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We consider Landau-Zener tunneling of solitons in a weakly coupled two-channel system, for this purpose we

construct a simple mechanical system using two weakly coupled chains of nonlinear oscillators with gradually
decreasing (first chain) and increasing (second chain) masses. The model allows us to consider soliton propagation
and Landau-Zener tunneling between the chains. It is shown that soliton tunneling characteristics become
drastically dependent on its amplitude in nonlinear regime. The validity of the developed tunneling theory is
justified via comparison with direct numerical simulations on oscillator ladder system.
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I. INTRODUCTION

When a quantum or classical coupled two-level linear
system evolves adiabatically, a whole process follows one
of the adiabatic levels, but if velocity of evolution is finite,
there always exists probability of nonadiabatic transition
between adiabatic levels, this phenomenon is a celebrated
Landau-Zener (LZ) tunneling effect [1], which serves as a
powerful tool for a simple quantum-mechanical interpretation
of various fascinating wave processes in quantum and classical
many-body systems. Landau-Zener effect in general is a wave
phenomenon and could show up in any properly designed
classical system, and as we demonstrate in the present paper,
it is valid even in the case of system of coupled oscillators.
LZ model has been applied to explain transitions between
Bloch bands considering time dynamics of matter waves of
Bose-Einstein condensates in optical lattices [2,3] and acoustic
waves in layered elastic structures [4]. Later on the same effect
of Bloch mode transitions has been extended in spatial domain
considering optical systems with a variety of architectures:
waveguide arrays with a step in a refractive index [5], arrays
with an applied temperature gradient [6], curved wave guides
[7], nematic crystals [8], perturbed optical lattice [9], and
two-dimensional photonic lattices [10]. These macroscopic
phenomena, at the same time, has led to generalizations
of original Landau-Zener problem, for instance, nonlinear
LZ tunneling inducing asymmetric transitions [11-13], LZ
tunneling in multilevel systems [14,15], and Landau-Zener-
Bloch oscillations [16] could be quoted among others. One
can mention various application proposals for LZ tunneling,
such as targeted energy transfer [17] and all optical diode
realization [18].

In the present paper we propose a simple mechanical system
in order to show a generic nature of soliton tunneling mech-
anism in any weakly coupled two-channel system, which can
be interpreted as LZ tunneling in spatiotemporal domain. As
an example, nonlinear oscillator ladder is examined where in
tunneling region oscillator masses are varying monotonously
(decreasing and increasing along first and second chains,
respectively) as presented in Fig. 1. The applicability of the
mentioned mechanism could be seen in system of weakly
coupled photonic wave guides, for Bose-Einstein condensates
in two parallel closely placed photonic lattices, two coupled
spin chains (either classical or quantum) could be also
examined, and even weakly coupled completely different
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media, for instance, ferroelectric and ferromagnetic quasi-one-
dimensional systems, could be considered. In the latter case
magnetic soliton will transform into electric one or viceversa
in multiferroic nanostructures [19].

II. THE MODEL

In order to support generic idea of soliton LZ tunneling we
use a most celebrated oscillator system model, namely two
weakly coupled Fermi-Pasta-Ulam chains [20], which consist
of three parts (Fig. 1). Two ends of the ladder are used as
input and output and they consist of two weakly coupled FPU
chains, where at the input all oscillators have masses M in
upper chain and m in lower one, while, on the other hand, at
the output we have masses m and M in upper and lower chains,
respectively. The oscillator masses in the tunneling region
depends on oscillator position via linear law. FPU oscillator
ladder with such a mass distribution could be presented as
follows:

my()iiy = ky(Upy1 + Un—1 — 2u,) + k3(nis — )

k3 (U — un)? + k(w, — ), (1)

mZ(n)lbn = kl(wthl + wy—1 — 2wn) + kS(wnJrl - wn)3

k3 (Woo1 — wy)? + k(u, — wy), 2)

where u,, and w, are displacements of nth oscillator in upper
and lower chains, respectively. We choose mass distribution in
the tunneling region,

mi(n) = mo(1 — an), ma(n) = mo(1 + an), 3)
such that m(—N/2)=my(N/2)=M and m;(N/2)=
m,(—N /2) = m, where in tunneling region index n varies in
the limits —N /2 < n < N/2; mg is an oscillator mass in the
middle of ladder and « stands for a mass gradient coefficient;
ky is linear and k3 is nonlinear coupling stiffness of springs
connecting the oscillators of the same chain, while k is a
weak coupling constant between oscillators in different chains.
It should be especially mentioned that relative difference of
masses between different ends of the same chain, i.e., the
value (M — m)/M should be small, otherwise analogical to
Fressnell reflection effects [21] will take place and one has
to take into account both reflection and tunneling processes,
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FIG. 1. Schematics for the oscillator ladder system. Soliton is
entering through one of the input chains and nonlinear Landau-Zener
tunneling is identified via monitoring the soliton amplitudes at the
output chains. k and k; are interchain and intrachain linear coupling
constants and oscillator masses change from M to m in the upper
chain and viceversa in the lower chain.

which makes difficult clear identification of manifestations of
LZ tunneling.

By introducing dimensionless time variable and redefining
parameters it is possible to choose my = k; = 1. Working in
this setup we are seeking the solution in the form of slow
space-time modulation of plane waves:

A(&,en)

U, = ———
2

B(&,en)
2

where € < 1 is a small expansion parameter. Collective slow
variable £ has been introduced and v = dw/dp = sin p/w
stands for a group velocity. Now we suppose that an <
€,k ~ €, and k3 ~ €. Then in the zero approximation over
€ substituting Eq. (4) into Egs. (1) and (2), one automatically
gets dispersion relation for plane waves w? = 2(1 — cos p).
While in the next approximation over € making simple phase
modification for A and B, we obtain the following equations:

@ 4 cc.

e 4 e E=em—t), &

w,; =

L0A

—i— =a'nA — kB +2r|A*A, (5)
on
9B ) 5
—za—z—anB—KA+2r|B| B, (6)
n

with gradient coefficient &’ = w?a/(2sin p), coupling con-
stant k = k/(2sin p), and nonlinearity r = 3ks(cosp —
1)2/(4sin p). Substituting A ~ ¢/ and B ~ ¢'?" into Egs. (5)
and (6), it is easy to determine adiabatic levels g for fixed n
and one obtains quartic equation,

(@np)* = (B> — kHTF — ), (7)

where F(£) =| A |> + | B |? is a conserved quantity for fixed
£.

III. LINEAR LIMIT

In the case of vanishing nonlinearity k3 — 0 (r — 0)
Egs. (5) and (6) reduce exactly to Landau-Zener model [1] in
the spatial domain. In the same limit, Eq. (7) gives symmetric
adiabatic levels 8 = £/k% + (a'n)? displayed in Figs. 2(c)
and 2(e). According to general LZ formula [1], having at
n — —oo the values A = 1 and B = 0, transition probability
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FIG. 2. Result of numerical simulation on the initial model
system Eqs. (1) and (2) in linear limit with mass distribution Eq. (3),
presented schematically in Fig. 1. Upper surface plots (a) and (b)
represent linear wave-packet dynamics injected into the lower chain.
Carrier wave numbers are p = 0.3 and p = /2 in (a) and (b)
graphs, respectively. Graph (d) displays analytical dependence of
tunneling probability on carrier wave number given by LZ Eq. (8)
(solid curve), while stars are results of numerical simulations. Graphs
(c) and (d) represent adiabatic and diabatic regimes in linear limit
k3 — 0, corresponding to the cases in the surf plots (a) and (b),
respectively. We use the following parameters for the simulations
and comparison: keeping intrachain coupling constant equal to unity
we choose interchain coupling as k = 0.006 and gradient coefficient
asa = 6.5 x 107*. Masses at ultimate ends of the ladder are fixed as
m =1.09 and m = 0.91.

is expressed as

wi? wk?
P=exp|l—|)=exp| —7——7— ). (8)
o 2w3a sin p

In particular, this means that if according to Eq. (4) one
has modulated plane wave distribution at fixed & = &, and
n = —oo, such that A(§ = &y,n = —00) = Ayp and B(§ =
&y,n = —00) =0, then Eq. (7) allows us to construct the
tunneling amplitudes at » = co and the same & =§&; as
follows: |A(E = &,n = 00)|?> = P|Ao|* and |B(€ = &.,n =
00)]* = (1 = P)|Ao|*.

As a result, taking initially some localized wave function
of collective variable &, the wave will propagate through
tunneling region and at the output the amplitudes should follow
to LZ transition probability Eq. (7). Particularly, we inject at
the input modulated wave via oscillating ultimate left end
of the ladder as follows: uo(t) = cos(wt)/ cosh(z/L), wo(t) =
0 or up(t) = 0, wy(t) = cos(wt)/ cosh(¢/L) with L = 80 (L
should be large in order to have small spreading effects) and
monitor wave-packet amplitudes in both chains at the output.
Figure 2 shows that in the range 0 < p < 7/2, numerical
experiment almost repeats theoretical curve of the dependence
of tunneling probability on the carrier wave number of the
injected wave-packet p [see Fig. 2(d)]. Particularly, the process
is strongly symmetric, i.e., injecting the wave packet into
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upper (lower) chain and keeping pinned lower (upper) chain,
tunneling characteristics for both processes are exactly the
same as it should follow from original LZ model. On the
other hand, changing carrier wave number of the injected wave
packet from p = 0.3 to p = 7 /2, one monitors transition from
almost complete switch [Fig. 2(a)] toward almost complete
transmission [Fig. 2(b)], according to general formula Eq. (8).
However, for large wave numbers p =~ 7, the correspondence
is violated because of the reflection processes due to the
following reasons: for the mentioned carrier wave numbers,
the wave packet has a small group velocity and therefore
Fressnell’s reflection is in force, moreover as one goes closer
to the Brillouin zone boundary, the wave packet injected
into the upper chain cannot propagate in the same chain
due to resonance mismatch. As a result, tunneling is no
more symmetric and there appear quantitative and qualitative
differences compared with the original Landau-Zener model.

IV. NONLINEAR CASE

Turning back to the nonlinear case in frames of approximate
description of Egs. (5) and (6) we should deal with quartic
equation for g level distribution Eq. (7). Corresponding curves
in strongly nonlinear regime (defined by condition rF > k)
are displayed in Fig. 3(b) and evidently there is definite
asymmetry: Particularly, in the case of small gradient constants
o, adiabatic regime could be still realized injecting wave packet
into the upper chain, then the system follows the upper curve of
the graph (b) in Fig. 3, while injecting the wave packet into the
lower chain, the dynamics is always diabatic even in vanishing
gradient case o — 0 as it is evident from the lower curve of
the same graph. Further, we will consider only such strongly
nonlinear cases rF > x and examining soliton splitting while
passing through the tunneling region of the ladder.

In order to investigate soliton LZ tunneling process we
employ a weakly nonlinear soliton solution in a single
oscillator chain,

G (£) = w, £= ”__”t, )

cosh (§) A
where G and A are soliton amplitude and width, respectively,
and the latter is defined from the relation 1/A = Gw+/3k3/2.
Let us mention that the envelope of Eq. (9) is associated [22]
with exactly one soliton solution of the nonlinear Schrédinger
equation.

V. NUMERICAL SIMULATIONS AND JUSTIFICATION OF
THEORETICAL MODEL

Now we shall demonstrate all the procedures step by
step on the particular examples presented in Figs. 3 and 4,
where injection of the soliton into upper and lower chains,
respectively, has been considered. In both cases we inject
the soliton Eq. (9) with carrier wave number p = 7 /2 (thus
carrier frequency is w = /2(1 — cos p) = +/2) and we take
interchain coupling and nonlinearity constants as follows:
k = 0.01, k3 = 0.015, while the mass gradient in the tunneling
region is & = 0.00008. First we choose the input signal with a
unit amplitude soliton Eq. (9) in the upper chain, i.e., G§ =1
and Gé = 0. Corresponding surface plot and level distribution
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FIG. 3. (a) surface plot of simulations on the initial model Egs. (1)
and (2) when unit amplitude soliton is injected in the upper chain.
Panel (b) displays adiabatic dynamic associated with this process
where the curves are taken solving quartic Eq. (7) and arrows indicate
that soliton is switching to the lower chain. (c, d) graphs represent
soliton LZ tunneling process. Particularly, in graph (c) the shape of
injected soliton with envelope function Eq. (10) in the upper chain is
shown (while lower input is pinned). In graph (d) we present resulting
envelopes (solid lines) after tunneling derived from model Egs. (5)
and (6). Dashed lines indicate constructed regular soliton envelopes
Eq. (9) with the same width at half maximum as ones plotted by
solid lines. Panel (e) shows formed output signal profiles followed
from direct numerical simulations on Egs. (1) and (2) indicated by
solid lines. Analytically computed envelope according to scheme
Eq. (12) in the lower chain is given by dashed line, while in upper
chain the envelope does not exist since the soliton does not form.
The following parameters are used for the calculations: nonlinearity
coefficient is k3 = 0.015, while interchain constant takes the value
k = 0.01, gradient is « = 0.00008, and we take carrier wave number

p=m/2.

is presented in Figs. 3(a) and 3(b), while explicit form of the
soliton shapes in upper and lower chains is presented in graph
Fig. 3(c). This means that according to the developed scheme
of nonlinear LZ tunneling one has the following values for the
envelope variables A and B from Eq. (4) at the inputn — —oo0:

A¢.,n — —o0) = B(é,n — —o0) =0. (10)

cosh ()’

For each value of variable & the input values of Eq. (10)
undergo evolution following to the nonlinear LZ Eqgs. (5) and
(6), getting after tunneling process the values A(£,n — 00)
and B(§,n — o0), which do not have the regular soliton
shape any more as it is evident from graph Fig. 3(d) (their
shapes in both chains are plotted as solid lines). The obtained
envelope distributions A(§,n — o0) and B(§,n — 00) could
be now considered as initial conditions for the associated
nonlinear Schrodinger equation, and the problem becomes
exactly solvable [23-26]. In particular, one is able to say
whether the soliton will be formed or decayed. Moreover, one
can predict the soliton amplitude and shape at the output of
each chain explicitly in a good approximation.
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FIG. 4. (a) Results of direct numerical simulations when unit
amplitude soliton is injected into the lower chain. Panel (b) displays
diabatic dynamic associated with the process and arrows indicate that
part of the input soliton switches to the upper chain while another part
stays in the same chain. (c) The shape of injected soliton in the lower
chain is shown (while upper input is pinned). Panel (d) represents
resulting envelopes (solid lines) after tunneling derived from model
Egs. (5) and (6). Dashed lines indicate constructed regular soliton
envelopes Eq. (9) with the same width at half maximum as ones
plotted by solid lines. Panel (¢) shows formed output soliton profiles
followed from direct numerical simulations on Egs. (1) and (2)
indicated by solid lines. Analytically computed envelopes according
to scheme Eq. (12) in both chains are given by dashed lines. The
parameters are the same as in Fig. 3.

In this connection, first of all, one should mention that it
is crucial to determine characteristic amplitudes and widths
of the obtained distributions A(&,n — o0) and B(&,n — o0).
Measuring their amplitudes in Fig. 3(d), we get the fol-
lowing values: G{ = Max[A(§,n — 00)] = 0.995 and G =
Max[B(&€,n — o0)] = 0.34, while measuring their width at
half maximum we get Ay = 11 and A} = 18. Next we should
plot the regular soliton profile Eq. (9) characterized by the same
width at half maximum. For our parameters the width of the
regular soliton is defined from the relation 1/A¢ = G+/3k3,
and thus the amplitudes of corresponding regular solitons are
given by the following expressions:

v_ acosh(2) acosh(2)
27 Au3 A3k

The latter regular solitons are displayed in both chains by
dashed lines in Fig. 3. Comparing now the amplitudes GV
and GlL with Gg and G%, respectively, one can make definite
predictions about formation of the solitons in each chain. In
particular, as far as in the upper chain GY/GY < 1/2 the
soliton will not form at the output, while in the lower chain the
soliton formation condition GI/G% > 1/2 is satisfied and its
amplitude could be computed approximately as follows:

=0.73, Gi= =12. (11)

Gt 1
G, = 2G§<—1 - _> =0.8. (12)
GL 2

PHYSICAL REVIEW E 95, 042204 (2017)

Then itis easy to recover the full shape of the solitons according
to Eq. (9), and this gives excellent fit with the results of direct
numerical simulations on initial set of Egs. (1) and (2) as is
evident from Fig. 3(e).

Now we proceed with the similar arguments in order to
understand soliton spitting behavior presented in Fig. 4(a),
where unit amplitude soliton Eq. (9) is injected into the lower
chain. In this case the dynamics follows lower level line of
Fig. 4(b), and therefore the process is strongly diabatic. As a
result, the picture is quite different from what we have seen
in case of soliton injection into the upper chain (see Fig. 3).
Following the above developed procedure, one should measure
characteristic amplitudes of solid line curves in Fig. 4(d).
We get following values: GV = 0.805, G = 0.6, while for
their widths at half maximum we get Ay = 5.6 and Ay = 8.
Next, as in the previous case, we should plot the regular
soliton profiles Eq. (9) characterized by the same width at
half maximum and similar to Eq. (11) calculations give the
regular soliton amplitude values Gg = 1.18 and G4 = 0.82.
Both associated regular solitons are displayed by dashed lines
in Fig. 4. Comparing now the amplitudes G and G with GY
and G%, respectively, one can conclude that soliton formation
condition is fulfilled both in upper and lower chains and the
solitons will form with amplitudes easily determined from the
relation Eq. (12). Thus, we get GY = 0.42 and G* = 0.37.
Then one recovers solitons according to Eq. (9) and compares
with the results of the direct numerical simulations that are
done in Fig. 4(e).

VI. CONCLUSIONS

Concluding, we have interpreted soliton-splitting phe-
nomenon in a gradiented two-channel weakly coupled system
as nonlinear Landau-Zener tunneling and made comparison
between direct numerical simulations and simple analytical
scheme in case of oscillator ladder. This correspondence
becomes worse in the case of large relative mass differences
and/or small soliton propagation velocities. This is due to
Fresnel’s reflection, which has not been taken into account.
The investigations of interplay between Fresnel’s reflection
and Landau-Zener tunneling will be a subject of our further
studies.
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APPENDIX

LZ tunneling region of our system is described by following
equation:

mo(1 — an)iiy = ki(Uns1 + tn-1 = 2u,) + k3(Uns1 — )’
+k3(un—l - un)3 + k(wn - un)v
mO(l + an)wn = kl(wn+1 + wy—1 — 2wn) + k3(wn+l - wn)3

+h3(Wyo1 — wy)® + k(u, —wy).  (Al)
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=k
=i

dimensionless time, t = v n—;i‘o , we obtain

If we redefine parameters, k3 = %k and introduce
(1= aniiy = (st + tn1 = 2040) + k3tn i1 — 1)’
+haunt = )’ + k(wy = uy),

(14 an)i, = Watt + w1 — 2w,) + ka(wyy — w,)?

+hs(Waot — wy)’ +k(y — wy). (A2)
Let us seek solutions of Eq. (2) as follows:
u, = @ei(”’”’”‘) +c.c.,
w, = @ei(‘”’_”’” +c.c.,
& =€ —t), (A3)

where € << 1,v = *£ and we suppose that an < €,k ~
w ~Y
€, k3 ~ €.
In the zero approximation over €, we have a dispersion

relation:
w? = 2(1 — cos p), (A4)

while in the linear approximation over €, we get

L0A / 2
_la_zanA—K(B—A)+2V|A| A,
n
0B / 2
—i— = —a'nB—Kk(A—B)+2r | B|" B,
on
2 k 3
o = a.w . oKk=z——, r==(cosp—1)ks.
2sin p 2sin p 4

(AS5)
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With a phase transformation, A/B = A/Be'*", we arrive
to the equations
0A

—i— =a'nA—kB+2r| A A,
on

0B , )
—i— = —a'nB—«xA+2r| B | B.
on
This equation coincides with Eqs. (5) and (6) from the
main text.
Now let us define adiabatic levels. Substituting A/B =
A/Be!B+Pm into Eq. (6) (where F = |A|?> + | B|? is constant
for fixed &), we get the following system of equations:

BA=anA—«kB+r(A*>—|B»A,

(A6)

BB=—-anB—«xA—r(|A|?—|B)B. (A7)
From Eq. (7) we can determine
!
(AP BP= 21T (A8)
B—rF
combining Eqgs. (7) and (8), we have
a'np
— A B =0,
(8575 )4+
A+ B+ @B g _g (A9)
K ﬁ — r]: = V.

Equations (9) are linear homogenous equations for A and B.
We have nontrivial solutions of Eq. (9) if

(@np)* = (B> — kHrF — ).

This quartic equation determines adiabatic levels B for
fixed n.
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