining and calculating the dominant frequency and
propagation constant of each nonlinear wave [20], shown
in Figs. 2(a) and 2(b). We can see that the rogue wave
and Kuznetsov-Ma breather still come from the resonance
perturbation in MI regimes and the Akhmediev breather still
in the regime between the resonance line and the boundary
line between the MI and the MS regime. These are similar
to the rogue wave, Akhmediev breather, and Kuznetsov-Ma
for the NLSE system. However, there are MS curves in the
MI band for the fourth-order NLSE system and the periodic
wave, W-shaped soliton train, and rational W-shaped soliton
are excited in this regime [see Fig. 2(a)]. We have shown that
the MS-regime structures in the MI regime depend on the
parameter α [see Eq. (2)].

Therefore, stable nonlinear wave types are different for
different α values. When the semimajor axis

√
6α of ellipse

(2) is less than
√

3A (i.e., α < A2

2 ), the periodic wave will
not exist. Moreover, when α = 0, the periodic wave and
W-shaped soliton train do not exist. Furthermore, for α < 0,
stable nonlinear waves (periodic wave, W-shaped soliton
train, and rational W-shaped soliton) do not exist in the
MS regime in the MI band. We can see that several stable
nonlinear waves exist only at two modulation stability curves;
this condition seems to be very strict. However, in fact,
with the background frequency and perturbation frequency
approaching two modulation stability curves, the modulation
instability gain G decreases rapidly, and the evolution distance
of the rogue wave and Akhmediev breather increase rapidly
and remain stable over a long propagation distance [30]. In this
case, the dynamics of the rogue wave and Akhmediev breather
behaves like that of the W-shaped soliton or periodic wave. In
other words, although condition (2) of the modulation stability
region is strict, these solitons and periodic waves still can be
observed in experiments. The above results are consistent with
those of previous investigations. The MI regime corresponds
to unstable nonlinear waves (i.e., breathers and rogue waves)
and the MS regime localized in the MI band corresponds to

FIG. 3. Optical amplitude distributions |ψs | of (a) a nonrational
W-shaped soliton and (b) an antidark soliton on a continuous-wave
background. Parameters are A = 1, β = 1

12 , γ = − 1
36 , ω = 0, b = 2.

the excitations of stable nonlinear waves (i.e., solitons and
periodic waves). However, we find that AD and WSnr solitons
exist in the MI regime [see Fig. 2(b)], which seems to violate
the prediction given by linear stability analysis. Particularly,
they just exist in the MI regime outside the MS circle, and they
cannot exist in the MI regime inside the MS circle. We discuss
them in detail in the next section.

III. ANTIDARK SOLITONS AND W-SHAPED SOLITONS IN
THE MI REGIME

The evolutions of AD and WSnr solitons are shown in
Fig. 3; they indeed evolve with invariable profiles. It should
be emphasized that MI characters can be used to explain
the existence and evolution of localized waves on the CWB
here. But the stability of these localized waves against
perturbation cannot be explained by MI characters on the
CWB. Their stability can be tested numerically by adding weak
perturbations for their initial states or explained by performing
MI analysis of all the localized wave solutions but not the
CWB. Therefore, we test the stability of these solitons by
adding some random noise to their initial states. As an example,
we numerically test the stability of AD solitons against
noise (initial condition ψp = ψAD[1 + 0.01 random(t)]). The
result is shown in Fig. 4(a), which indicates that the AD
soliton is robust against noises. Furthermore, we perform
direct numerical simulation of AD soliton by adding a weak
Gaussian pulse perturbation, ψAD[1 + 0.1e−(t+1)2/4], shown in
Fig. 4(b). We can see that the AD soliton propagates stably,
and a weak Gaussian pulse evolves into a rogue wave. After
interacting with the rogue wave, the AD soliton is restored
to its original shape by a small phase shift. This confirms
that AD solitons indeed exist in the MI regime. This is
significantly different from previous results showing that there
is no stable localized wave in the MI regime [15,16,20,23]. The
above analysis shows that AD and WSnr solitons exist under
the same parameter condition (ω + β

4γ
)2 − δ2

6 = α (where

δ = 2
√

b2 − A2). The structures of these two kinds of solitons
are different [see Figs. 3(a) and 3(b)], but the energies of the
AD and WSnr solitons against the CWB are identical, namely,
εs1 = εs2 = εs = 2δ. The perturbation energy ε of the pulse
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FIG. 4. (a) Numerical evolution from the initial conditions
ψp(t, − 5) = ψAD[1 + 0.01 random(t)]. (b) Numerical evolution of
|ψ(t,z)| from the AD with the addition of weak Gaussian pulse
perturbations in the form ψAD[1 + 0.1e−(t+1)2/4]. Parameters are
A = 1, β = 1

12 , γ = − 1
36 , ω = 0, b = 2.

against the background is defined as

ε =
∫ ∞

−∞
(|ψ |2 − A2)dt. (3)

Because there is a one-to-one correspondence between the
parameter δ and the perturbation energy εs , we can rewrite the
existence condition for AD and WSnr solitons as follows:(

ω + β

4γ

)2

− ε2
s

24
= α. (4)

The condition has a clearer meaning since the perturbation
energy has a clearer physical meaning than the parameter δ.
Namely, for a specific system parameter and fixed background
amplitude (i.e., β, γ , and A are fixed), when the background
frequency ω and the energy of pulse εs satisfy Eq. (4), a
CWB admits solitons with two special profiles (AD and WSnr

solitons) even in the MI regime (outside the MS circle). This
character has not been found for the NLSE or its extended form
with other types of high-order effects [9,15,16,24–30,42,43].

In order to better understand the generation mechanism of
AD and WSnr solitons, we analyze the relationship between
their existence conditions and the MI gain. From the above
linear stability analysis, the MS condition on the resonance
line can be given as ω = − β

4γ
± √

α. This means that there
are two MS points on the resonance line [see Fig. 2(a)]. Then
we rewrite the existence conditions for AD and WSnr solitons
as follows:

ωs = − β

4γ
±

√
ε2
s

24
+ α. (5)

It suggest that AD and WSnr solitons exist on both sides of
two MS points on the resonance line [see Fig. 2(b)] (but
do not exist in the regime between the two MS points). We
plot the positions of AD and WSnr solitons with different
energies in Fig. 5. When the perturbation energy on a CWB
corresponding to an AD or WSnr soliton tends to 0 (the
amplitude is low), stable soliton evolution agrees with the
stability property predicted by linear stability analysis. But
their excitation positions gradually deviate from the MS points
as the energy increases. Namely, the energies of AD and
WSnr solitons are nonzero, and their excitation conditions do

FIG. 5. Positions of the AD and WSnr with different energies on
the modulational instability gain spectrum plane. Green, aqua, and
purple points correspond to the AD and WSnr with different energies
εs ; blue points are modulation stability points on the resonance line.
It shows that the position approaches the MS point as the perturbation
energy decreases (the soliton amplitude becomes lower). Parameters
are A = 1, β = 1

6 , γ = − 5+√
15

48 .

not agree with the MS condition predicted by linear stability
analysis. Moreover, the other aforementioned localized waves
with zero perturbation energies highly agree with the linear
stability analysis; even the corresponding perturbation signals
admit high amplitudes. These results indicate that linear
analysis stability predictions agree with the evolution of
strong perturbations with zero perturbation energy but do not
agree with the evolution of strong perturbations with nonzero
perturbation energy.

Therefore the perturbation energy also plays an important
role in the evolution of perturbation signals. This means that
a stable soliton with a high perturbation energy can exist
in the MI regime predicted by linear stability analysis. This
partly means that the perturbation energy could inhibit the MI
properties. Considering that AD and WSnr solitons can exist
only with a specific perturbation energy on a certain CWB, we
expect that there is a balance condition between perturbation
energy and MI gain.

Thus, we would like to determine what factors create stable
solitons in the MI regime. The above analysis indicates that the
MI gain G and perturbation energy εs both play an important
role in the excitation of the AD and WSnr soliton. To further
analyze the impact of the MI gain G and energy εs on the
excitation of AD and WSnr solitons, we simplify the expression
of the gain G on the resonance line based on the above linear
stability analysis result, G = 24A2|γ ||(ω + β

4γ
)2 − α|. On the

other hand, we can rewrite the energy squared expression
for the AD and WSnr solitons from Eq. (4), namely, ε2

s =
24[(ω + β

4γ
)2 − α]. The AD and WSnr solitons do not exist

when (ω + β

4γ
)2 − α � 0 [see the part between two MS points

in Figs. 2(a) and 2(b)]. Therefore, we consider only the
condition (ω + β

4γ
)2 − α > 0. In this case, the MI gain G and

the energy of the AD and WSnr solitons satisfy

G

ε2
s

= A2|γ |. (6)
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This can be seen as a balance condition between perturbation
energy and MI. Obviously, fourth-order effects related to γ

here cause the existence of AD and WSnr solitons in the
MI regime. This can be used to explain that AD and WSnr

solitons in the MI regime have not been found in the NLSE
or its extended form with lower than fourth-order effects
[9,16,23,26–30].

IV. DISCUSSION AND CONCLUSION

We present the correspondence relation between MI and
fundamental excitations in the NLSE with both third-order
and fourth-order effects. AD and WSnr excitations are found
to exist in the MI regime outside the MS circle (but not in
the MI regime inside the MS circle), in sharp contrast to the
correspondence relation for the simplest NLSE [20], Hirota
equation [23], and Sasa-Satsuma equation [16]. We further
test the evolutionary stability of solitons numerically, which
indicates that they are robust against perturbations even in
the MI regime. Solitons with high energies in the MI regime
are caused by fourth-order effects. It is also meaningful to
study excitation dynamics with other types of fourth-order or
higher-order effects to determine whether there are some new
MI properties. The results here further indicate that different
MI distributions will bring different excitation patterns.

It has been well known that linear stability analysis holds
well for weak perturbations. However, our results indicate that
linear analysis stability predictions agree with the evolution
of strong perturbations with zero perturbation energies but
do not agree with the evolution of strong perturbations
with nonzero perturbation energies. These characters are
demonstrated by related exact soliton solutions on the CWB,
but the underlying reasons for these striking characters are still
unknown. Therefore, the development of some new ways to
analyze the stability and dynamics of strong perturbations with
nonzero perturbation energies is still needed.
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APPENDIX: THE GENERALIZED SOLUTION FOR
FUNDAMENTAL NONLINEAR EXCITATIONS

The Lax pair of Eq. (1)is given as [36]

�t = U�,

�z = V �, (A1)

and

U =
(−iλ ψ

−ψ∗ iλ

)
, (A2)

V =
4∑

j=0

λjVj , (A3)

where

Vj =
(

Aj Bj

−B∗
j −Aj

)
,

(A4)

A4 = 8iγ, B4 = 0,

A3 = −4iβ, B3 = −8γψ,

A2 = −i − 4iγ |ψ |2, B2 = 4βψ − 4iγψt ,

A1 = 2iβ|ψ |2 − 2γ (ψψ∗
t − ψtψ

∗),

B1 = ψ + 4γ |ψ |2ψ + 2iβψt + 2γψtt ,

A0 = 1
2 i|ψ |2 + 3iγ |ψ |4 + β(ψψ∗

t − ψtψ
∗)

+ iγ (ψψ∗
t t − |ψ |2t + ψttψ

∗),

B0 = −2β|ψ |2ψ + 1
2 iψt + 6iγ |ψ |2ψt

−βψtt + iγψttt . (A5)

The solution of Eq. (1) can be constructed as follows:

ψ = ψ0 − 2i
(λ − λ∗)�1�

∗
2

|�1|2 + |�2|2 . (A6)

In order to obtain nonlinear wave solutions on a plane-
wave background, we first introduce the plane-wave solution
ψ0 = Aei(kz+ωt) of Eq. (1) as the seed solution of the
Darboux transformation, where θ = ωt + kz and k = A2 −
1
2ω + β(ω3 − 6A2ω) + γ (6A4 − 12A2ω2 + ω4). Substituting
the plane-wave solution into Eq. (A1), we can obtain two sets
of eigenfunctions,(

�11

�21

)
=

(
[iλ − 1

2 (ζ − iσ ) + i
2ω]φ1 + Aφ2

Aφ1 + [iλ − 1
2 (ζ − iσ ) + i

2ω]φ2

)

(A7)

and (
�12

�22

)

=
[

A(φ1 + φ2)

(iλ + i
2ω)(φ1 + φ2) + 1

2 ((ζ − iσ )(φ1 − φ2))

]
,

(A8)

where φ1 = eτ1t+(C+Bτ1+iτ 2
1 )z, φ2 = eτ2t+(C+Bτ2+iτ 2

2 )z,

λ= − 1
2ω + ib(b > 0), ζ=(

√
χ2 + χ )

1/2
/
√

2, σ= ±
(
√

χ2 − χ )
1/2

/
√

2, χ = 4b2 − 4A2, C = A2 + λ2 + λω +
1
4ω, B = ib − ω + β(−2A2 − 4b2 − 6ibω + 3ω2) +
γ (4iA2b + 8ib3 −8A2ω − 16b2ω − 12ibω2 + 4ω3), and
τ1 = −τ2 = 1

2

√−4A2 − 4λ2 − 4λω − ω2.
Then the generalized exact solution of the NLSE with both

third-order and fourth-order effects is derived to describe the
types of fundamental nonlinear excitations. The solution is
given as

ψ1,2 = Aeiθ + ψs1,2e
iθ , (A9)

where

ψs1,2 = −A
8b�1,2(cosh(φ + δ1,2) + cos(ϕ − η1,2))

�1,2 cosh(φ + τ1,2) + �1,2 cos(ϕ − ρ1,2)
,

(A10)
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with

φ = ζ t − V1z, ϕ = σ t − V2z,

V1 = ζv1 − bσv2, V2 = σv1 + bζv2,

v1 = ω + β(2A2 + 4b2 − 3ω2) + 4γ (2A2ω + 4b2ω − ω3),

v2 = 1 − 6βω + 2γ (2A2 + 4b2 − 6ω2),

ζ = (
√

χ2 + χ )1/2/
√

2,

σ = ±(
√

χ2 − χ )1/2/
√

2,

χ = 4b2 − 4A2. (A11)

The corresponding amplitude and phase notations are

�1 =
√

β2
1 + β2

2 , �2 =
√

α2
1 − α2

2,

�1 = 4A2 + β2
1 + β2

2 ,

�2 =
√

(α3 + α4)2 − 16b2ζ 2,

�1 = −4Aβ1,

�2 =
√

16b2σ 2 + (α3 − α4)2,

where cosh δ1 = β1

�1
, sinh δ1 = − β2

�1
, cosh δ2 = α1

�2
, sinh δ2 =

− α2
�2

, cos η1 = − 4A2+β2
1 +β2

2
4A�1

, sin η1 = −i
4A2−β2

1 −β2
2

4A�1
, cos η2 =

α1
�2

, sin η2 = −i α2
�2

, τ1 = 0, cosh τ2 = α3+α4
�2

, sinh τ2 = − 4bζ

�2
,

ρ1 = 0, cos ρ2 = α3−α4
�2

, sin ρ2 = 4bσ
�2

, α1 = 2b, α2 = ζ + iσ ,
α3 = 4A2 + 4b2, α4 = ζ 2 + σ 2, β1 = 2b + ζ , and β2 = σ .

We find that solution (A10) contains eight types of fun-
damental nonlinear excitations: the Kuznetsov-Ma breather,
nonrational W-shaped soliton, antidark soliton, Akhmediev
breather, periodic wave, W-shaped soliton train, rogue wave,
and rational W-shaped soliton train. The existence conditions
and explicit expressions for these fundamental nonlinear
excitations are listed in Table I.
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