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Avalanches dynamics in reaction fronts in disordered flows
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We report on numerical studies of avalanches of an autocatalytic reaction front in a porous medium. The front
propagation is controlled by an adverse flow resulting in upstream, static, or downstream regimes. In an earlier
study focusing on front shape, we identified three different universality classes associated with this system by
following the front dynamics experimentally and numerically. Here, using numerical simulations in the vicinity
of the second-order transition, we identify an avalanche dynamics characterized by power-law distributions of
avalanche sizes, durations, and lateral extensions. The related exponents agree well with the quenched-Kardar-
Parisi-Zhang theory, which describes the front dynamics. However, the geometry of the propagating front differs
slightly from that of the theoretical one. We show that this discrepancy can be understood in terms of the
nonquasistatic correction induced by the finite front velocity.
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I. INTRODUCTION

Interface motion and autocatalytic front propagation occur
in many different areas, including chemical reactions [1],
population dynamics in biology [the celebrated and pioneering
works of Fisher [2] and Kolmogorov-Petrovskii-Piskunov [3]
(F-KPP)], and flame propagation in combustion. In contrast to
the latter, where it has been analyzed thoroughly theoretically
and experimentally [4], the effect of fluid flow (laminar or
turbulent) on reaction fronts has not been explored in detail
until recently [5–15]. More complex flows have been addressed
in recent experiments in packed-bed reactors, i.e., a porous
medium [16,17], or in a cellular flow [18].

In the absence of a flow, autocatalytic reactions lead to
fronts propagating as solitary waves with a constant velocity
and invariant, flat, concentration profile resulting from a
balance between reaction and diffusion [1–3]. These reactions
are analogous to flames in combustion [4] but with a negligible
heat production [19], and thus they represent a kind of “cold
combustion model”, especially in the thin flame limit. In the
presence of a hydrodynamic flow, it has already been observed
and understood that such fronts, while propagating at a new
constant velocity, adapt their shape in order to achieve a
balance between reaction diffusion and flow advection all over
the front [7,9].

An autocatalytic reaction in the fluid flow of local velocity
�U is governed by the advection-diffusion-reaction (ADE)
equation, which can be written as

∂C

∂t
+ −→

U · −→∇ C = Dm�C + 1

τ
f (C), (1)

where the specific kinetics of the iodate arsenious acid (IAA)
reaction is third order [20]: f (C) = C2(1 − C). C is the
concentration of the autocatalytic reactant (iodide), normalized
by the initial concentration of iodate (C = [I−]/[IO3

−]0), τ

is the reaction time, and Dm is the molecular diffusion. In the
absence of flow, U = 0, the balance between diffusion and
reaction leads to a solitary wave of constant velocity Vχ and
width lχ [1,20,21], solutions of Eq. (1) given by

Vχ =
√

Dm

2τ
, lχ = Dm/Vχ . (2)

Moreover, in the limit of small front thickness lχ � 1, Eq. (1)
can be approximated by the eikonal equation

�VF · �n = �U · �n + Vχ + Dmκ, (3)

where �n is the normal component of the interface oriented
toward the unburned regions, and κ is the curvature.

Here, we consider an autocatalytic reaction front propaga-
tion in the presence of an adverse flow in a heterogeneous
porous medium. As a consequence of the flow opposing
the front, static fronts have been found depending on the
intensity of the the mean flow velocity U that is negative by
convention. In previous studies [22–24] we have demonstrated
that, depending on U , the system display three propagating
regimes. If the flow magnitude is high enough, the front recedes
downstream. For an intermediate range of velocities, the front
stops and adopts a stationary shape, hereby referred to as a
“frozen state” (see also [25]). Finally, for a sufficiently low
flow magnitude, the front manages to propagate upstream.
In a previous work [24], we have demonstrated that the
transition “frozen”-“upstream” can be understood to be a
dynamical critical transition of a front interface in a quenched
disorder (the back flow) subject to a forcing term (the chemical
velocity). More particularly, we shed light on the fact that in
the eikonal limit, the front line displays a spatial and temporal
roughness belonging to the quenched-Kardar-Parisi-Zhang
(qKPZ) [26–30] universality class.

Interface motion in quenched disorder has been a subject
of immense importance in nonequilibrium statistical physics
for decades. As controlled by a driving force, an interface
shuffles between moving and pinned or static regimes. Close
to a pinning-depinning transition point, the interface follows
a burstlike motion referred to as an avalanche [31]. The spa-
tiotemporal dynamics of avalanches exhibits scaling properties
in the vicinity of a critical point, and it is a widely studied
nonequilibrium phenomenon. Avalanches are observed in
various systems, e.g., sand-pile [32,33], Barkhausen noise
in ferromagnets [34], population dynamics, earthquakes [35],
motion of vortices in superconductors, fracture propagation
[36], fluid imbibition in porous media [37–39], or intermittent
flow in amorphous materials [40–44]. Near the transition
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FIG. 1. (a) Front dynamic for ε = −1.13. In black: front positions at different constant interval of time (δt = 100λ/Vχ ). In gray scale:
logarithm of the normalized velocity field, log10(Ux/Vχ ). The mean flow is oriented from left to right, and the chemical reaction propagates
from right to left. The initial front location is flat and located at the rightmost end of the domain. (b) Spatiotemporal map of the logarithm of
the normalized front velocity, log[|v(x,t)/Vχ |]. The mean front velocity is Vf /Vχ = 0.057 (c) associated spatiotemporal identified clusters.

point, these systems show power-law distributed avalanches
and universal behaviors. In this paper, we investigate the
avalanche dynamics of an autocatalytic front in a heteroge-
neous medium at the transition from frozen states to upstream
propagation.

II. NUMERICAL SIMULATION AND METHODS

We employ the same numerical procedure as in [23,24],
which will be recalled briefly. We generate a permeability field
according to a log-normal distribution [45,46], with correlation
length λ and standard deviation σ 2 = 0.5. The velocity field
is then determined by solving Darcy’s equation with an
imposed pressure gradient and using a two-relaxation-time
lattice-Boltzmann scheme (TRT-LBM). In the last step, we
solve the ADE equation (1) for the concentration with an
initial flat front, using also a TRT-LBM scheme. All quantities
are nondimensionalized using the correlation length λ, the
chemical wave velocity Vχ , and the characteristic time λ/Vχ .
We use ε = U/Vχ as the flow intensity control parameter. We
define the front by extracting the isoconcentration c = 0.5.
In this paper, the size of the system is 2048 × 2048 with a
correlation length λ = 5. The critical velocity is found to be
εc = U/Vχ = −1.17.

Avalanche events are determined by evaluating the in-
stant and local front velocity, v(x,t) = ∂h/∂t(x,t). From the

spatiotemporal front velocity map represented in Fig. 1, we
defined a velocity threshold Vmin as the median of the nonzero
velocities. From the spatiotemporal maps of front velocities,
we obtain the associated cluster maps by applying this velocity
threshold Vmin: a cluster defines a region where the front moves
faster than Vmin. We reconstruct the associated spatial maps
and spatial cluster maps. We then investigate the statistical
properties of these clusters both in spatial and spatiotemporal
spaces.

III. RESULTS

For each cluster, the following characteristics have been
extracted: from the spatial maps, the size S, and from the
smallest rectangle containing it, their length L and width
W . From the spatiotemporal maps, we deduce the associated
cluster duration T .

A. Distributions

We plot the probability distributions of these quantities in
Fig. 2 for different distances to the critical εc (we have excluded
clusters touching the inlet and the outlet). For statistical
reasons, it was performed with different porous realizations.
It can be seen that length, size, and duration distributions
[p(L), p(S), and p(T )] follow reasonably a power-law decay
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FIG. 2. Distribution of avalanche lengths (a), sizes (b), and
durations (c) for different distances to the critical point εc = −1.17.
Insets: evolution of the corresponding cutoff as a function of the
distance to the critical point ε − εc.

(with exponent τL = 1.46 ± 0.10, τS = 1.26 ± 0.05, and τT =
1.53 ± 0.10), with a cutoff at large sizes. Moreover, for each
ε, the distributions can be well fitted by

p(L) ∝ L−τL exp(−L/L0), (4)

p(S) ∝ S−τS exp(−S/S0), (5)

p(T ) ∝ T −τT exp(−T/T0). (6)

TABLE I. Exponents from simulations at the percolation transi-
tion and qKPZ theory.

Scaling law Exponent Simulation qKPZ

L0 ∝ (ε − εc)−νL νL = ν 1.70 ± 0.15 1.73
W ∝ Lζ ζ 0.74 ± 0.05 0.63
L ∝ T 1/z 1/z 1.09 ± 0.1 1.00
S ∝ T γ γ 1.79 ± 0.15 1.63
S0 ∝ (ε − εc)−νS νS 2.80 ± 0.15 2.83
T0 ∝ (ε − εc)−νT νT 1.64 ± 0.15 1.73
p(L) ∝ L−τL τL 1.46 ± 0.10 1.42
p(S) ∝ S−τS τS 1.26 ± 0.05 1.26
p(T ) ∝ T −τT τT 1.53 ± 0.10 1.42

The cutoff sizes are defined as the intersection between
the numerical distribution and the corresponding power law
shifted below by a factor of 2. We found that this procedure is
more robust than others, such as the maximum cluster size or
the exponential fit. The insets of Fig. 2 provide the dependence
of this cutoff size with ε − εc. The three cutoffs follow a power-
law decay with ε − εc:

L0 ∝ (ε − εc)−νL , (7)

S0 ∝ (ε − εc)−νS , (8)

T0 ∝ (ε − εc)−νT . (9)

All coefficients are displayed in Table I.
To validate our procedure, in Fig. 3 we show a remarkable

data collapse using the exponents reported in Table I and a
scaling ansatz of Eqs. (4)–(9). We note that other statistical
properties of the clusters exhibit similar behaviors, such as W :
p(W ) ∝ W−τW exp (−W/W0) with W0 ∝ (ε − εc)−νW , which
have not been plotted for the sake of conciseness.

B. Exponent relations

The dynamics involves many exponents. However, many
of them are not independent and are related by some exponent
relations that we will describe in this section.

Close to the critical point, the interface has a self-affine
behavior in both space and time: the statistical properties of
h(ax,bt) are identical to aζ h(x,bt) and bζ/zh(ax,t), where ζ

is the roughness exponent and z is the dynamical exponent.
This property implies several relations, such as

W ∝ Lζ , (10)

S ∝ Ld+ζ , (11)

T ∝ Lz. (12)

These scaling relations are tested in Fig. 4, where we
compute 〈W 〉L and 〈S〉T . We can see that both quantities
display a power-law growth at large L and T , respectively. In
particular, from the self-affinity, we deduce 〈S〉T ∝ T γ with
γ = d+ζ

z
. Following this argument, one can also relate the
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FIG. 3. Data collapse for lengths, sizes, and durations using the
exponents of Table I and the scaling ansatz.

different cutoff exponents ν:

νW = νLζ,

νS = νL(d + ζ ),

νT = νLz.

Moreover, similar relations can be obtained for exponents τ by
observing that given two quantities A and B related by A ∼ Bφ

FIG. 4. Plots for (a) roughness and (b) area vs durations. Lines
scale as (a) 〈W 〉L ∝ Lζ with ζ ≈ 0.74 and (b) 〈S〉T ∝ T γ with
γ ≈ 1.79.

and power-law distributed [P (A) ∝ A−τA and P (B) ∝ B−τB ],
from P (A)dA = P (B)dB follows τA ∝ φτB − (φ − 1).

Finally, a relation for the exponent τS has been proposed in
several studies [34,47–49]:

τS = 2 − ζ + 1/νL

d + ζ
.

We conclude that if this last relation holds in our case, only
three independent “universal” exponents remain: νL, ζ , and
z. Table I summarizes the value of the exponents obtained
by our fitting method. All the exponent relations are tested in
Table II using the measured values of νL, ζ , and z. We observe

TABLE II. Exponents from simulations that can be validated by
an exponent relation.

Exponent Simulation Scaling relation Validation

γ 1.79 ± 0.15 γ = (d + ζ )/z 1.90
νS 2.80 ± 0.15 νS = ν(d + ζ ) 2.96
νT 1.64 ± 0.15 νT = νz 1.56
τL 1.46 ± 0.10 τL = d + 1 − 1/ν 1.41

τS 1.26 ± 0.05 τS = 2 − ζ + 1/ν

d + ζ
1.24

τT 1.53 ± 0.10 τT = (d − 1/ν)

z
+ 1 1.45
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a relatively good agreement for most of the exponents. In the
next section, we discuss the origin of the small discrepancies.

IV. DISCUSSION AND CONCLUSION

In previous work, it has been shown that eikonal dynamics
in the presence of disorder can be approximated by the qKPZ
equation. Namely, the front interface follows

∂h(x,t)

∂t
= lχ∇2h(x,t) + 1

2
[∇h(x,t)]2 + η(x,h(x,t)) + f,

(13)

where h(x,t) is the front location, and the quenched
disorder can be related to the velocity field: η(x,y) =
−Ux(−x,y)/Vχ + 1. In one dimension, the critical exponents
of the dynamics close to the depinning transition, f ≈ fc,
are known with high precision thanks to a mapping with
the directed percolation (DP) [26,50]. In particular, the DP
exponents ν‖ = 1.733 and ν⊥ = 1.097 are related to the qKPZ
exponents via ζ = ν⊥/ν‖ and ν = ν‖. Moreover, the spreading
of a perturbation in an avalanche is ballistic, leading to
z = 1. Using the scaling relations derived in the previous
section, we can compute all the avalanche exponents as
summarized in Table I. The agreement between the theoretical
predictions and the measured results is good for both νL and z,
while a significant discrepancy is observed for the roughness
exponent. We note that this discrepancy may propagate onto
the other exponents by means of some exponent relations.
Some indications seem to suggest that the roughness exponent
is not correctly evaluated. For instance, the roughness could
be alternatively deduced by the ratio ζ = νS/ν − 1 � 0.65,
which is closer to the expected 0.63 than the direct measure
0.74. This anomaly can have two origins: (i) the present
disorder field differs from the usual one as it is not short-ranged
and isotropic, and (ii) the geometry of the interface is measured
in the moving phase while the DP mapping works in the
quasistatic limit, as in Atis et al. [24]. To assess the first
hypothesis, we study in the Appendix the DP mapping using
our velocity field as the quenched disorder. Using this method,
one can extract the correct average exponent ∼0.633, however
we note that strong statistical fluctuations are still present
at large sizes (with a statistical error of 10% for sizes up
to 8096 × 8096, while the dynamical simulations are only
2048 × 2048). On the other hand, we recall that in Atis
et al. [24], the roughness exponent of the moving front was
significantly larger (∼0.8) with respect to the quasistatic
one (see also [26]). We believe that both effects contribute
to overestimate the roughness of the front. We may thus
conclude that the behavior of the quenched eikonal equation
is consistent with the quenched KPZ universality class. In
analyzing the data of such models, particular care should be
taken for an estimation of the roughness exponent, which is
particularly sensitive to finite-size effects, especially in the
moving phase. Finally, we should mention that we have tried
to characterize the avalanche dynamic experimentally with
the setup described in Atis et al. [24]. As preliminary results,
we have indeed observed a power-law distribution for burst
size and duration, which would support the contention of
an avalanche dynamic. However, the lack of good statistics

(system size and a large amount of realizations) did not allow
for a precise determination of the exponents.
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APPENDIX: DIRECTED PERCOLATION

Other than the roughness exponent ζ , which is higher, the
results show that all the exponents are close to the qKPZ
ones. A possible explanation for this discrepancy could arise
from our particular disorder field, which is correlated and
anisotropic. To assess this possibility, we revisit the directed
percolation depinning (DPD) model in our case.

We first recall briefly the origin of the directed percolation
mapping. As discussed in previous work [23], the interface is
able to propagate wherever the local flow velocity is lower than
the chemical velocity (i.e., |U | < Vχ ), but it can be blocked if
the velocity is higher. A necessary condition to be pinned is the
existence of a blocking (|U | > Vχ ) path transverse to the flow
direction, which defines a percolation criterion. We note that
one can understand qualitatively the avalanche characteristics
from the DPD model. Close to the critical point, there are many
paths that are almost blocking (percolating). The front will
then stop for some time along these paths. An avalanche event
is then characterized by two successive blocking paths. We
thus expect that the roughness as well as the size distributions
of the avalanches are described by the directed percolation
model.

First, we remark that the argument used here is the dual
version of the one we employed earlier in [23], where we
were looking for nonblocking areas percolating perpendicular
to the front. Another important remark is that the percolation
is directed because the height is assumed to be a function of
the transverse coordinate [h(x,t)], but also because the local
slopes are imposed by the eikonal equation. Indeed, in the
high-speed regions, the eikonal equation imposes only two
admissible slopes of a static front:

�0 = �U (x,h) · �n + Vχ, (A1)

which implies

∂h

∂x
= ±

√(
Ū + δUy(x,h)

Vχ

)2

− 1, (A2)

where we have neglected the transverse component of the flow
velocity.

The directed percolation criterion is met once there is a
transverse path along which the velocity is always higher than
Vχ . In other words, the criterion implies the existence of a path
C ∈ � such that

min
C

(Uy(h,x)) > Vχ,

where � denotes the ensemble of paths connecting one side to
the other, satisfying Eq. (A2). This condition depends on both
the mean velocity and the chemical velocity. It is convenient,
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FIG. 5. Example of the transfer-matrix algorithm applied to the velocity field at the percolation threshold. Left: in black are the points
connected to the top border by a percolating path. Right: binarized velocity field (black, |U | > Vχ ; white, |U | < Vχ ). In both figures, the red
path corresponds to the first barrier from left to right.

however, as in the directed percolation algorithm, to simplify
this condition by assuming ∂h

∂x
= ±1.1 We also remark that this

procedure can also be viewed as a simplified barrier invariant
manifold (BIM) introduced by several authors [51,52].

One convenient method to determine the directed perco-
lation threshold consists in evaluating the maximum over all
the minimum velocity along each path. That can be obtained
from a standard “min-max” transfer matrix algorithm (see
[23,53]): Defining the matrix Ci,j as being the maximum of the
minimum velocity among the entire directed path connecting
the first line to the point (i,j ), this matrix is determined
recursively line by line:

Ci+1,j = min{max[Ci,j−1,Ci,j ,Ci,j+1],Ui+1,j }.
The percolation threshold is then given for the chemical
velocity equal to the maximum of C along the last line (nI ):

Vχ
c = max

j
C(nI,j ).

Once the end point of the barrier has been identified, we
reconstruct the path J (i) iteratively from the last line nI to the
first one by choosing the following:

J (i − 1) ∈ {J (i) − 1; J (i); J (i) + 1} with Ci−1,J (i−1) > Vχ
c.

Of course, in principle there could be many choices. However,
since the chemical front is propagating leftward and since we
want the first-met barrier, we pick always the most rightward
point among the possibilities. In other words, we choose in
priority order J (i) + 1, J (i), and J (i) − 1.

We can then use the algorithm to estimate the frozen front
for an arbitrary velocity field. By applying this algorithm on

1The model then consists in assuming the velocity is equal to
√

2Vχ

in the high-velocity zones.

the velocity field obtained from the simulation, we obtained
a roughness ranging between 0.6 and 0.7. Unfortunately,
in order to be more precise, a better statistics is required
(a greater number of realizations and with a larger domain
size, etc.). Solving Darcy flow for each system would
require a large amount of CPU time. To overcome this
problem, we generate the velocity field stochastically using
its Fourier transform obtained from the linear expansion of the
equations [45,46]

ûx(kx,ky) = f̂
k2
y

k2
x + k2

y

= f0Ŵ
k2
y

k2
x + k2

y

e
− k2

x+k2
y

k2
0 , (A3)

where a caret denotes the Fourier transform, and W denotes
an uncorrelated white noise distribution.

Figure 5 displays an example of path determination that
has a roughness of 0.67. By these means, we have been able
to compute the barrier front for around 1000 velocity fields of
domain sizes 8096. We have plotted in Fig. 6 the average two-
point correlation function W (l) =

√
〈[h(y) − h(y + l)]2〉 for

a velocity distributed according to Eq. (A3) (red) and a white
noise (blue). The comparison is instructive as it shows that the
roughness exponent is compatible with the DPD universality
class. However, it shows that the scaling law is valid over a
rather short window size, l ∈ [5λ,50λ]. Moreover, considering
the roughness distribution of each realization, we observe
that even though the average is rather good, 〈H 〉 = 0.63, the
standard deviation is significant, σ (H ) = 0.04.

We conclude that with this particular velocity field correla-
tion, the roughness exponent of the DPD universality class
should be recovered. However, we note that the presence
of correlations reduces significantly the windows of scales
over which the scaling law is valid and thus the dispersion of
the results despite the large domain sizes and the number of
realizations.
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FIG. 6. Left: two-point correlation function W (l) = √〈[h(y) − h(y + l)]2〉 of the directed percolation path for two types of disorder. Blue
triangles: uncorrelated white noise. Green circles: velocity field from the log-normal permeability distribution. The two lines correspond to
the fitted scaling W (l) ∝ lζ . Right: distribution roughness exponent measured for the log-normal permeability. The mean of the distribution is
〈ζ 〉 = 0.63 and the standard deviation is std(ζ ) = 0.04.
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