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Interaction of Airy-Gaussian beams in photonic lattices with defects
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We investigate numerically the interaction between two finite Airy-Gaussian (AiG) beams in different media
with the defected photonic lattices in one transverse dimension. We discuss that the beams with different intensities
and phases launch into the different lattice structures but accelerate in opposite directions. During interactions, the
interference fringe, breathers, and soliton pairs are observed. In the linear media, the initial deflection direction of
the accelerated beams is changed by adjusting the phase shift and the beam interval. For a certain lattice period,
the periodic interference fringe can form. A constructive or destructive interference can vary with the defect depth
and phase shift. While the nonlinearity is introduced, the breathers is generated. Especially in the self-defocusing
media, the appropriate AiG beam amplitude and lattice depth may lead to the formation of soliton pairs, On the
contrary, the interaction of two Gaussian beams is diffraction.
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I. INTRODUCTION

Photonics and especially nonlinear photonics has expe-
rienced rapid development over the last few decades. In
this growth, the novel accelerated Airy beams played one
important role, and nonlinear effects such as soliton formation
was the other key point. New fields of research have been
opened completely because of combining both topics to study
nonlinear interaction of accelerated beams. The Airy quantum
wave packet of an infinite extent was introduced by Berry and
Balazs as free-particle solutions of the Schrödinger equation
[1]. However, the initial Airy function is not realizable in
practice.

In optics, because the Airy function can be realized in
practice and exhibit self-accelerating, nondiffracting, and
self-healing properties during propagation, the Airy optical
beams which retain a finite energy were widely investigated
theoretically and experimentally since Siviloglou et al. [2,3]
discussed them by using different methods. In the past decade,
such self-accelerating optical beams have been studied, mostly
in uniform media which include linear media [2–10], Kerr non-
linear dielectrics [11–15], photorefractive media [16], nonlocal
nonlinear media [17,18], and quadratic media [11,19]. Because
of the existence of nonlinearity, optical solitons can be formed
with the Airy beams in different nonlinear media [20–24]. At
the same time, a few people studied the propagation properties
of optical Airy beams in nonuniform structures [25–31].
Efremidis and Chremmos first showed that an engineered
accelerating beam can be generated in a periodic lattice
[25,26]. Christodoulides et al. identified nondiffracting beams
in two-dimensional periodic systems, exhibiting symmetry
properties and phase structure characteristic of the band(s)
they are associated with [27]. Chen et al. studied the behavior
of Airy beams propagating from a nonlinear medium to a
linear medium [28] and demonstrated both experimentally
and theoretically one- and two-dimensional Airy beams in
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optically induced refractive-index potentials [29], respectively.
Recently, Jović et al. reported that the propagation dynamics
and beam acceleration are controlled with positive and
negative defects and appropriate refractive index change [32].
Moreover, they analyzed how an optically induced photonic
lattice affects and modifies the acceleration of Airy beams
[33] and demonstrated the acceleration of two-dimensional
Airy beams propagating in optically induced photonic lattices
[34].

As a generalized form of the Airy beams, AiG beams
can carry finite energy and maintain the diffraction-free
propagation properties within a finite propagation distance
[35]. Many researchers studied the AiG beams both theoret-
ically and experimentally [35–40]. Deng et al. investigated
the propagation of the AiG beam in uniaxial crystals [36],
strongly nonlocal nonlinear media [37], and Kerr media [38].
Ez-Zariy [39] and Zhou et al. [40] discussed propagation
characteristics of finite Airy-Gaussian beams through an
apertured misaligned first order ABCD optical system and
the fractional Fourier transform plane, respectively. Similarly
asymptotic preservation of a self-accelerating property is
observed with AiG beams in different media.

The above-mentioned papers have investigated dynam-
ics and properties of single accelerating beams. Moreover,
similarly to the interactions of solitons [41–44], interactions
between Airy beams have gradually attracted the attention
of researchers. Interactions between Airy pulse and temporal
solitons at the same center wavelength [45] or at a different
wavelength [46] were studied. The interaction of an acceler-
ating Airy beam and a solitary wave was also investigated in
various media [47]. Wolfersberger et al. analyzed the dynamics
of two incoherent counterpropagating Airy beams interacting
in a photorefractive crystal under focusing conditions [48,49].
Zhang et al. [50,51] and Deng et al. [52,53] studied nu-
merically interactions of Airy and AiG beams in nonlinear
media in one transverse dimension, respectively. Based on the
effect of nonlocality, Shen et al. obtained stationary bound
states of in-phase as well as out-of-phase Airy beams in
nonlocal nonlinear media [54,55]. The interaction between
a broad accelerating Airy beam and an intense Gaussian
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beam was also investigated numerically and experimentally
to demonstrate gravitational dynamics in a nonlocal thermal
nonlinearity [56]. Thus far, interactions of self-accelerating
beams in uniform media were reported. However, interactions
of self-accelerating beams in the waveguide arrays, especially
in the photonic lattices with defects, have not been mentioned.

In this paper, we will numerically study the interactions
dynamics of AiG beams in one-dimensional photonic lattices
including defects. We realize different lattices with defects by
embedding the positive and negative defects into the regular
lattice and research the influence of the different physical
parameters on the AiG beam interaction. The organization
of the paper is as follows. We briefly introduce the theoretical
model and basic equations in Sec. II; in Sec. III, we discuss
numerically interactions of two AiG beams in photonic lattices
with defects in detail. Section IV concludes the paper.

II. THE THEORETICAL MODEL AND BASIC EQUATIONS

To study the interaction characteristics of AiG beams in
photonic lattices with defects, along the propagation distance
z, we consider that the scale equation for the propagation of a
slowly varying envelope q of the optical electric field in one
transverse dimension in the paraxial approximation is of the
nonlinear Schrödinger equation

i
∂q(X,Z)

∂Z
+ 1

2

∂2q(X,Z)

∂X2

+V (X)q(X,Z) + γ |q(X,Z)|2q(X,Z) = 0, (1)

where X = x/w0 is the dimensionless transverse coordinates
scaled by the characteristic length w0, Z = z/kw2

0 with
k = 2π/λ, V (X) = An cos2(πXw0/T )[1 + δn exp(−X2)] is
the periodic refractive-index profile of the array with the lattice
period T , An is the lattice modulation depth, and δn is the
defect depth. Here we assume w0 = 10 μm and the wave
length λ = 600 nm. In Kerr media, the beams are self-focusing
(γ = 1) when the nonlinear refractive index is greater than zero
and self-defocusing (γ = −1) when the nonlinear refractive
index is smaller than zero. It is well known that the spatial
solitons can be steadily transmitting in the (1+1)D local Kerr
medium when the nonlinear effect balances the diffraction
effect. Considering an AiG beam, its initial field distribution
can be read as [36–40,52,53]

q(X,0) = A0Ai(X) exp(αX) exp(−QX2), (2)

where A0 denotes the constant amplitude, Ai(·) is the Airy
function, α = 0.01 in the exponential function is a parameter
associated with the truncation of the AiG beams, and Q is
the distribution factor controlling the beam that will tend to
the Gaussian beam with a larger value and the Airy beam
with a smaller value. The expression (2) of the initial field
q is the single-beam solution of Eq. (1). To investigate the
AiG beam interactions, we should construct more complex
incident beams, made up of two shifted single beams, launched
in parallel but accelerating in opposite directions. Thus, we
assume that the incident beam will be composed of two shifted
AiG beams with a fixed relative phase and different amplitudes
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FIG. 1. Defect generation in an optical photonic lattice. (a) The
regular lattice distribution (δn = 0). (b) The Gaussian beam intensity
distribution G(X). Numerical realization of (c) positive (δn = 0.5)
and (d) negative (δn = −0.5) defect lattices. The other physical
parameters A1 = A2 = 2, An = 3, T = 0.1 mm, δφ = 0, D = 3,
Q = 0.05, and γ = 0.

between them [50–55],

q(X,0) = A1Ai(X − D) exp(α(X − D)) exp(−Q(X − D)2)

+A2Ai(−X − D) exp[α(−X − D)]

× exp[−Q(−X − D)2] exp(iδφ), (3)

where A1 and A2 are the amplitude of the two AiG beams, D is
the parameter controlling the beam separations, and δφ is the
parameter controlling the phase shift with δφ = 0 and δφ = π

describing in-phase and out-of-phase AiG beams, respectively.
To investigate the interaction of the two AiG beams for
different beam factors, we have implemented comprehensive
split-step Fourier methods to solve Eq. (1) and model the
light propagation in photonic lattices with defects V . The
propagation equation (1) is evaluated numerically, taking
Eq. (3) as the initial input AiG beam. Figure 1 shows the
basic scheme of the defect realization using a Gaussian beam.
The regular lattice distribution (δn = 0) and Gaussian beam
intensity distribution G(X) = δn exp[−(X2)] are illustrated in
Figs. 1(a) and 1(b), respectively. Figures 1(c) and 1(d) show
the calculated refractive index modulation results for both the
positive (δn = 0.5) and negative (δn = −0.5) lattices with
defects.

III. THE NUMERICAL RESULTS OF INTERACTING AIG
BEAMS IN PHOTONIC LATTICES WITH DEFECTS

If we assume γ = 0 and δn = 0 in Eq. (1), the “interaction”
is actually a linear interference in the regular photonic lattices.
We display the evolution of the incidence from Eq. (3)
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FIG. 2. The interaction of two AiG beams with changing the values of δφ and D for A1 = A2 = 2, An = 3, T = 0.2 mm, δn = 0, Q = 0.01,
and γ = 0.

for different D and δφ in Fig. 2. The results shown in
Figs. 2(a1)–2(e1) and 2(a3)–2(e3) are completely different
from Fig. 2 in Ref. [51] because of the existence of the photonic
lattices. However, the behavior of the central interference is
similar. The central interference fringe in the in-phase case
[Figs. 2(a1)–2(e1)] is bright, whereas in the out-of-phase
case [Figs. 2(a3)–2(e3)] it is dark, as it should be for a
constructive and destructive interference [51]. Some pseudo-
periodic mutual focusing can be observed in the central region,
especially when the interval of beams is closer, such as D = 0
[see Figs. 2(c1)–2(c4)]. This results from the diffraction,
superposition, and interference of the curved accelerating
beams as the beams propagate in the photonic lattices. Of
course, no breathers can form.

When we change the phase shift δφ, the beam direction
varies simultaneously because the change of δφ influences
the interaction of two beams. If δφ = π/2, the direction of
the accelerated beams will be first turned to the right; if
δφ = 3π/2, the accelerated beams will first go to the opposite
direction. However, note that the case is the inverse when
D = 1. This can be interpreted by Fig. 3. We can see that
the intensity profile and value of the AiG beam with D = 1
are different from the other three profiles and values. Thus, the
initial deflection direction of the accelerated beam with D = 1
is first left based on the interaction between the beam and
lattice. As a result, we can say that the propagation direction of

the beams can be changed by adjusting the values of the phase
shift δφ and the beam interval D. Interestingly, the interaction
of the two beams is the strongest with both in-phase and
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FIG. 3. Intensity profiles of AiG beams with D = 3 (a), D = 1
(b), D = −1 (c), and D = −3 (d) for δφ = π/2. The other physical
parameters are the same as Fig. 2.
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FIG. 4. The interaction of two AiG beams with changing the values of δφ, δn, and T for A1 = A2 = 2, An = 3, D = 3, Q = 0.01, and
γ = 0.

out-of-phase situations, so we will next study the interaction
of the beams about two key cases.

Figure 4 shows the propagation distribution of the in-phase
and out-of-phase AiG beams with the same amplitude for
different δφ, δn, and T . First, we discuss that the influence of
the defect depth δn on the interaction of AiG beams [red dashed
line in Fig. 5(a)] when the other parameters are constant.
At δφ = 0 and T = 0.1 mm, as shown in Figs. 4(a1)–4(a5),
the interaction of the in-phase beams varies with δn. One
can see that the “interaction” forms a linear interference in
the photonic lattices with defects and the central interference
fringe is bright except δn = −2. It is caused by the influence
of the lattice with defects [see Fig. 5(b)] different from the
other cases [see Figs. 5(c)–5(f)]. The negative defected lattice
exists negative value, so the central interference fringe is
dark. The central dark interference fringe also appears in
Figs. 4(c1)–4(c5), where δφ = π and T = 0.1 mm, that is
to say, two beams are out-of-phase. The difference of the
initial input in-phase and out-of-phase beams is shown in
Fig. 5(a). In particular, when T = 0.1 mm, one can find that
some periodic mutual-focusing interference fringes, which are
similar to breathers, take shape from Figs. 4(a1)–4(a5) and
Figs. 4(c1)–4(c5). However, when T is bigger, such as T =
0.3 mm shown in Figs. 4(b1)–4(b5) and Figs. 4(d1)–4(d5),
the mutual-focusing interference fringes is no longer periodic.
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FIG. 5. (a) Intensity profiles of the initial input AiG beams with
δφ = 0 (red dashed line) and δφ = π (green dash-dotted line) for
δn = −2 and T = 0.1 mm. The photonic lattices with defects with
δn = −2 (b), δn = −0.5 (c), δn = 0 (d), δn = 0.5 (e), and δn = 2
(f) for T = 0.1 mm. The other physical parameters are the same as
Fig. 4.
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FIG. 6. The interaction of two AiG beams with changing the values of Q, and γ for A1 = A2 = 4, An = 3, D = 3, Q = 0.01, δφ = 0,
T = 0.1 mm, and δn = 0.5.

These results account for the big effect of the lattices with
defects on the beam interaction. In addition, we can also see
that the beam minor lobes are more constraint when δn is from
−2 to 2. Figure 6 shows the interaction of two in-phase AiG
beams with the same amplitude for the different distribution
factor Q and nonlinear parameter γ . The mutual-focusing
distributions in the central regions are periodic for all cases, if
we do not consider the influence of the numerical integration
window on the distribution for Q = 0.001 in Figs. 6(a1)–6(c1).
In a linear medium (γ = 0), when Q = 0.001, the AiG beam
goes to the field distribution of Airy beams which hold
some side lobes, so that the lattice with defects does not
completely restrain the part of energy [see Fig. 6(a1)]. On
the contrary, the field distribution of Gaussian beams has also
been exhibited as Q = 1 [see Fig. 6(a3)]. The AiG beam
is self-accelerating no longer, which is very similar to the
propagation of the Gaussian beam in the linear media. Note
that there exists some part energy in the other region apart
from the central region in Fig. 6(a3) opposite to Fig. 6(a2).
The reason can be explained in Fig. 7. At Q = 1, we can
say that two independent Gaussian beams (green dash-dotted
line) interact in the lattice with defects, so they also exist
in the part diffraction. While Q = 0.1, the red dashed line
shows that two AiG beams propagate hand-in-hand. This
helps the lattice with defects so that all the energy can be
restricted in the central region as shown in Fig. 6(a2). When
we introduce the nonlinearity, the situation has changed. As
the medium is the self-focusing nonlinear medium (γ = 1),
we can see that the self-focusing nonlinearity further traps

some energy and breathers has formed from Figs. 6(b1)–6(b3).
However, while γ = −1, the self-defocusing nonlinearity
increases the diffraction. Of course, the field distributions in
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FIG. 7. Intensity profile of AiG beams |q(X,0)|2 and the lattice
with defects V (X). The red dashed and green dash-dotted lines denote
|q(X,0)|2 at Q = 0.1 and Q = 1, respectively. The blue solid line
shows V (X). The other physical parameters are the same as Fig. 6.
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FIG. 8. The interaction of two AiG beams with changing the values of A1, A2, Q, and An for T = 0.1 mm, γ = −1, D = 3, δφ = π , and
δn = 0.5.

the central region can also be regarded as breathers as shown in
Figs. 6(c1)–6(c3).

In order to further study the effect of the nonlinearity
and lattice on the interaction of two AiG beams, we will
change the amplitude A1 and A2 and the lattice depth An.
First, the propagation images of two out-of-phase beams
with different distribution factor Q are shown in Fig. 8 in
self-defocusing media. We assume that the value of A1 and
A2 is the same and they change their value simultaneously.
As An = 1, one can see that the soliton pairs forms as shown
in Figs. 8(a1)–8(a3), especially at A1 = A2 = 2. This results
from the role of the repulsive force of the self-defocusing
nonlinearity and constraint force of the lattice with defects
in the AiG beams. The result is similar to the interaction of
two Gaussian beams, Fig. 6 in Ref. [42] and Figs. 4(b1)–(b2)
in Ref. [44]. However, Ref. [42] and Ref. [44] discussed
the interaction of two Gaussian beams in the self-focusing
media. In our case, while Q = 1, two beams launch into the
self-defocusing media, the beam diffraction arises, shown in
Figs. 8(c1)–8(c3). If An is bigger, such as An = 3, one can
see that the lattice with defects further constraints the beams
and the breathers appear [see Figs. 8(b1) and 8(b2)]. More
interestingly, when A1 = A2 = 6, soliton pairs can again form
in Fig. 8(b3). While we increase the distance D between the
two parts of the beam, such as D = 5 and D = −5 shown
in Fig. 9, the results are very different. For AiG beams, the
quasibreather dynamics has a larger spatial size and a longer
periodicity; see Figs. 9(a) and 9(b). The interaction dynamics
is different at D = 5 and D = −5 because of the different

direction of the beam acceleration. However, for Gaussian
beams, they diffuse obviously. In particular, they are same
for the different distance (D = 5 and D = −5). The results
illustrate again that the interaction dynamics excited by AiG
beams and Gaussian beams is different.

AiG Beams
(a)

D=5

(b)

Gaussian Beams
(c)

D=−5

(d)

FIG. 9. The interaction of two AiG beams ((a) and (b)) or two
Gaussian beams [(c) and (d)] for D = 5 (left column) and D = −5
(right column) at A1 = A2 = 1, An = 5, T = 0.1 mm, γ = 1, δφ =
π , and δn = 0.5.
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FIG. 10. The interaction of two AiG beams with changing the values of A1, A2, and An for γ = 1 and Q = 0.01. The other physical
parameters are the same as in Fig. 8.

When we introduce the self-focusing nonlinearity, we find
that breathers form instead of soliton pairs from Figs. 10(a)–
10(c). At An = 3, when the self-focusing nonlinearity grows,
the breathers are first destroyed shown in Fig. 10(d) and
10(e) for increasing the beam input power. Moreover, when
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FIG. 11. The interaction (a)–(c) and intensity profiles of two AiG
beams with changing the values of A2 for A1 = 4, An = 3, T =
0.1 mm, γ = 1, D = 3, Q = 0.01, δφ = 0, and δn = 0.5.

A1 = A2 = 6, breathers can again form in Fig. 10(f) because
the balance between the self-focusing nonlinearity and the
lattice defect. Compared with Fig. 10(c), the period is smaller.
In Figs. 10(g)–10(i), no breathers exists even though the
beam power is bigger (A1 = A2 = 6) at An = 5. Second, we
consider that the interaction of two in-phase beams for different
A1 and A2 in self-focusing media, as shown in Fig. 11. The
asymmetrical intensity distribution of the beams is formed by
the interaction of the two AiG beams with A1 �= A2. At this
situation, the breathers are not discovered from Figs. 11(a) and
11(c). In addition, one can see that the deflecting direction is
affected by the different intensity distributions [see Fig. 11(d)].
Compared Fig. 11(b) with Figs. 11(a) and 11(c), the breathers
are symmetric because A1 and A2 are the same value.

IV. CONCLUSION

To conclude, we have investigated the interactions of
two different amplitude and phase AiG beams in linear and
nonlinear media with the lattices with defects by using the
numerical simulations with the split-step Fourier method.
We find that the interference fringe, breathers, and soliton
pairs can be produced in these interactions. The generated
interference fringe, breathers, and soliton pairs in the central
region do not accelerate transversely, because their properties
are determined by the underlying the media with lattices
with defects and not by the incident beam from which they
are generated. In the linear media, the phase shift and the
beam interval can affect the initial deflection direction of the
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accelerated beams. In general, the central interference fringe
in the in-phase case is bright, whereas in the out-of-phase case
it is dark. Interestingly, when a lattice period is appropriate,
the periodic interference fringe may be formed. A constructive
or destructive interference can also be influenced by the defect
depth. While the nonlinearity is introduced, the breathers
are generated. As the medium is the self-focusing nonlinear
medium, the self-focusing nonlinearity further traps some
energy and breathers have formed. Though the self-defocusing
nonlinearity increases the diffraction, the field distributions
in the central region can also be regarded as breathers. In
particular, when we select the appropriate beam amplitude

and lattice depth, soliton pairs may be shaped. In addition, the
interaction of the two AiG beams with different amplitudes can
lead to the asymmetrical intensity distribution of the beams.
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