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Intermittency-induced criticality in a resistor-inductor-diode circuit
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The current fluctuations of a driven resistor-inductor-diode circuit are investigated here looking for signatures
of critical behavior monitored by the driving frequency. The experimentally obtained time series of the voltage
drop across the resistor (as directly proportional to the current flowing through the circuit) were analyzed by
means of the method of critical fluctuations in analogy to thermal critical systems. Intermittent criticality was
revealed for a critical frequency band signifying the transition between the normal rectifier phase in the low
frequencies and a full-wave conducting, capacitorlike phase in the high frequencies. The transition possesses
critical characteristics with a characteristic exponent pl = 1.65. A fractal analysis in terms of the rescale range
(R/S) and detrended fluctuation analysis methods yielded results fully compatible with the critical dynamics
analysis. Suggestions for the interpretation of the observed behavior in terms of p-n junction operation are
discussed.
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I. INTRODUCTION

The dynamics of nonautonomous, sinusoidally driven,
resistor-inductor-diode (RLD) series circuits has extensively
been studied in the literature, for a variety of diode types.
Different scenarios which may lead to chaotic behavior have
been explored and different models explaining the observed
nonlinear evolution have been proposed, e.g., [1–17]. Most of
the studies focus on the behavior at high driving frequencies,
around the resonant frequency of the circuit.

A basic dynamical mechanism leading to chaotic behavior
in electronic circuits is intermittency. Several forms of maps
have been proposed to describe the associated intermittent
dynamics. Among others, Rollins and Hunt [5,8], studying
a serial diode resonator circuit, proposed a one-dimensional
monoparametric mapping function describing the evolution of
the maximum forward current through the diode. The authors
associated the appearance of intermittency in this map with the
onset of a crisis phenomenon when the driving voltage ampli-
tude exceeds a critical value. Moreover, Jeffries and Perez [4]
studied experimentally the same circuit with the voltage am-
plitude as control parameter. From the equations of the circuit,
they deduced a logistic map which shows intermittency type I
at the first period 5 window [4]. de S. Cavalcante and Rios Leite
[13] experimentally found evidence of a type-III intermittency
of cubic nonlinearity in a driven RLD circuit. Moreover,
intermittency has also been found in more complex circuits,
for example, type III in an autonomous electronic circuit with
negative resistance [18] and type II in coupled electronic
nonlinear devices [19]. The derived maps demonstrated
universal characteristics. This universality is expressed
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through the exponent ν determining the power-law distribution
of the mean waiting time (or mean “laminar length”):

〈l〉 ∼ σ−ν, (1)

where σ is the distance of the voltage amplitude from the
critical value: σ = |V − Vc|. We note that the term “waiting
time” here denotes the number of successive time steps for
which a trajectory remains within a predefined region around
a marginally unstable fixed point.

For the electronic circuits mentioned above the value of ν

has been found to be ν = 0.5 [4,8]. This exponent is related
to the exponent z in the normal form of the underlying
intermittent map [20]; the value ν = 0.5 corresponds to z = 2.
Up to now, all the descriptions of the nonlinear phenomena
appearing in the p-n junction are based on concepts of chaotic
dynamics such as period doubling, bifurcations, intermittency,
etc., characterizing in particular the point of transition between
the regular and chaotic behavior as crisis [4].

In this work, we attempt to describe the p-n junction oper-
ation in terms of concepts used in thermal critical phenomena.
Specifically, we attempt to associate the intermittent dynamical
behavior occurring in electronic circuits with the dynamics of
the fluctuations of an order parameter in analogy to thermal
critical systems, using the method of critical fluctuations
(MCF) introduced in [21–24]. For this purpose, we investigate
the evolution of the fluctuations of the voltage VR across
the resistor or equivalently the current I flowing through
circuit components, in a driven RLD circuit, using the driving
frequency as a control parameter. Our analysis shows that there
is a critical transition zone of frequencies where the nonlinear
properties of the circuit change, leading to a transition from the
normal rectifier operation in the low frequencies to a full-wave
conducting, capacitorlike operation in the high frequencies.
This zone is characterized by the appearance of fluctuations
in VR (or I ) which present intermittent behavior, similar to
the dynamics of the order parameter fluctuations in a thermal
critical system as in [22].
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FIG. 1. (a) Experimental setup; values of the RLD circuit com-
ponents and details about the used instruments are also shown. (b)
Photograph of the circuit implementation used for experimentation.

The remainder of the article is organized as follows: Sec. II
presents the employed RLD circuit and details about the
conducted experiment; Sec. III sets a framework for the study
of the RLD circuit in terms of MCF; the RLD circuit time
series are analyzed using the MCF in Sec. IV; a complementary
fractal analysis is performed in Sec. V; and finally, the main
findings are discussed and conclusions are summarized in
Sec. VI.

II. EXPERIMENTAL SETUP

The experimental setup and details of the employed circuit
are shown in Fig. 1. The nonlinear element was a typical
rectifier diode, 1N4004, while an air wound inductor of 2.2
mH inductance was used in order to exclude any inductor-
core-induced nonlinearities from the experiment. Since we
are interested in studying the diode current of a driven RLD
circuit, we used a signal (waveform) generator having a
50-� output impedance to feed a sinusoidal driving signal
to the circuit while acquiring the voltage drop VR(t) across
the 27-k� resistor (as directly proportional to the circuit’s
current) by means of a digital oscilloscope of 12 bit resolution
at a sampling rate of 20 MS/s. Conducting the experiment
for different values of the driving signal frequency, one time
series comprising at least 100 periods of VR(t) was acquired
for each driving frequency. Note that during all experiments
the same instruments were used [cf. Fig. 1(a) for their key
characteristics], while the electromotive force of the signal
generator was a sinus of peak value Vo = 14 V.

Figure 2 portrays typical examples of the three kinds of
waveforms which were acquired during the aforementioned
experiments. The waveform of Fig. 2(a) is part of the VR(t)

FIG. 2. The three kinds of acquired VR(t) waveforms. (a) Part of
the 1 kHz time series as an example of the low-frequency rectifying
behavior. (b) Part of the 5 kHz time series presenting undershoots
entering the negative values region. (c) Part of the 500 kHz time
series in the full-wave conducting, capacitorlike operation.

time series for driving frequency f = 1 kHz and represents the
behavior of diode current of the RLD circuit at low frequencies,
a typical rectifying operation during which there are no
negative VR(t) values. As driving frequency increases, negative
undershoots appear [e.g., Fig. 2(b) for driving frequency
f = 5 kHz] until there is complete loss of rectification in
very high frequencies [e.g., Fig. 3(c) for driving frequency
f = 500 kHz]. In the next section we proceed to the study
of the rectifying phase (at low frequencies), the nonrectifying
phase (at very high frequencies), and especially the transition
between them.

III. THE RECTIFYING-NONRECTIFYING PHASE
TRANSITION IN THE RLD CIRCUIT

From the measurements obtained during our experiments
(cf. Sec. II, Fig. 2), two discrete phases can be identified in

FIG. 3. (a) One full, arbitrarily selected period of the measured
2 kHz VR(t) time series. (b) Closeup of the lowest fluctuations of
the 2 kHz VR(t) time series excerpt depicted in (a). The existence of
reverse-recovery phenomenon is obvious.
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p-n junction dynamics: (a) the rectifying phase (phase A)
at the lower frequencies (f < 1 kHz) which is characterized
by a typical diode behavior (acting as a rectifier) attributed
to the one-way (half-wave) conduction character of the p-n
junction, and (b) the nonrectifying phase (phase B) in very
high frequencies (f > 500 kHz) where the diode conducts
during the whole cycle of the driving signal having lost its
rectifying properties and becoming a full-wave conducting,
capacitorlike circuit element. A first observation is that a wide
transition zone in the frequency space separates these two
discrete phases.

This transition from phase A to phase B is connected
with the so-called reverse-recovery time τRR . When the diode
current is passing through zero, the diode does not shut off
immediately, but continues to conduct for a time interval equal
to τRR . This defines a characteristic time scale which has been
intensively studied in the literature, e.g., [5,8,14]. In [14] the
authors have investigated the appearance of chaotic behavior
in circuit current for a wide range of frequencies and they have
shown the existence of specific zones of the driving frequency
where period doubling bifurcations take place.

At this point we need to focus on the phenomenon of
interest, which is the transition from phase A to phase B.
For this reason we consider the measured VR(t) time series
at f = 2 kHz (an intermediate frequency between 1 and
500 kHz). In Fig. 3(a), one full, arbitrarily selected period
of the specific time series is depicted, while a closeup of its
lower part is shown in Fig. 3(b). The reverse-recovery time
phenomenon make its appearance, indicated by the obvious
voltage undershoot followed by a mild slope (slow) recovery.
We focus our analysis in the lowest part of the VR(t) time
series, around zero values.

The basic reason calling for such an approach is that
we want to reveal the dynamics which are related with the
appearance of the reverse-recovery time phenomenon in the
lower part of the time series. Therefore, from the originally
measured time series for each driving frequency we produce a
time series comprising only the VR(t) values which fluctuate
between the lower (negative) point and the (positive) bending
point, as shown in Fig. 3(b). This time series will be designated
as Vbt (t). As an example, Fig. 4 depicts an arbitrary one-period-

FIG. 4. The time series Vbt (t) for f = 5 kHz has values in the
region from −0.55 to 0.15 mV.
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FIG. 5. Normalized density of turning points for different driving
frequencies.

long excerpt of Vbt (t) for f = 5 kHz. The time series, Vbt (t),
will be further analyzed as a candidate for presenting critical
fluctuations. The main objective is to investigate whether
there is any nontrivial dynamics in what, by a simple visual
inspection, appears to be noise.

In a first attempt to check whether Vbt (t) is an appropriate
time series for our purposes, we estimated the density of
turning points (local minima and maxima) in the Vbt (t) time
series obtained for different driving frequencies, as a measure
of the presence of fluctuations. The turning points density
was estimated as number of turning points

length of the corresponding time series . Figure 5 shows
the normalized turning points density for different driving
frequencies, clearly indicating the existence of three distinct
frequency bands: (a) frequencies lower than ∼1 kHz, (b)
from ∼2 kHz up to ∼10 kHz, and (c) frequencies higher than
∼20 kHz. This picture is in agreement with the aforementioned
notions of phase A (band a), phase B (band c), and the transition
from phase A to phase B (band b). Therefore, we consider that
the study of the fluctuations in Vbt (t) is a reasonable strategy
for the investigation of the reverse-recovery time phenomenon
and the dynamics associated with the transition from phase A
to phase B. In the next section, Sec. IV, we proceed to the
analysis of Vbt (t) fluctuations using MCF. Note that the main
advantage of MCF is exactly the ability to reveal dynamics
“hidden” in intense noise [25]; therefore it is considered
appropriate for studying the Vbt (t) fluctuations.

IV. MCF ANALYSIS OF THE Vbt (t) TIME SERIES

This method of critical fluctuations (MCF) has been
extensively described in a series of works [21–24] and for
this reason we avoid repeating it here. However, we will
demonstrate step by step the application of MCF analysis for
one of the analyzed time series [the Vbt (t) for f = 5 kHz] for
clarity reasons.

An excerpt of the analyzed 5 kHz Vbt (t) time series is shown
in Fig. 6(a). First, we check that it satisfies certain stationarity
criteria (saturation of cumulative mean value and standard
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FIG. 6. (a) The time series Vbt (t) for f = 5 kHz, resulting from
the original time series VR(t) after the exclusion of the positive values
above the bending point. (b) The distribution of the Vbt (t) time series
values. It is characteristic of the appearance of a plateau.

deviation) and then we calculate the distribution of Vbt (t)
[Fig. 6(b)]. We observe from Fig. 6(b) that the distribution of
Vbt (t) shows a flat maximum. Such a behavior is usually related
to the presence of a marginally stable fixed point undergoing
a tangent bifurcation [20]. Assuming that this scenario applies
also in the present case, the plateau region is interpreted as the
immediate neighborhood of the bifurcating fixed point [21,26].
To ensure that the plateau region is related to criticality we
have to calculate the distribution of the corresponding waiting
times. In our case the term “waiting times” denotes the number
of successive time steps for which the Vbt (t) trajectory stays
within the plateau. As shown in [22], if the plateau region
has a critical origin, the distribution of the corresponding
waiting times follows the power law with an exponent pl > 1.
Furthermore, in [22], using the magnetization time series of the
three-dimensional (3D) Ising model at the critical temperature,
it has also been shown that the exponent pl can be associated
with the isothermal critical exponent δ through the relation
pl = 1 + 1/δ [20]. The plateau region is not strictly defined.
To overcome this ambiguity we assume a variable width of the
plateau and we check the robustness of our results with respect
to small changes of the plateau width. Note that the plateau is
mentioned as the “laminar region” in previous works of ours.
Therefore, from this point on we will use the term “laminar
region” to denote the plateau of Vbt (t) distribution.

The next step in the application of MCF is the estimation
of the distribution of the waiting times for varying the width
of the laminar region. A reasonable estimation of the laminar
region is within the interval [−0.15,0.15] (maximum width of
laminar region = 0.3) as can be seen in Fig. 6(b). The final
step in the MCF is to use the function

P (l) = p1l
−p2e−p3l (2)

to fit the experimentally determined waiting times distribution
and calculate the corresponding parameters p2, p3. As shown
in [22,23], this function takes care of two important issues:
(i) the finite size effects, and (ii) the distance from the critical
point. Both are simulated by the presence of the exponential
factor e−p3l in Eq. (2). This term is a crucial indicator of

FIG. 7. (a) Distribution of waiting times. For very long waiting
times (700 < l < 900) a very narrow distribution is observed as
indicated by the arrow. (b) For waiting times l < 40 an excellent
power law appears; the fitting line is given by the Eq. (2) with p2 =
1.55, p3 = 0.01, and R2 = 0.999.

the proximity to the critical point (critical frequency in our
case), if any, since it dominates far away from criticality while
it becomes zero as we approach the critical frequency. When
p3 = 0 then the exponent p2 in Eq. (2) should coincide with the
above mentioned critical exponent pl . An indicative estimation
of the distribution of the waiting times for the laminar region
[0,0.15] is presented in Fig. 7.

From the results obtained after the application of MCF
a very interesting conclusion is reached. There are two
components in the Vbt (t) time series. In terms of waiting times
distribution, these components are separated by a “depletion”
zone characterized by the absence of any waiting times. One
component is a “noisy,” unstructured background without
any dynamics corresponding to the very long waiting times
[indicated by the arrow in Fig. 7(a)] and the other component,
for l < 40 [cf. Fig. 7(b)], presents fluctuations induced by
intermittent dynamics since the waiting times follow a power-
law distribution. It is obvious that without the MCF analysis
the second component would be well hidden.

By restricting our study of the 5 kHz Vbt (t) time series
to the low waiting times (l < 40) and repeating the previous
procedure for different laminar regions (different widths of
the laminar region), the results shown in Fig. 8 were obtained.
Figure 8 portrays the exponents p2, p3 vs the width of the
laminar region. We observe that for a wide range of laminar
region widths, where almost all Vbt (t) values belonging to the
plateau of the amplitude distribution shown in Fig. 6(b) are
included, the calculated exponent pairs (p2, p3) take values
satisfying conditions implied by thermal critical systems,
namely, p2 > 1 and p3 ≈ 0. The closer to zero is the value of
p3, the closer to pure power law is the distribution of waiting
times according to the model of Eq. (2). As can be verified from
Fig. 8, a “competitive,” anticorrelated relation exists between
the two exponents. Indeed, when the exponent p3 takes the
lower value (see blue downward arrow in Fig. 8), i.e., closer
to pure power law, the exponent p2 takes its maximum value
(see green upward arrow in Fig. 8) and vice versa.
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FIG. 8. The fitting exponents p2, p3 vs the width of the laminar
region for the 5 kHz Vbt (t) time series.

A key characteristic of phase transition is the critical point
which separates the two phases. In a typical critical system,
according to the Ginzburg criterion [27,28], there is a zone
around the critical point where the order parameter fluctuations
possess scaling properties.

Although criticality has been revealed for 5 kHz, according
to the Ginzburg criterion, we would expect the occurrence of
critical behavior in a frequency band near the transition point
and not just at a single critical frequency. In order to determine
the range of the expected “Ginzburg zone” (critical frequencies
band), we repeat the application of MCF on all the frequencies
from 2 to 20 kHz [above which the quality of fitting to the
model of Eq. (1) is destroyed]. From plots like that of Fig. 8
we find the minimum values of p3 (see downward blue vertical
arrow) for each frequency, which are depicted in Fig. 9. Note
that, as already noted, these cases are closer to pure power law.
It can be concluded from Fig. 9 that there is a frequency band,

FIG. 9. The minimum p3 exponent vs frequency. Within a narrow
zone from 2 to 8 kHz the minimum p3 values are very close to zero,
indicating critical dynamics.

FIG. 10. The maximum p2 exponent value vs frequency within
the critical band.

from 2 to 8 kHz, where the minimum values of p3 are very close
to zero. Therefore this zone of frequencies could be considered
as the critical Ginzburg zone presenting the characteristics of
the critical point of a second-order phase transition between
phase A and phase B. Within the specific zone, the fluctuations
of Vbt (or equivalently of VR) demonstrate dynamics similar to
the intermittent dynamics of the order parameter in a thermal
critical state [21]. As the frequency departs from the critical
zone the distribution P (l) attains a dominating exponential
tail. Note that the revealed Ginzburg zone is rather narrow,
as compared with the very long separation frequency distance
between the two discrete phases A and B.

As can be seen from Fig. 8, the exponent p2 values
obtained for a specific frequency and variable laminar region
widths, although all satisfying the critical condition p2 > 1,
are characterized by a strong fluctuation. Therefore, the
estimation of a characteristic value of power-law exponent
pl , such that P (l) ∼ l−pl , which would allow us to estimate
the corresponding isothermal critical exponent δ through
pl = 1 + 1/δ[=1 + 1/(z − 1)] [20], is not possible. However,
for a specific frequency, we could use the value of the exponent
p2 corresponding to the minimum value of exponent p3 as
a representative value, since for this case the distribution of
waiting times is closer to a pure power law and therefore closer
to criticality. Clearly, this is the maximum p2 value obtained
for a specific frequency (for example, for the case of 5 kHz,
see the upward green vertical arrow in Fig. 8). Figure 10 shows
these maximum exponent p2 values for the critical frequency
band, namely, for frequencies from 2 to 8 kHz.

As shown in Fig. 10, the fluctuation of the p2 exponent is
limited, rendering the calculation of a mean value meaningful.
The calculated mean p2 exponent over the critical frequency
zone was found to be 〈p2〉 = 1.65. Since the approximation
pl = p2 is valid in the critical state, we obtain the estimation
of a characteristic pl value, pl = 〈p2〉 = 1.65, leading to
δ = 1.5. This value of δ does not correspond to any known
universality class in the context of thermal systems. This
is expected since the observed transition being driven by
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frequency tuning could merely be related to a dynamical (or
structural) process.

V. FRACTAL ANALYSIS

Different methods for the estimation of the Hurst exponent,
as an expression of the roughness of a time series, or the
long-term memory (long-term persistence) of the associated
complex process, are usually applied in cases of time series
characterized by certain scaling (fractal) characteristics. Some
of the most widely used methods are the direct estimation
of the Hurst exponent H by means of the rescale range
(R/S) analysis; the estimation of the scaling exponent β, of
the power spectral density (PSD); and detrended fluctuation
analysis (DFA), through the estimation of the corresponding
scaling exponent a. Note that the DFA exponent a is related to
the Hurst exponent H [29,30], and the spectral power-law
exponent β [31]. Specifically, in the case of a fractional
Brownian motion (fBm) time series it is [32,33] H = a−1
and β = 2a−1.

We examine here the Vbt time series in terms of R/S analysis
in order to have a direct estimation of H , as well as using DFA
because it presents an advantage over spectral analysis and
R/S analysis in detecting long-range correlations embedded
in a seemingly nonstationary time series, and also avoids the
spurious detection of apparent long-range correlations that
are an artifact of nonstationarity [34]. It is noted that other
methods for the estimation of the Hurst exponent have also
been proposed, such as the moving averages crossings method
which is reported to provide calculation accuracy of the same
order than the one of the DFA [35,36]. Although methods
based on PSD scaling are known for being commonly superior
to DFA in terms of bias and variance of the estimated Hurst
exponents [37] we do not proceed to such an analysis here for
brevity reasons.

In the following we briefly provide key information and
formulas regarding the R/S and the DFA methods, in Secs. V A
and V B, respectively, while the results obtained after the
analysis of the Vbt time series in terms of these two methods
are presented in Sec. V C.

A. Rescale range analysis

The rescale range (R/S) analysis was originally introduced
for the analysis of hydrological data [29,30]. It is based on two
quantities: first, the range Rn, which is the difference between
the maximum and minimum values of the accumulated
departure of the time series from the mean, calculated over
each one (n = 1, 2, . . . , d) of the m-samples-long subseries in
which the time series can be divided; and second, the standard
deviation of the corresponding subseries Sn. The so-called
rescaled range is exactly the ratio of R to S. Hurst [29] found
that (R/S) scales by power law as time (i.e., the sample length
m of the subseries) increases,

(R/S)m ∝ mH, (3)

where H is the Hurst exponent, an empirical relation well
describing a variety of time series of natural phenomena. The
exponent H is estimated as the linear slope of a log (R/S)m −
log m representation.
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FIG. 11. Three segments piecewise linear approximation of the
log (R/S)m− log m representation. The slopes, attributed to “local”
Hurst exponents over the three scale ranges, are shown.

B. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a straightforward
technique for identifying the extent of fractal self-similarity in
a seemingly nonstationary time series [34,38]. After dividing
a time series to subseries of m-samples length, the root mean-
square fluctuation for the integrated and detrended series,
F (m), is calculated. Repeating this calculation for different
m, a power-law relation between F (m) and time (expressed by
subseries length m),

F (m) ∝ ma, (4)

indicates the presence of scaling. The DFA exponent a is esti-
mated as the linear slope of a log F (m) − log m representation.

C. Fractal analysis results

The analysis of the full length of the 5 kHz Vbt (t) critical
signal in terms of R/S analysis and DFA yielded the results
portrayed in Figs. 11 and 12, respectively. It is noted that a
time series corresponding to 100 periods of the Vbt (t) signal
sampled at fs = 20 MHz, i.e., with a sampling period of
Ts = 50 ns, and corresponding to a total length of 10 ms was
analyzed. As can be clearly seen from these figures, there
is no typical scale-invariant, (mono)fractal behavior over the
whole time-scale range. However, the full range of time scales
could be roughly divided into three different ranges of scales
approximated by linear slopes:

The first slope is identified for time scales less than
∼3.2−6.4 μs, yielding a Hurst exponent H = 0.22 (Fig. 11).
This result indicates antipersistent behavior, implying that
fluctuations tend to induce stability within the system as
in a negative feedback process. Note that this scale range
corresponds to the high-frequency variations within one period
of the analyzed signal [cf. Fig. 4 for an indicative period
of Vbt (t) for 5 kHz driving frequency]. On the other hand,
DFA analysis at the same range of time scales reveals a steep
increase of the fluctuation function with a slope of a = 1.70
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log F (m)− log m representation. The slopes, attributed to “local” a

exponents over the three scale ranges, are shown.

(Fig. 12) indicating a quite smooth time series, which is in
agreement with the information retrieved through the R/S

analysis.
The second slope is identified in the middle time scales,

from ∼3.2−6.4 μs up to 0.1 ms, corresponding to H = 0.88
(Fig. 11) and a ≈ 1 (Fig. 12), which could be interpreted
as near-pink (1/f ) noise. However, one should not overlook
the fact that the specific range of time scales is dominated
by the apparent periodicity imposed by the driving signal
and the preprocessing for obtaining Vbt (t) from the originally
measured VR(t) time series. Note also that the abrupt changes
resulting from the way the Vbt (t) time series was constructed
is probably a reason for the observed increased Hurst exponent
estimates. It is noted that this interpretation is compatible with
the view that the presence of different slopes (crossovers)
in the scaling behavior should be carefully evaluated. As
has been reported [39,40], this might not be a result of the
existence of different scaling regions with different correlation
properties but could be a result of the existence of trends or
nonstationarities in the analyzed time series.

The third region, for time scales longer than 0.1ms, gives
H ≈ 0 and a ≈ 0, revealing the scale-invariance boundary
at the upper scales (low frequency) due to finite size effect.

The first (lower time scales) range seems to be the most
reliable in terms of fractal analysis; therefore we focus on
it. Moreover, this is the most interesting time-scale range,
since, in terms of the MCF analysis, high-frequency variations
correspond to the short waiting times (l < 40) for which
intermittent criticality was revealed. The R/S analysis and
DFA results for the lower scales imply a smooth, antipersistent,
long-range dependence behavior which is in full agreement
with the revealed second-order phase transition, for which
the transition from one phase to the other is taking place
smoothly without abrupt changes. Fractal analysis is also in
agreement with the MCF analysis concerning the conclusion
that there is no point in including the long time scales in the
study. For scales longer than 0.1ms, i.e., for durations longer

than one period of the Vbt (t) for the 5-kHz driving frequency,
no scale-invariance information is found. This is compatible
with the MCF conclusion that for very long waiting times no
structure is detected. The only reason one needs to include
more than one period of the Vbt (t) signal in the analysis is to
achieve reliable statistics for the high-frequency fluctuations
happening during the reverse-recovery effect and thus obtain
more reliable results for the short waiting times (and short
time-scales) analysis.

Interestingly, for the used 1N4004 rectifier diode with a typ-
ical zero-bias junction capacitance Cj ∼ 15 pF, a maximum
reverse-recovery time of the order of 1−10 μs is expected (a
τRR ∼ 700 ns has been measured at 20 kHz for a diode of
similar characteristics, 1N4007 [14], while different vendors
specify, under a variety of different measuring conditions,
maximum or typical reverse-recovery times in the range
1−30 μs). These might be considered as indicative maximum
time scales for the studied RLD circuit, verifying the signifi-
cance of the lower time-scale range revealed by fractal analysis
in the observed nonlinear dynamic behavior. Note that 1N4004
is commonly given as a replacement of the 1N1221 diode
appearing in relevant past publications.

VI. DISCUSSION AND CONCLUSION

The transition from low to high frequencies in a nonau-
tonomous RLD circuit was found to present common char-
acteristics with a thermal system undergoing a second-order
phase transition. Using the method of critical fluctuations
(MCF) we found a critical zone of frequencies in which
the fluctuations of the voltage drop across the resistor of an
RLD circuit, or equivalently the directly proportional current
through the circuit, possess an intermittent component similar
to the dynamics of the order parameter fluctuations of a
thermal critical system. Specifically, intermittency-induced
criticality was revealed signifying a second-order phase
transition between the normal rectifier phase in the low
frequencies and a full-wave conducting, capacitorlike phase
in the high frequencies. The scaling exponent was estimated
to be pl = 1.65.

In order to interpret the observed behavior we suggest the
following scenario: Within the critical frequency band, namely,
between 2 and 8 kHz, the minority carriers form critical
clusters, each one characterized by a different reverse-recovery
time, τRR , leading to a reverse current which is expressed by
the dynamical fluctuations of the voltage Vbt . As is known
[41], the geometry of critical clusters is fractal. Therefore, we
expect that at the critical zone of frequencies, the minority
carriers get organized in self-similar clusters with fractal
formations in the 3D space. Notably, a fractal analysis of
the studied critical time series, by means of rescale-range
(R/S) and detrended fluctuation analysis (DFA), revealed that
Vbt variations present scale-invariance characteristics fully
compatible with the findings of the corresponding critical
dynamics analysis.

In analogy to a thermal system undergoing a second-order
transition such as, for example, the Ising model in D � 2
dimensions, phase B corresponds to the symmetric phase,
while phase A corresponds to the phase of spontaneously
broken symmetry; the driving frequency resembles the role

042206-7



POTIRAKIS, CONTOYIANNIS, DIAKONOS, AND HANIAS PHYSICAL REVIEW E 95, 042206 (2017)

of the temperature as the control parameter. In order to
describe the transition within the theoretical framework of
critical phenomena the introduction of an order parameter is
necessary. Typically, in a thermal phase transition the mean
magnetization plays the role of such a quantity where during
the symmetric phase the mean value of the order parameter is
zero, while in the broken phase it is nonzero. In the case of
the considered circuit (cf. Sec. II, Fig. 1), we observe that the
change of normalized turning points density vs frequency f ,
as shown in Fig. 5, becomes almost zero for near-sinusoidal,
normal conducting VR(t) (high frequencies), while it takes a
nonvanishing finite, almost constant value in the rectifying
regime at low frequencies (f < 1 kHz). Thus it possesses the
basic characteristics of an order parameter.

The presented analysis introduces an alternative insight to
the dynamics of the hole-electron pairs in a p-n junction
diode. Nevertheless, more effort is required in order to
better understand the observed phase transition at both the
theoretical and experimental levels. The comprehension of
such phenomena often calls for long and extensive research,
as in the case of the Branly phenomenon [42,43].
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