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The generation of rogue waves is investigated in a class of nonlocal nonlinear Schrödinger (NLS) equations.
In this system, modulation instability is suppressed as the effect of nonlocality increases. Despite this fact, there
is a parameter regime where the number and amplitude of the rogue events increase as compared to the standard
NLS equation, which is a limit of the system when nonlocality vanishes. Furthermore, the nature of these waves
is investigated; while no analytical solutions are known to model these events, it is shown, numerically, that these
rogue events differ significantly from the rational soliton (Peregrine) solution of the limiting NLS equation. The
universal structure of the associated rogue waves is discussed and a local description is presented. These results
can help in the experimental realization of rogue waves in these media.
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I. INTRODUCTION

Abnormally large waves have long been observed in the
ocean; such “rogue” waves can be extremely dangerous even to
large ships. This has motivated wide ranging research on rogue
and extreme phenomena that spans across sciences [1–9].
Understanding of these phenomena has often been mainly
driven by studies of the well-known integrable nonlinear
Schrödinger equation (NLS) with cubic or Kerr nonlinearity
and small perturbations of this equation [10].

The NLS system provides a unique balance between
the critical effects that govern propagation in dispersive
media, namely dispersion or diffraction on the one hand and
nonlinearity on the other hand. This balance leads to the
formation of solitons, which are characterized by their stability
and robustness as they maintain their shape and velocity even
when they interact. Rogue waves, on the other hand, and for
the purpose of this article, can appear anywhere and then
disappear. They are often described by the so-called Peregrine
soliton [11,12], which is a special type of solitary wave formed
on top of a continuous wave (cw) background; in contrast to
other well-known soliton solutions of the NLS equation it is
written in terms of rational functions with the property of
having relatively large amplitude and being localized in both
time and space. These properties make these solutions useful
to describe such events [13]. Notably, in the context of oceanic
waves criteria for a wave to be called “rogue” are summarized
in Ref. [14]. Here, our criteria for rogue waves, much like
nonlinear optics and related nonlocal media, is that these rogue
waves grow to a factor of 3 or more compared to the maximum
of the initial conditions. As is common in nonlinear optics, cf.
[1], we take initial conditions to be a wide unit gaussian.

The specific conditions that cause their formation is still a
subject of enormous interest; it is generally recognized that
modulation instability (MI) is among the important mecha-
nisms which lead to rogue wave excitation [15–19]. MI is
the nonlinear mechanism of the self-wave interactions, called
the Benjamin-Feir instability [20] in water wave physics. In
nonlinear optics, it is considered a basic process that classifies
the qualitative behavior of modulated waves [21]. Rogue
waves, as a result of an MI process, can be identified as
high-contrast peaks of random intensity and are the result

of the unstable growth of weak wave modulations. Mathe-
matically, MI is a fundamental property of many nonlinear
dispersive systems and is a well documented and understood
phenomenon [22].

Studies of the integrable NLS and weakly perturbed NLS
equations have provided important information about rogue
phenomena. However, this NLS equation does not model a
range of phenomena; e.g., interacting water waves [23], or
gain and loss which are inevitable in any physical system
[24]. Hence, in order to model different classes of physical
systems often it is necessary to go beyond the standard NLS
description. There are, for example, important systems that
display nonlocal nonlinear mechanisms. Such media include
nematic liquid crystals [25,26], thermal nonlinear optical
media [27,28], and plasmas [29,30]. Here we will study a
specific class of nonlocal equations which has been shown
to describe liquid crystals [25,26,31]. In this system the
nonlocality yields important differences from the integrable
focusing NLS equation.

The effect of the nonlocality of the type we are considering
is significant; here the nonlocal term replaces the previously
local cubic nonlinearity. The integrable nature of the equation
is likely lost and while soliton solutions may also be found
they can lack the freedom of various parameters describing
the soliton’s properties (amplitude, velocity, etc.). In terms
of rational (rogue type) solutions, none are known, to our
knowledge. In terms of the MI properties in the model we
investigate, the cw solutions are always unstable with the
nonlocality suppressing the instability (although it does not
eliminate the effect) [32] as compared to the standard NLS
equation. It has also been shown that some types of nonlocality
eliminates collapse in all physical dimensions [33]. These
observations suggest that certain types of nonlocality may have
a stabilizing effect. We find, here, that the particular type of
nonlocality we examine in this article does not always suppress
the number and size of the rogue events.

It is important to understand the nature of the rogue wave
and its origins; some work in this direction has been done
[22,34,35]. Here, we find that rogue waves of the nonlocal
system we investigate have some properties that are similar
to those in the integrable NLS equation. Some details are
different: e.g., the Peregrine rational solution of the integrable
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NLS system has no direct analog in our (likely nonintegrable)
system. Nevertheless there are certain local universal features
and solution structure associated with the rogue events of the
nonlocal system we investigate that are similar.

II. BASIC EQUATIONS AND MI ANALYSIS

The normalized system that governs propagation in nonlo-
cal media reads [26,36]

i
∂u

∂z
+ d

∂2u

∂x2
+ 2gθu = 0, (1a)

ν
∂2θ

∂x2
− 2qθ = −2|u|2. (1b)

Depending on the physical situation the system and its
coefficients correspond to different physical quantities. For
example, in the context of nematic liquid crystals, u is the
complex valued, slowly varying envelope of the optical electric
field and θ is the optically induced deviation of the director
angle. Diffraction is represented by d and nonlinear coupling
by g. The effect of nonlocality ν measures the strength of
the response of the nematic in space, with a highly nonlocal
response when ν(> 0) is large. The parameter q > 0 is related
to the square of the applied static field which pretilts the
nematic dielectric [31]. In this context, d,g,q are O(1) while
ν is large (ν ∼ 102) [26,31].

In order to investigate the stability properties of system (1)
consider its cw wave solution

u(z) = u0e
2igθ0z, θ0 = 1

q
u2

0,

where u0 is a real constant. Adding a small perturbation to this
cw solution,

u(x,z) = [u0 + u1(x,z)]e2igθ0z,

which is assumed to behave as exp[i(kx − ωz)], leads to the
dispersion relation:

ω2 = dk2
(
dνk4 + 2dqk2 − 8gu2

0

)
νk2 + 2q

. (2)

It is clear that when dg > 0 the system is unstable (and
is termed focusing) whereas when dg < 0 the system is
spectrally stable (and is termed defocusing). Also, when ν = 0
the equation reduces to the dispersion relation of the relative
NLS equation, which has the same stability criteria. From this
dispersion relation we can identify three critical values that
characterize the instability, namely the maximum growth rate
Im{ωmax} its location kmax, and the width of the instability
region kc. The value Im{ωmax} is a measure of the propagation
distance needed for the instability to occur (the larger its value
the faster the instability occurs) and kc defines the range of
possible wave numbers that can yield instability; the larger the
value of kc, the more unstable the system is, as more wave
numbers can lead to unstable propagation. By differentiating
Eq. (2), with respect to k, we find that kmax is the solution of
the algebraic equation

d(νk3 + 2qk)2 − 8gqu2
0 = 0,

FIG. 1. Top: Growth rates for different values of the nonlocal
parameter ν. The far right curve corresponds to ν = 0 and the curves
become smaller in amplitude and width until the value ν = 200, the
far left curve. Bottom: The change of critical values Im{ωmax} and kc

with the nonlocality ν.

while kc satisfies

dνk4 + 2dqk2 − 8gu2
0 = 0.

Both equations can be solved in closed form (they are
biquadratics) to give the relative dependance of Im{ωmax}
and kc with the nonlocality ν. Hereafter we fix d = 1/2 and
g = q = u0 = 1. We illustrate the situation in Fig. 1.

This figure agrees with the findings of Ref. [32] that
nonlocality has an increasingly stabilizing effect on the system.
Indeed, both critical values that characterize the instability,
Im{ωmax} and kc, decrease as ν increases. This means that
the effect of MI will need more distance to be exhibited;
and if ν is large enough this distance can be larger than the
experimental scales. Further, a smaller range of wave numbers
will cause an instability. While both values decrease, the effect,
in the focusing case, is always present, just more suppressed
as ν increases. The limiting NLS system is, by these values,
significantly more unstable.

III. ROGUE WAVE FORMATION

A. Rogue wave numbers vs growth rates

To see how these observations affect the generation of
rogue waves, we integrate Eqs. (1) numerically using a
pseudospectral method in space and exponential Runge-Kutta
for the evolution [37] we use the computational domain
x ∈ [−100,100], z ∈ [0,20]. An appropriate initial condition,
often used in nonlinear optics, is a wide unit gaussian of the
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FIG. 2. Probability density functions of the maximum value or
max{ũ} for different values of the nonlocal parameter ν.

form

u(x,0) = e−x2/2σ 2
, σ = 30,

perturbed with additional 10% random noise. A wide gaussian
with randomness added is a prototype of a set of broad or
randomly generated states which can potentially excite more
than one wave number; i.e., it can be regarded as a Fourier
series of different cw’s of different k’s. This is particularly
important here as a single cw initial condition may not cause
any growth due to the decrease of kc with ν. For each value of
the parameter ν we perform 105 trials. In each trial we measure
the largest wave amplitude of u over x,z; we introduce the
quantity

ũ(x,z) = u(x,z)

max{u(x,0)} ,

which measures the relative growth in amplitude from an initial
state. Here we consider a rogue event as one in which ũ(x,z)
at some value of z is at least three times its maximum initial
value. In Fig. 2 we depict PDFs of rogue events for various
values of ν.

These PDFs indicate that there is a complex relationship be-
tween the occurrence of rogue events and nonlocality. Indeed,
starting with ν = 10 the mean of the PDF is approximately
comparable to that of the standard NLS equation (ν = 0). With
ν = 50 there is a definite shift towards the right indicating
that rogue events have increased in both numbers and severity
(amplitude). Finally, for ν = 200 there is a sharp decrease
of events and their amplitudes. This indicates that there is
a nontrivial dependence between the nonlocality and the
occurrence of rogue events. The expectation that nonlocality
stabilizes the system and thus suppresses extreme phenomena
does not hold.

To further investigate the dependence of rogue events with
ν, we perform the same analysis for a wider range of the
parameter. In Fig. 3 we depict the change of the mean value in
the PDFs for the maximum values of ũ with ν as well as the
change of the top 10% of the highest valued events.

Based on this figure, there are three different regions of
interest. In the region 0 � ν � 10, there is an initial sharp
drop from the NLS case (ν = 0) to about ν = 0.1 and then

FIG. 3. Top: The mean value of the PDFs and the mean value of
the max 10% events with the nonlocal parameter ν. The horizontal
dashed lines indicate the relative values for ν = 0 and the vertical
dashed lines the values of ν for which these values surpass the NLS
system. Bottom: A zoom in around ν = 0.

both curves increase with ν, but still remain below the NLS
limit. Near ν = 0 there is a sharp drop, a boundary layer type
change, to a local minimum after which both the mean and
max curves increase. In the region 10 � ν � 110, the curves
remain well above the NLS limits which translates into the
system producing more numerous and more extreme events.
Recall, again that for these values the system exhibits very
weak growth rates and has a very narrow instability band.
Finally, for ν > 110 both curves slowly decay as the nonlocal
parameter increases.

B. Universal features of the rogue wave

In the region where rogue waves are large, we turn our
attention to the nature of these waves and the mechanism that
causes them. In Fig. 4 we show a part of the evolution that
contains a rogue wave for different values of the nonlocal
parameter ν.

It is clear from these figures that the evolution as ν increases
becomes more regular (thus attesting to its stabilizing effect)
but the essence of the rogue wave is the same: they appear
from nowhere and are relatively short lived.

To our knowledge, there is no analytical description of
these waves in this type of nonlocal media. In fact, for the
limiting NLS case they are frequently modeled by the so-called
Peregrine soliton, a rational solution which reads for Eqs. (1)
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FIG. 4. Snapshots of typical evolutions around the rogue event for
different values of the nonlocal parameter. The white circle depicts
the rogue event.

(with ν = 0)

uP (x,z) = u0

[
1 − 4dq2 + i

(
16dgqu2

0

)
z

dq2 + (
4gqu2

0

)
x2 + (

16dg2u4
0

)
z2

]

× e2igu2
0z/q,

while the single NLS soliton solution is

us(x,z) = u0sech(u0

√
g/dqx)eiu2

0gz/q .

It is counterintuitive (and verified below) to believe that either
would be a good candidate to approximate rogue waves in this
context as they lack the dependence on the nonlocal parameter
ν. Furthermore, the soliton solution of Eqs. (1) is [38]

u(x,z) = 3q

2

√
d

gν
sech2(

√
q/2νx)e2idq/νz,

which while it obviously depends on ν, it has fixed amplitude
(much like χ (2) materials [39,40]) which decays with ν. As

FIG. 5. Comparisons of a (randomly chosen) rogue event of the
nonlocal equation with the known soliton and rational solutions.

such, this solution is again not an appropriate candidate to
model extreme events (higher nonlocality results in smaller
soliton amplitudes). In fact, solutions with a free parameter for
this system have been found but only in the defocusing case
and under a small amplitude approximation technique [41]. To
illustrate we compare all these solutions to an arbitrary rogue
event in Fig. 5.

As seen in the figures the two solutions of the regular NLS
system (ν = 0) are too narrow to fit the event when ν is well
away from zero, while the decaying soliton of the nonlocal
system is of small amplitude and wide in width for large ν

and appears as a straight (black) line. To further investigate
the matter, in Fig. 6, we zoom in around a rogue event for
different values of the parameter ν and fit a rational solution
around it.

The best amplitude fit is given by the ratio of two fourth
order polynomials in x. We notice that the fits become
increasingly better as ν increases indicating the profound
difference with the integrable NLS system. This is also
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FIG. 6. A zoom in around a rogue event for the different values
of the nonlocal parameter ν. A fourth order rational solution has been
fitted (red line) in all cases.

consistent with the different soliton solutions. Indeed, the
sech-type soliton of the NLS is replaced by the sech2 solution
of the nonlocal system. This is not the first time that more
general (and commonly not known to be integrable) systems
give rogue events whose nature differs from that of the typical
rational Peregrine soliton. A similar situation was recently
observed in deep water waves [23]. We see that in all cases
this rational approximation of the rogue event captures the
central core with its maximum, the decay to minima, and its
increase again. This aspect is similar in all cases.

Next, consider a random or typical event corresponding to
different values of the nonlocality as depicted in Fig. 7. We
see that there are important common or universal features to

FIG. 7. Left: Amplitude of rogue events for the different values
of the nonlocal parameter ν; right: their corresponding phases.

FIG. 8. Left: Amplitude of rogue events for the different values
of the nonlocal parameter ν; right: their corresponding phases.

these rogue events. In their central core they have a large peak
with a relatively flat spatial phase. At the edge of the core they
decrease to relatively small values and then increase again to a
local maximum on each side of the central core. Remarkably,
even in the water wave problem [23] these properties are also
found at the corresponding rogue events.

The rational fitting, Fig. 6, indicates that for ν sufficiently
large the amplitude of the rogue events can be described
as rational functions of degree 4; this is contrasted with
the Peregrine solution whose amplitude at any value of z is
described by a rational function of degree 2.

As can be seen from Figs. 7 and 8, key aspects regarding
the structure of these rogue waves have common or universal
features. They are short lived; have a π -phase difference
between the main core and the accompanying dips; have a
spatially flat central phase and smaller maxima on the wings.

We can put the information gleaned from Figs. 7 and 8
together in the neighborhood of the maximum of the rogue
wave. Using u(z,x) = ρ(z,x) exp (iφ(z,x)) in Eqs. (1) and
separating real and imaginary parts yields

ρz + 2ρxφx + ρφxx = 0, (3a)

ρxx − ρφ2
x − ρφz + 2gθρ = 0, (3b)

νθxx − 2qθ = −2ρ2. (3c)

Figure 7 implies that the x profile of the phase constant
φx = φxx = 0; Fig. 8 indicates that the z profile is linear and
as such φz = μ. Then the first of Eqs. (3) is an identity as
around the maximum ρz = 0 and finally the system is reduced
to

ρxx − μρ + 2gθρ = 0, (4a)

νθxx − 2qθ = −2ρ2. (4b)
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FIG. 9. The local description of rogue waves for different values
of the nonlocal parameter ν.

If we assume that the event appears at the location xmax

and has amplitude ρ(xmax) = ρ0 [and θ (xmax) = θ0], the above

system of differential equations is supplemented by the initial
data and value of μ.

ρ(xmax) = ρ0, ρx(xmax) = 0, (5)

θ (xmax) = θ0, θ (xmax) = 0. (6)

To test this description, we measure (numerically) the maxi-
mum amplitude of the rogue waves for different values of the
nonlocal parameter ν (as well as μ) and solve the system to
approximate these events. The results are shown in Fig. 9. It
is clear that the local description works well.

IV. CONCLUSIONS

To conclude, we have studied rogue wave formation in
certain physically significant media described by a nonlocal
NLS system. Here the nonlocal term replaces the local cubic
nonlinear term in the previously integrable NLS equation. For
these systems, as the nonlocality parameter increases, MI is
suppressed in both the strength of growth rates and size of
instability band. The results of MI alone might suggest the
appearance of fewer and smaller, in amplitude, rogue events.
Contrary to that we found that for a wide range of values of
the nonlocal parameter, the system can produce significantly
more events in both size and numbers. To our knowledge this
system has not been found to be integrable. The only known
solution of the system, a decaying soliton, does not describe
these rogue events.

There are universal features that the rogue events found
in our nonlocal system exhibit. They appear with relatively
large amplitude and then disappear. The amplitude has a main
maximum with a spatially flat central phase and two smaller
maxima on the wings. The amplitude is well described by
rational functions; for ν = 0 we have a ratio of second order
polynomials, i.e., the Peregrine solution of the NLS equation;
for ν larger than unity the amplitude is described by a rational
function of fourth order polynomials.
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