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Mathematical concepts often have applicability in areas that may have surprised their original developers. This
is the case with piecewise isometries (PWIs), which transform an object by cutting it into pieces that are then
rearranged to reconstruct the original object, and which also provide a paradigm to study mixing via cutting
and shuffling in physical sciences and engineering. Every PWI is characterized by a geometric structure called
the exceptional set, E, whose complement comprises nonmixing regions in the domain. Varying the parameters
that define the PWI changes both the structure of E as well as the degree of mixing the PWI produces, which
begs the question of how to determine which parameters produce the best mixing. Motivated by mixing of yield
stress materials, for example granular media, in physical systems, we use numerical simulations of PWIs on a
hemispherical shell and examine how the fat fractal properties of E relate to the degree of mixing for any particular
PWI. We present numerical evidence that the fractional coverage of E negatively correlates with the intensity of
segregation, a standard measure for the degree of mixing, which suggests that fundamental properties of E such
as fractional coverage can be used to predict the effectiveness of a particular PWI as a mixing mechanism.
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I. INTRODUCTION

Mixing by cutting and shuffling, described mathematically
as piecewise isometries (PWIs), is far less understood than
other forms of mixing such as mixing generated by stretching
and folding, which is directly applicable to fluids and can be
cast in the language of nonlinear dynamics and chaos theory.
Nevertheless, mixing with PWIs has potential for application
in engineering processes involving granular materials [1–3],
yield stress fluids, valved fluid flows [4,5], or flows with
shear-banding materials, as well as for understanding certain
notable geophysical phenomena (e.g., imbricate thrust faults
[6]). PWIs follow simple rules that generate complex dynamics
[7–20]. We focus here on measuring intrinsic features of PWIs
and the mixed state of the system in order to establish a
relationship between the theoretical properties of PWIs and
mixing in practice.

There are various similar definitions of a PWI [21–24]; we
define a PWI mapping M on a domain or space S as follows:

Definition 1. M : S → S such that the action of M on each
partition element Pi of S is a Euclidean isometry (composition
of translation, rotation, reflection, etc.). Pi , a closed region
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(including boundaries), is one of a finite number N partition
elements of S, i.e., ∪1 � i � NPi = S, and where Pi ∩ Pj is
measure zero for i �= j .

A lower hemispherical shell (HS) undergoing a PWI
transformation is split into four partition elements [bottom
view, Fig. 1(a)], which are then rearranged into another HS
[Fig. 1(b)]. We let D denote the set of all such borders that
partition S [black and red arcs in Fig. 1(a)]:

Definition 2. D = ∪i,j (Pi ∩ Pj ) for i �= j .
Note that since each segment of D is in the shared domain

of two isometries, the map M is multivalued on D.
In this study we focus on a particular class of PWIs that

result from successive rotations about the z and x axes by θz and
θx , with periodic boundaries at the hemispherical edge (Fig. 2).
The operation is expressed mathematically by Sturman et al.
[17] and is applied here for computer simulations of PWIs.
This class of PWIs is specified by the ordered pair (θz,θx) and
approximates the effect of an infinitely thin flowing layer in a
spherical granular tumbler [2,3,17,26], which can be reduced
to two-dimensional dynamics on the HS. The ordered pair
(θz,θx) is referred to as a protocol for the remainder of this
paper, and it determines the location of D [for instance, the set
D in Fig. 1(a) derives from the (45◦,45◦) protocol].

We can observe mixing on the HS when a particular PWI
is repeated, with the rate and degree of mixing depending on
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FIG. 1. Bottom view of a hemispherical shell (HS) showing (a)
the initial location of the pieces to be rearranged, Pi , and their
corresponding boundaries comprising D (black and red arcs) and the
domain boundary, ∂S (blue arc) and (b) their subsequent locations
after their rearrangement by one iteration of the PWI. Reproduced
from Park et al. [25] with permission from AIP Publishing.

the protocol. This is demonstrated in Fig. 3(b), where the three
protocols (54◦,54◦), (75◦,75◦), and (30◦,15◦) result in vastly
different degrees of mixing after m = 150 iterations for the HS
initially colored half red and half light blue in Fig. 3(a) (this
and all remaining figures with a HS show the bottom view of
the HS).

When considering mixing under PWIs, nonmixing regions
can be identified by visualizing the exceptional set [23]:

Definition 3. E = ⋃
−∞<i<∞ MiD.

The dynamics on the closure of E has been shown to be
ergodic in other systems [27–30], and we conjecture that this
is also the case here, which is why, for ease of illustration, we
approximate E with its subset E+ [25]:

Definition 4. E+ = ⋃
1�i<∞ MiD.

All images representing E hereafter are approximated with
E+. We generate E+ by seeding tracer points on an equivalent
substitute of D (refer to [25] for further details) and recording
their trajectories for a large number of iterations [Fig. 3(c)].
The white areas in the HS are nonmixing regions known as
cells [31,32] (we refer to the region as a cell rather than the
set of points occupying the region as in [25]), which form a
subset of the complement of the closure of E. In Fig. 3(c) it is
evident that the cells coincide with nonmixing regions in Fig.
3(b) for the (54◦,54◦) and (75◦,75◦) protocols. For example,
the four large circular cells in Fig. 3(c) for the (75◦,75◦)
protocol correspond to large light blue and red circular regions

(54°, 5
4°)

(30°, 15°)

(a)

(b) (c)

(75°, 75°)

FIG. 3. Bottom view of (a) initial condition of seeded colors
on the HS, (b) mixing on the HS for the (54◦,54◦), (75◦,75◦),
and (30◦,15◦) protocols after m = 150 iterations, and (c) E for
corresponding protocols obtained by tracking the respective D for
5000 iterations.

in Fig. 3(b). For the (54◦,54◦) protocol, there are two adjacent
circular regions in Fig. 3(b) located near the center and just
below that contain both red and light blue colors with a clear
divide between the two. This is because the initial seeding of
colors overlaps with two of the cells shown in Fig. 3(c) and
both colors happened to be seeded in each of the cells.

Colors contained inside a cell are said to have a periodic
itinerary [31,32] because they travel as a group from one cell to
others of the same size before returning to the cell where they
originated, but with a rotation. The boundaries between the two
colors in the cells for the (54◦,54◦) protocol are slanted rather
than in the vertical orientation of the initial condition due to this
rotation. The mixing patterns of the (54◦,54◦) and (75◦,75◦)
protocols demonstrate that cells are nonmixing because no
colors penetrate them and no mixing occurs within them.

While a greater coverage of E seems to produce qualita-
tively better mixing in each example in Fig. 3, our goal is
to show that such a relationship exists more generally based
on quantifying the fractional coverage of E and comparing

y

z x
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FIG. 2. PWI operation on the HS for (θz,θx) = (45◦,45◦). Dashed lines indicate the two rotation axes. (a) Initial condition. (b) Rotation
and cut about the z axis by θz. (c) Rotation and cut about the x axis by θx . (d) New state after one iteration. Adapted from Park et al. [25] with
permission from AIP Publishing.
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FIG. 4. Magnifying E for the (54◦,54◦) protocol by 8× to various
scales. Each magnification, from (a) to (b), from (b) to (c), and from
(c) to (d), of the red box reveals circular cells at progressively finer
scales.

the coverage to standard measures for the degree of mixing. If
greater coverage of E produces better mixing, this would imply
that measures of fundamental properties of E exist which can
be used to judge the general effectiveness of a particular PWI as
a mixing mechanism. Quantifying the fractional coverage of E

and the degree of mixing, each has its respective complications
and factors that need to be considered, which are mentioned
here and addressed more thoroughly in the following sections.

First, we observe that the approximated E has two distinct
and related features: Fine details emerge when E is viewed at
magnified scales (Fig. 4), and the apparent coverage depends
on the resolution at which E is measured, described succinctly
by Umberger and Farmer as “structure on all scales” and
“dependence of the apparent size on the scale of resolution”
[33], all of which are features that characterize fractals. For
most of the cases considered here, E appears to have positive
area, which suggests that they are fat fractals, as opposed to
traditional fractals which are measure zero, i.e., they have zero
area in two dimensions [33].

Note, however, that although E in Fig. 3(c) appears to
fill in some regions while leaving others empty, E is made
up of arcs having length but no thickness (it is a countable
union of measure-zero sets). Thus, even regions that are dark
blue in Fig. 3(c) consist of densely packed curves with zero
thickness that are approximated by densely packed points in
practice. That E exhibits fractal characteristics allows us to
quantify the area that E appears to cover using a box counting
method [34], but by doing so, we are in effect “fattening” E

and measuring its closure Ē [35,36]. For the remainder of this

FIG. 5. Visualizing E with m = 5000 for θz and θx ∈ [15◦,90◦]
varying in 15◦ increments (bottom view). Reproduced from Park et al.
[25] with permission from AIP Publishing.

paper, we use the term “fractional coverage of E” with the
understanding that the term refers to the measure of Ē. Aside
from our conjecture that E is a fat fractal, which gives us
a possible method for measuring its coverage, it is significant
that the amount of mixing with PWIs could be connected to the
fractal characteristics displayed by E for a particular protocol,
given the close relationship between fractals and mixing of
fluids [37–46].

Considering a range of protocol values, Fig. 5 shows that
a variety of intricate patterns is possible for E, where E is
approximated at m = 5000 for values of θz and θx ranging from
15◦ to 90◦ in 15◦ increments. Only protocols with θx � θz are
shown because the global structures of E for the (θ1,θ2) and
(θ2,θ1) protocols are symmetric (see Appendix A). Further
exploration of these patterns for smaller angle increments
suggests a rich variety of patterns for E (see Figs. 17–19).

The coverage of E also varies substantially with the choice
of protocol. The coverage ranges from apparently completely
filled for the (45◦,15◦) protocol to nearly empty for the
(90◦,90◦) protocol. The (90◦,90◦) protocol represents a trivial
case where the partition of the HS for the next iteration overlaps
perfectly with the reassembled HS after an iteration of the
protocol (the four cells have a periodic itinerary of 2 but are
period 6 because each cell has three sides that the rotation
of the cell aligns to). Visible coverage is affected by the size
and number of cells. The observed cells are frequently circular,
with the exception of the (90◦,90◦) protocol, whose three-sided
cells appear polygonal, which suggests the possibility of other
protocols that share similar features. Circles of different sizes
nearly fill the HS for the (90◦,45◦) protocol, while circles of
similar size nearly fill the HS for the (90◦,15◦) protocol. The
(90◦,75◦) protocol has four large circles along with many small
circles of similar size that form a band on the HS. Compared to
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FIG. 6. Progression of the approximation of E as a function of
the number of protocol iterations m (bottom view). Note that E for
the (15◦,15◦) protocol at m = 1000 is not fully developed.

those with θz = θx or θz = 90◦, the other protocols generally
have greater coverage and smaller cells.

It is important to note that while PWIs are “nonmixing”
according to mathematical definitions [27–30], it is possible
to compare the mixed states of protocols using mechanical
definitions. Measuring the degree of mixing is complicated
by mechanical factors such as the choice of initial condition
of the seeded colors, the number of points used in mixing
simulations, and, for most measures of mixing such as
the intensity of segregation [47] that we used to measure
mixedness, the resolution of the grid on which the measure
is calculated.

In this paper, we quantify the coverage of E over the HS
using the box counting method [33,35,36,48] and show that
for most protocols E is well described as a fat fractal. We
compare these characteristics to the degree of mixing achieved
via numerical simulations, quantified by an established engi-
neering measure known as the intensity of segregation [47],
to demonstrate a general relationship between the fat fractal
characteristics of E and mixing with PWIs.

II. APPROXIMATING E

The choice of m = 5000 for approximating E in Figs. 5
and 17–19 is arbitrary and, consequently, must be addressed
to ensure that we derive reliable measures of its characteristics.
This issue is highlighted in Fig. 6 where the “filling” by D is
shown for various protocols after m = 1, 10, 100, and 1000
iterations. For the (15◦,15◦) protocol, the trajectory of D cuts
the HS into thin slices initially at m = 10, but at m = 100 and
m = 1000, the orbit is in close proximity to past trajectories
and fills the HS slowly while leaving a band of cells on the
diagonal. The (54◦,54◦) protocol features several pentagons
initially, which fill in to become large circular cells. At m =
100 and m = 1000, the (54◦,54◦) protocol fills the HS more
evenly, with many small cells in addition to large cells. The
trajectory of D for the (45◦,15◦) protocol cuts the HS into

(a) (b)

n 
=

 3
n 

=
 1

FIG. 7. (a) An unfolded isocube half whose resolution for a
quarter of one face is 2 × 2 (top) and 23 × 23 (bottom). The total
number of boxes is N = 12 × 2n × 2n, since there are 12 quarter
faces (each quarter face is outlined with bold lines). (b) Isocube half
in (a) mapped to the HS as viewed from the bottom.

thin slices like the (15◦,15◦) protocol initially, but fills the HS
uniformly without any visible cells at m = 1000 iterations.

The issue of choosing a particular value of m to approximate
E is highlighted using Fig. 6 as an example. For the (54◦,54◦)
and (45◦,15◦) protocols, the points that are followed after
m = 1000 fill the HS more densely with more iterations,
but the qualitative structure of E changes little. In contrast,
for the (15◦,15◦) protocol, we conclude that the structure of
E is incomplete after m = 1000 compared to the m = 5000
approximation shown in Fig. 5 (bottom left corner). At m =
5000, the structure appears complete based on how densely
the points fill the space.

Two points are evident from Fig. 6. First, from a visual
perspective, the structure that emerges from the orbit of D
seems to reach an “asymptotic state” for some sufficiently
large value of m. Second, the value of m at which the
general structure of E is revealed varies with the protocol.
For the (45◦,15◦) protocol, m = 1000 might suffice, whereas
m � 5000 may be necessary for other protocols such as
(15◦,15◦).

If numerous protocols are to be studied, this leads to the
question of how to automate the process of determining m

such that enough information is obtained from the orbit ofD to
generate a reasonable approximation of the coverage of E. We
determine whether the coverage of E is close to an asymptotic
state based on the ability of points to visit new regions of the
HS. To achieve this, we use the bottom half of an isocube as
shown in Fig. 7 to discretize the HS in a near-uniform manner
(each box in the grid is the same size, and its shape is distorted
only slightly when mapped on the HS) [49]. We conclude that
an asymptotic state has been reached when the points that are
seeded to generate E fail to visit a new box in the chosen grid
for a specified number of consecutive iterations. After each
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FIG. 8. Measuring the fraction of coverage of E for the (90◦,45◦) protocol at resolutions of n ∈ {3,4,5,6}. Boxes that contain portions of
E are black (bottom view).

iteration, all boxes containing a point are marked as occupied,
and if all seeded points fail to visit a new box for a set number
of consecutive iterations, then, for the purpose of this study,
we conclude that there is no more information to be gained
regarding the coverage of E at that grid resolution.

Before applying this approach, we briefly describe the grid
of the isocube half. Figure 7(a) shows an unfolded isocube
half. The blue, orange, purple, and yellow colors have two
edges, and when “glued” together with their respective colors,
the unfolded isocube half forms the bottom half of a cube.
The bold black lines on the outside form the outer edge of the
assembled half cube, and the inner bold black lines discretize
the domain into 12 quarter faces (we refer to them as quarter
faces because the bottom face would be divided into four
squares). Each quarter face is further discretized with a 2n × 2n

grid (fine black lines), such that the total number of boxes on
the isocube is N = 12 × 2n × 2n. The resolution of the grid
is denoted by the exponent n. This isocube half can then be
mapped to the HS to form an area-preserving grid as shown
in Fig. 7(b). All boxes have equal area, and the individual box
area goes to zero in the limit of N → ∞. See [49] for details
of the isocube transformation.

The grid and its resolution are critical to several aspects
of the numerical simulations, such as choosing the number
of points to seed for D, determining whether enough points
are available for obtaining a reliable measure for the coverage
of E, and, in Sec. IV, seeding points for mixing simulations
and measuring the degree of mixing. The role of the grid is
described in detail as we discuss each method.

For determining whether a numerical simulation reaches
the asymptotic state for the structure E, the grid resolution
is set to a maximum value of n = 10. At n = 10, there are
approximately 1.25 × 107 boxes that can be visited by points
on the HS. We approximate D as described by Park et al.
[25], with two sets of points near the edge of the HS: one
set of points is seeded before the z-axis rotation [blue curve
in Figs. 1(a) and 2(a)], and the other set of points is seeded
before the x-axis rotation [red curve in Fig. 2(c)]. The points
for each set are seeded in the center of boxes at the very
edge of the HS (one point per box), which is approximately
8000 points (there are eight quarter faces on the edge of the
isocube half, and each quarter face has 210 = 1024 boxes
on one edge). Thus, we follow the orbits of 16 000 points
across a grid of 1.25 × 107 boxes. The structure of E is
considered to be close to an asymptotic state when none
of the 16 000 points visit a new box for 1000 consecutive
iterations.

III. APPROXIMATING THE FRACTIONAL COVERAGE
OF E WITH BOX COUNTING

The approximation of E is closely tied to measuring its
fractional coverage: the number of boxes visited by the end
of the simulation divided by the total number of boxes is an
approximation of the fractional coverage at a given resolution.
Also, if the approximation of E is judged to have reached
an asymptotic state on a high resolution grid (n = 10), then
there must be enough points on the HS that the coverage of
E can be measured for lower resolutions, i.e., n < 10, which
is additional information that can be used for further analysis.
Let �n denote the fraction of boxes occupied by E for a grid
discretizing the HS with resolution n. This is illustrated for
the (90◦,45◦) protocol in Fig. 8, which shows how �n changes
for different values of n. A finer grid yields a more “accurate”
measure, and this naturally leads to the question of what the
appropriate resolution should be to measure E. If possible,
taking n → ∞ to determine �∞ would be ideal.

Considering the fractional coverage �n for six sample
protocols and 2 � n � 10, Fig. 9 shows that �n generally
decays toward an asymptotic value. We fit the points in Fig. 9
to a curve to approximate a value for �∞. The choice for the
curve is based on the observation that E typically resembles a
fat fractal. Thus, the following equation is used to fit �n for

FIG. 9. Fitting the measured values of �n for various protocols.
Corresponding E shown on the right.
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TABLE I. Fitted fat fractal coefficients and goodness of fit.

Protocol �∞ dext R2

(45◦,15◦) 0.996 1.674 0.868
(30◦,15◦) 0.955 1.201 0.999
(75◦,15◦) 0.854 1.223 1.000
(75◦,75◦) 0.535 1.563 0.998
(89◦,52◦) 0.319 1.077 1.000
(54◦,54◦) 0.250 1.660 0.993
(90◦,45◦) 0.240 1.322 0.999
(90◦,90◦) 0.000 1.014 1.000
(72◦,1◦) 0.000 1.921 0.872

each protocol [33,36]:

�n = �∞ + Ae−Bn, (1)

where limn→∞ �n = �∞ is the asymptotic fractional cover-
age.

The exterior dimension can be calculated for each E from
the coefficient of n in Eq. (1) [33,35,48]:

dext = 2 − B

ln 2
. (2)

We calculate the exterior dimension rather than the tradi-
tional Hausdorff dimension, which yields a value of 2 for fat
fractals and does not provide information about the multiscale
structure observed for E.

The built-in trust-region-reflective algorithm [50,51] in
MATLAB is used to fit the data to Eq. (1) (starting from
n = 5, because low resolutions give poor approximations to
�∞), which gives the fractional coverage �∞ and exterior
dimension dext for each case (Table I). The quality of the fit
is measured by the R2 value (goodness of fit) which ranges
from zero to 1, where 1 indicates that there is no difference
between the data and fitted values. A constraint that �∞ � 0
and B � ln 2 is also applied to the curve fit based on heuristics
(we expect �n � 0 for all n and dext � 1 for a fat fractal).
Given the nature of the fit and these constraints, 0 � �∞ � 1
and 1 � dext � 2. As anticipated from visual inspection, the
fractional coverage of the exceptional sets on the right of Fig. 9
decreases monotonically from close to 1 for the (30◦,15◦)
protocol (top) to zero for the (90◦,90◦) protocol (bottom). In
contrast, the connection between the values of dext and E is not
obvious. Note that as expected, for the (90◦,90◦) protocol, �∞
is approximately zero and dext ∼ 1 because E for this protocol
is composed of just two arcs.

For the (45◦,15◦) protocol (not shown in Fig. 9) E appears
to cover the entire HS (Figs. 5 and 6), and �∞ is close to
1, but the R2 value is relatively low (Table I). This occurs
because the (45◦,15◦) protocol generates cells that are nearly
all smaller than the box size for a grid of n � 5, which
means �n = 1 for n < 5. Consequently, a scaling behavior
is only observed starting from n = 5 in this case, and higher
resolutions (n> 10) would be necessary for a better fit to
Eq. (1). In other cases, the data may not scale as Eq. (1)
immediately, as is illustrated by the dashed lines connecting
the data points of n < 5 for (75◦,15◦), and (54◦,54◦) in Fig. 9.
The values of �n are decreasing for the (75◦,15◦) and (54◦,54◦)
protocols, but an inflection point exists at n∗ = 3 and n∗ = 4,

FIG. 10. No obvious correlation between the asymptotic cover-
age �∞ and exterior dimension dext exists for the 4095 protocols
examined.

respectively [uncharacteristic of Eq. (1)], which can lead to
lower R2 values. In this study, θz was varied from 1◦ to 90◦ in
1◦ increments, and θx was varied from 1◦ to θz in 1◦ increments
for a given θz (reasons stated in Sec. I), for a total of 4095
protocols. Approximately 80% of the protocols had R2 � 0.9.
For ones with R2 < 0.9, most, if not all, had �∞ � 0.95,
indicating a very high coverage of the HS by E.

A key question is the relation between the fractional
coverage and fractal dimension. Figure 10 shows the fitted
values for �∞ and dext. More than 90% of the �∞ values are
greater than 0.6, and 60% of the �∞ values are greater than
0.9. The values of dext are spread relatively uniformly, and
there is no obvious relationship between �∞ and dext.

IV. COMPARING �∞ TO THE DEGREE OF MIXING

In this section, �∞ is compared to the degree of mixing to
determine whether the relationship observed based on visual
comparison in Sec. I, i.e., that a greater fractional coverage
of E results in better mixing, is also reflected in standard
metrics. To simulate mixing on the HS, the left half of the HS
is seeded with points associated with species 1 (red), and the
right half with species 2 (light blue), as in Fig. 3(a). Points
were seeded in the center of each box for a grid resolution of
n = 8, which is approximately 8 × 105 points. Let c̄ denote
the average concentration of species 1. While concentration
is calculated based on the frequency of points divided by the
total number, it is meant to represent a fraction of an area of
the surface. Here, mixing at each iteration m is measured on a
grid of N boxes using the intensity of segregation I(m) [47]:

I(m) = 1

c̄(1 − c̄)

(
1

N

N∑
i=1

(ci(m) − c̄)2

)
∈ [0,1], (3)
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where ci(m) is the local concentration of species 1 in box i

of the grid at iteration m, and I represents the normalized
variance in the local concentration of species 1 across all
N boxes. If the domain is uniformly mixed for a given
resolution, then ci(m) = c̄ for all i, and there is no variance,
i.e., I = 0. If the domain is completely unmixed (segregated),
then ci(m) = 1 or zero in each bin, and the variance is at
its maximum value of c̄(1 − c̄), so I = 1. Note that for cells
with distinct discontinuities, e.g., as shown in Fig. 3(b) for the
(54◦,54◦) protocol, if the grid resolution is high enough that
the boxes are smaller than the cells, boxes that do not contain
the discontinuity will only be occupied by one species. This
implies that the local concentration will be zero or 1, and boxes
along the discontinuity will contain a mix of species. We use
a grid resolution of n = 3, which corresponds to N = 768
boxes in the grid. Simulations were run for the same set of
4095 protocols described in Sec. III.

Note that I depends on the resolution of the grid on which
it is measured and the total number of points seeded on the
HS. For a set number of points, if the grid resolution increases,
then the measured segregation will increase as well. If the
resolution is such that the number of boxes equals the number
of points (i.e., given that each point maintains its distance
from neighboring points due to the isometry, only one point
should occupy a box), then I = 1 because the concentration
of species 1 in each box will be zero or 1. On the other hand,
if the grid resolution decreases, then the measured segregation
will decrease until it reaches zero when the grid consists of
one box. In both extremes, I is not a meaningful measure of
the mixed state of the system.

A grid resolution of n = 3 and 8 × 105 points were chosen
in consideration of the issues mentioned above while being
mindful of computational limitations. There is a sufficient
number of points in each box (approximately 1000 points per
box) to ensure statistically reasonable results, while there is
also a sufficient number of boxes to yield a measurement that
reflects the mixed state of the entire HS.

For six sample protocols, I decreases over 1000 iterations
(Fig. 11). After approximately 500 iterations, I reaches a
“steady” state for the (89◦,52◦), (54◦,54◦), (75◦,75◦), and
(30◦,15◦) protocols, characterized by an asymptotic trend as m

increases. A steady state also appears likely for the (75◦,15◦)
protocol for more than 1000 iterations, but it is unclear if there
is a steady state for the (72◦,1◦) protocol. Perhaps what is
more interesting is the ordering of I for different protocols
when compared to the asymptotic fractional coverage �∞ for
E. With the exception of the (72◦,1◦) and (89◦,52◦) protocols,
the apparent coverage of E is in ascending order from top to
bottom. Because materials in cells do not mix, this suggests
that the measure �∞ for E could indicate the ultimate degree of
mixing, i.e., a protocol with a higher �∞ should lead to better
mixing and less segregation than a protocol with a lower �∞.

The (72◦,1◦) protocol is one of possibly several exceptions
that behaves unlike the other protocols shown in Fig. 11. Its
zero �∞ value (Table I) suggests that mixing is unlikely for
this particular protocol, but its I, while oscillating, is steadily
decreasing, indicating that mixing is occurring, albeit slowly.
It would seem to continue if the simulation were run for
longer than 1000 iterations. Thus, the measures �∞ and I
are evidently at odds in this case.

FIG. 11. Intensity of segregation I versus iteration number for
six sample protocols; corresponding E are shown on the right.

We speculate that this discrepancy comes about because the
cells of the (72◦,1◦) protocol are minuscule. The cells appear
consistent in size, and each cell is approximately ten times
smaller than a single box of the grid. While it is understood
that no mixing occurs within a cell, the cells of the (72◦,1◦)
protocol are small enough that they can each be considered
an individual particle, in contrast to that for protocols with
large cells such as the (90◦,90◦) protocol. The mixing that is
measured by I results from the rearranging of the minuscule
cells of different colors in each box.

The (89◦,52◦) protocol appears to be another exception,
compared to the (54◦,54◦) protocol, possibly again relating to
cell sizes. While its fractional coverage of E may be greater
(�∞ = 0.319 compared to 0.250 from Table I), the prominent
cells of the (89◦,52◦) protocol are much larger and more
numerous than that of the (54◦,54◦) protocol, whose remaining
cells other than the several large cells happen to be fairly small.
The (89◦,52◦) protocol underperforms compared to what its
�∞ value would suggest because of its particular distribution
of cell sizes.

While I does not reach an asymptotic state by m = 1000
for some protocols, our goal is to determine whether most of
the protocols tested indeed reach their respective asymptotes.
We take a simple approach to examining this by considering
the standard deviation of I, denoted σ (I), over a set span of
iterations. For a given protocol, if I reaches an asymptotic
state, the set of preceding iterations should have similar values
of I, leading to σ (I) ∼ 0. If this is the case for most protocols,
then the distribution of σ (I) will be narrow and close to zero
for later iterations.

The distributions of σ (I) over a span of 50 iterations
(s = 50) are shown in Fig. 12 for the 4095 protocols at various
ranges of iterations. Figure 12(a) shows the distribution of σ (I)
on a linear scale. For m ∈ [51,100], the distribution is wide and
centered around 0.045. At higher iterations, the distribution
of σ (I) shifts closer to zero, indicating that I is essentially
constant for most protocols by the end of the simulation,
consistent with an asymptotic state. Figure 12(b) shows the
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FIG. 12. Distribution of σ (I) for all 4095 protocols over a range
of s = 50 iterations at different m. There is some overlap between
distributions for different ranges of iterations; the distribution of later
iterations are plotted over earlier ones.

distribution of σ (I) on a logarithmic scale, where most values
are in the range 10−4 � σ (I) � 10−2 for m ∈ [951,1000].
There is also a small group of protocols whose values of σ (I)
are orders of magnitude smaller than that of the rest of the
population. The protocols in this group all have θz = 90◦; i.e.,
the rotation about the z axis only flips the colors from one
side to the other, producing no mixing. In theory, I = 1 for all
iterations in this case, which is why σ (I) ∼ 0 for all protocols
with θz = 90◦. Thus, this group of protocols has values of
σ (I) orders of magnitude smaller than that for the rest. This
highlights the challenge of accounting for the impact of initial
conditions in the study of mixing; however, this topic is beyond
the scope of this paper.

Distributions of σ (I) for other spans s ∈ {5,10,25,100}
were also calculated. These distributions also became narrower
and tended towards zero for increased numbers of iterations,
which reinforces the notion that, in general, I reaches a steady
state by m = 1000 iterations. Distributions of the average

FIG. 13. Comparing I to �∞ for all 4095 protocols at iterations
m = 25, 102, and 103. At high m, I and �∞ appear to be negatively,
linearly correlated.

change in I, denoted �I, for s = 50 at various ranges of
iterations were examined to see if I trends in any direction. It
was found that �I has a wide distribution with a negative
mean initially, since I decreases for most protocols when
mixing occurs, but at different rates. At higher iterations,
the distribution of �I is narrower and shifts toward zero,
indicating that I does not trend in a particular direction after
its initial decrease. Again, this indicates that I at m = 1000
reaches steady state for most protocols and can be used to
compare to �∞, which is an intrinsic value of E.

Returning now to the relationship between the asymptotic
fractional coverage �∞ of E and the traditional measure of
mixing, the segregation index I, Fig. 13 shows a scatterplot
of I versus �∞ at different numbers of iterations. Initially,
all protocols start from I = 1, but after each iteration, I
decreases as mixing occurs. The points are broadly scattered
for smaller m, but as m is increased, they appear to collapse
toward a diagonal line. The negative linear correlation between
I and �∞ at m = 1000 confirms the hypothesis that the
structure of E, specifically the asymptotic fractional coverage
�∞, can be a useful indicator of the degree of mixing. This
is significant given the many factors involved with mixing
and measuring the degree of mixing (e.g., species number,
concentration, and initial distribution as well as the number
of tracer points and the grid geometry and resolution for
measuringI). Materials in cells do not mix, and this is reflected
in mixing simulations as well. Larger �∞ corresponds to a
smaller overall size of the nonmixing regions (cells). Thus, a
negative correlation between I(m = 1000) and �∞ results.
Therefore, fractional coverage �∞ of E can be a useful
indicator for judging a particular protocol’s effectiveness at
mixing.

There are a few exceptions to the negative linear correlation
between �∞ and I, one of which is the protocols with �∞ ∼ 1
that maintain values of I > 0 even after 1000 iterations along
the right edge of Fig. 13. In comparing the points at the three
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different numbers of iterations as in Fig. 13, it is clear that
the values of I are decreasing, which suggests the rate of
mixing may be very slow for these protocols despite the high
�∞ value. While the fractional coverage of E predicts the
long-term mixing achieved, it cannot predict the rate of mixing.
Another exception is when the initial condition and protocol
are such that no mixing will occur, e.g., when θz = 90◦ and
one species initially occupies the left half of the HS and the
other species occupies the right half of the HS as was pointed
out earlier. This is the set of points at I ∼ 1 along the top
edge in Fig. 13 that do not collapse independent of m or �∞.
Finally, there is also a group of protocols near the left edge with
�∞ ∼ 0, but with decreasing values of I. These are protocols
whose behavior may be similar to the (72◦,1◦) protocol, which
has �∞ ∼ 0 and a steadily decreasing I for increasing m.
These special cases point to the subtleties of studying mixing
with PWIs, but also highlight the fact that, as a general rule, �∞
can be used as a first-order type approximation for predicting
the degree of mixing for PWIs.

V. CONCLUSION

When mixing with PWIs, the exceptional set, E, is an
inherent structure on the domain that can be used to predict the
overall degree of mixing that will be produced. Specifically,
the fractional coverage of E, �∞, shows a negative linear
correlation with the intensity of segregation, I, a standard
measure for mixedness. Because the complement of E consists
of cells (nonmixing regions), the fractional coverage �∞ of
the fat fractal geometry of E represents a fundamental measure
that can be used to judge the general mixing effectiveness of
a given PWI. The methods employed in this study to obtain
this result naturally motivate the question of whether �∞ can
be predicted purely from protocol values. While the majority
of the calculated values of the exterior dimension dext are
not equal to 1 or 2, confirming that E on the HS is usually
fractal, dext does not appear to be immediately related to
mixing in any practical sense, though this requires further
study.

Moving forward, it is important to note that selecting
protocols with small nonmixing regions based on �∞ is
necessary but not sufficient for efficient mixing with PWIs.
This is the case because E is a static feature of PWIs and
only represents the possible degree of mixing as m → ∞.
It cannot account for all initial conditions, and it does not
yield information about the rate of mixing or the rate at which
the structure of the dynamics is achieved [52]. Thus, further
work is necessary to determine how initial conditions impact
mixing and how characteristics of PWIs are related to the rate
of mixing, which may require the development of different
methods of analysis.
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θ1 = 75°
θ2 = 15°

Image Transpose(θ1, θ2) (θ2, θ1)

θ1 = 90°
θ2 = 45°

z = −x

z = −x

FIG. 14. Comparing E for (θ1,θ2) and (θ2,θ1) for two different
pairs of θ1 and θ2 (bottom view). Middle column shows the image
transpose of E for (θ1,θ2), which is a reflection across z = −x in
the coordinate space. The image transpose of E for (θ1,θ2) appears
identical to E for (θ2,θ1).

APPENDIX A: REVERSING SYMMETRY
OF E FOR (θ1,θ2) AND (θ2,θ1)

In Sec. I we noted that there is a symmetry between
the structures of E for protocols (θ1,θ2) and (θ2,θ1). Here
we show why this is the case. Consider rotation angles of
θ1 = 90◦, θ2 = 45◦, and θ1 = 75◦, θ2 = 15◦ shown in Fig. 14.
The exceptional set is approximated for protocols (θ1,θ2) and
(θ2,θ1) for both sets of angles in the left and right columns.
An image transpose corresponds to reflecting points across the
z = −x diagonal in the coordinate space. By transposing the
images of E for the (θ1,θ2) protocol on the left, we visually
confirm that the transpose is the same as the images of E for
the (θ2,θ1) protocol.

We now investigate whether the progression towards E is
the same for protocols (θ1,θ2) and (θ2,θ1) once the reflection
across z = −x is employed, as shown in Fig. 15 for rotation

(45°, 75°)Image Transpose(75°, 45°)

m
 =

 1
m

 =
 2

FIG. 15. Comparing the progression towards E for θ1 = 75◦ and
θ2 = 45◦ (bottom view). Left column, progression for (θ1,θ2); middle
column, image transpose of the left column; and right column,
progression for (θ2,θ1). It is not apparent that the resulting E from
both will be the same.
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(45°, 75°)Image Transpose(75°, 45°)−1

FIG. 16. Comparing D (top) and D ∪ M−1(D) (bottom) for the
(75◦,45◦) protocol (left column), their image transpose (middle
column), and the progression towards E for the (45◦,75◦) protocol at
m = 1 and 2 (bottom view).

angles θ1 = 75◦, θ2 = 45◦. The progressions of (θ1,θ2) and
(θ2,θ1) protocols are not the same in this case, but what is
remarkable is that the global features of E for both protocols
become the same for large m.

The reason the structures for the (75◦,45◦) and (45◦,75◦)
protocols are symmetric for large m becomes easier to
comprehend if the (θ1,θ2) protocol is applied backwards in
time, denoted as (θ1,θ2)−1, in which case the rotation by θ2

comes before the rotation by θ1, like (θ2,θ1), the only difference
being that the rotation by θ2 happens on different axes for
the two protocols. We compare D (top) and D ∪ M−1(D)
(bottom) for the (75◦,45◦) protocol in the left column, its image
transpose in the middle column, and the progression for the

FIG. 17. E for θz and θx ∈ [45◦,60◦] varying in 3◦ increments.

FIG. 18. E for θz and θx ∈ [45◦,50◦] varying in 1◦ increments.

(45◦,75◦) protocol in the right column in Fig. 16 and observe
that the two structures are the same after one is reflected across
z = −x. That the set of inverse iterates of D is also dense in
E has been proven for some systems [27–30]. We conjecture
that this is also the case here, which is why the structures of E

for (θ1,θ2) and (θ2,θ1) protocols appear symmetric.

FIG. 19. E for θz and θx ∈ [45◦,46◦] varying in 0.2◦ increments.
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APPENDIX B: TAXONOMY OF E

As noted in Sec. I, different patterns of E were studied at
smaller angular resolutions as shown in Figs. 17–19. While the
continuous (θz,θx) parameter space cannot be fully explored,
it is useful to understand the sensitivity of E to the protocol at
least in some select areas of the parameter space.

Compared to Fig. 5, Fig. 17 with rotation angles ranging
from 45◦ to 60◦ in 3◦ increments shows less variety in patterns,
but patterns along the diagonal remain quite distinct from one
another. With rotation angles ranging from 45◦ to 50◦ in 1◦
increments (Fig. 18), there appear to be two general features:
arrowheads such as those shown for the (45◦,45◦) protocol, and

five large circular cells across the diagonal with an additional
large cell in the upper left corner of the HS, as shown for the
(50◦,50◦) protocol. A transition occurs from the arrowhead
feature to the five-cell feature in the parameter space between
these two protocols as the cell in the center of the arrowhead
pattern becomes larger and dwarfs the cells around it, so that
the five arrowheads are replaced by five large circular cells.

For rotation angles ranging from 45◦ to 46◦, the arrowhead
feature is the most prominent (Fig. 19). Changes in the
structure of E are minimal with 0.2◦ increments in the 45◦
to 46◦ range. For protocols on the diagonal, however, their
structures of E appear to have finer details (smaller cells) than
adjacent protocols.
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