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Scaling dependence and synchronization of forced mercury beating heart systems
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We perform experiments on a nonautonomous Mercury beating heart system, which is forced to pulsate using
an external square wave potential. At suitable frequencies and volumes, the drop exhibits pulsation with polygonal
shapes having n corners. We find the scaling dependence of the forcing frequency νn on the volume V of the
drop and establish the relationship νn ∝ n√

V
. It is shown that the geometrical shape of substrate is important for

obtaining closer match to these scaling relationships. Furthermore, we study synchronization of two nonidentical
drops driven by the same frequency and establish that synchrony happens when the relationship n2/n1 = √

V2/V1

is satisfied.
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I. INTRODUCTION

Liquid of a spherical drop or a circular column in shape
undergoes dynamical motion like vibration due to the surface
tension and inertia with or without external forces. For the
dynamical properties of liquid, various attempts have been
made to determine the eigenmodes and eigenfrequencies
of oscillations. According to Rayleigh [1], the theoretically
predicted resonance frequency for oscillating liquid drop
(spherical in shape) is

νn =
[
n(n − 1)(n + 2)γ

3πρV

]1/2

, (1)

where νn is the frequency of the nth eigenstate of the
oscillations, ρ is the density, V is volume, and γ is the
surface tension of the liquid drop. Rayleigh developed his
theory on oscillating water jets. Oscillations can be observed
in various natural, chemical, mechanical, electrical, biological,
and electrochemical systems. Mercury beating heart (MBH)
is one such electrochemical system, where oscillations of a
mercury drop occur. In this work, we are interested in studying
the MBH system and testing if any part of the Rayleigh’s
equation [Eq. (1)] is relevant to the dynamics of the oscillating
drop.

A. MBH system

Oscillations in an electrochemical system [2–5] can occur
when the system is far from the equilibrium. An MBH system
is one such system which shows chemomechanical oscillations
of the mercury drop. The mechanical oscillations (due to the
imbalance of surface tension forces and electrostatic charges)
of the mercury drop occur around the equilibrium point of
oscillations. The electrochemical oscillations which drive the
mechanical oscillations (by periodic charging and discharging)
occur far from equilibrium. The system requires a mercury
drop placed in a concave vessel and covered with an aqueous
acidic or basic solution. Due to the interactions between water
molecules, electrolyte ions, and mercury surface, an electric
double layer is formed which is related to the distribution of
electric charges over the mercury drop surface. In the presence
of the strong oxidant in an acidic solution, an iron nail is used to
trigger the oscillations of the mercury drop, where the charge
distribution and surface energy of the drop change. Oscillations

of the mercury drop in the MBH system can be visually
observed, and, if performed carefully, the experimental results
are fairly reproducible.

The original MBH system, observed by Kühne, was
subsequently reported experimentally by Lippmann [6], who
proposed the electrocapillarity effect as the cause of the oscil-
lations of the mercury drop. The dynamical behavior entails
electrochemical reactions coupled with the hydrodynamic
motion of the mercury. However, the detailed mechanism of
the oscillations in the MBH system was not well established
in this work.

Joel et al. [7] analyzed the reactions and mechanisms of the
MBH system with the mercury in a glass tube configuration
and covering it with both acidic and basic solutions. It was
realized that the formation and removal of the surface film
(e.g., Hg2SO4) is the key element for the oscillations of the
mercury drop. Oscillations depend on the nail position and on
the chemical composition of the solution.

Smolin and Imbihl [8] carried out the study of MBH hy-
drodynamics modes in linear ring-shaped geometries varying
the potential of the metal tip connected to the mercury drop.
Olson et al. [9] described the oscillations in the MBH system,
replacing the chemical driving force in the system (studied
by Joel et al. [7]) by a power supply (voltage pulse). They
conducted the experiments in a three-electrode MBH system
where the external potential was controlled by a potentiostat
and found concentric circles of different modes (lobe numbers
or oscillations shape) of the oscillating mercury drop. In the
work of Castillo-Rojas et al. [10], they found different modes
of oscillation, such as a circle, pentagon, hexagon, and 8- and
16-fold stars in a watch glass geometry using the γ irradiation
to generate the species Hg2+

2 .
Dinesh et al. [11] introduced the nonautonomous dynamics

of the MBH system, which is different from the previous
experiments. The system was forced periodically with a
square wave potential in the absence of any oxidizing agent
while the mercury drop is covered with an acidic solution
(H2SO4). They observed various shapes (elliptical, triangular,
pentagonal, hexagonal, and multilobed star shapes) of the
oscillating mercury drop as a function of frequency of the
applied potential and found a linear relation between the lobe
number n and frequency νn, n ∝ νn. Subsequently, the MBH
systems dynamics have been studied experimentally [12–15]
under different conditions.

2470-0045/2017/95(4)/042202(7) 042202-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.042202


ANIMESH BISWAS, DIBYENDU DAS, AND P. PARMANANDA PHYSICAL REVIEW E 95, 042202 (2017)

B. Synchronization

The coupling of two or more oscillators shows interesting
behavior of nonlinear systems like synchronization. Synchro-
nization is the adjustment of the rhythms of oscillators due to
the interactions between them [16–18]. Synchronization can
also occur in an ensemble of oscillators and is usually studied
in self-sustained, periodic, and chaotic systems (oscillators).

Synchronization among the oscillators could be weak,
intermediate, or strong and is analyzed using the time evolution
of the observables recorded from the interacting oscillators.
Synchronization phenomena have been classified mainly into
four types, no synchronization, phase synchronization, lag
synchronization, and complete synchronization [19,20]. In no
synchronization, the oscillations of coupled oscillators do not
show any correlation in the phases or in the amplitudes of the
time series of the coupled systems. In phase synchronization,
the temporal variation of their phases remains same, but
their amplitudes vary. Oscillators could have a constant phase
difference, but the same amplitudes at the comparatively high
coupling strength, and that is defined as lag synchronization.
Finally, the complete synchronization can be observed wherein
the activities of the coupled oscillators have identical phases
and amplitudes.

Synchronization depends on the coupling strength and
the way the oscillators are coupled. The information can
flow in one direction or in both directions between coupled
oscillators. In unidirectional coupling, information transfer
occurs in one direction where the first oscillator influences
the second oscillator only and remains unaffected by the
second one. In bidirectional coupling, information flows in
both directions between the two oscillators. In another kind
of synchronization, the oscillators are driven by a common
forcing frequency. Synchronization in various autonomous
(physical, chemical, mechanical) systems is a well-studied
phenomena in diverse fields. Synchronization of MBH systems
has previously been reported by Dinesh et al. [21,22].

C. Outline of Results

In the present work, we examine the dynamics of the
nonautonomous MBH system introduced by Dinesh et al. [11].
Two sets of experiments are performed. In the first part we
try to understand the scaling dependence of frequency νn of
the external applied potential on volume V and then on lobe
number n. Rayleigh’s equation [Eq. (1)] suggests that νn ∝ 1√

V

and Dinesh et al. [11] work found that n ∝ νn. We checked
the combined validity of the two relations in the forced MBH
system:

νn ∝ n√
V

. (2)

In the second part, the synchronization of two nonidentical
nonautonomous MBH oscillators (different volumes and lobe
numbers) was studied. The goal here is to synchronize two
nonautonomous MBH oscillators by applying the same forcing
potential even when they are exhibiting different lobe numbers
of oscillations. It is observed that, when the MBH systems are
synchronized, the lobe numbers (n1,n2) and volumes (V1,V2)
follow Eq. (3) as given below. We note that our system has
bidirectional coupling and shows phase synchronization.

FIG. 1. (a) A view of the experimental setup showing the glass
plate, mercury drop and the electrodes. (b) The curved glass substrate.
(c) The conical Teflon substrate with a linear radial profile.

II. SINGLE-DROP OSCILLATION: EXPERIMENTAL
SETUP AND UNDERLYING CHEMICAL REACTIONS

In order to test the relation in Eq. (2) we study the various
lobe numbers of oscillations (n) of a single mercury drop for
different volumes (V ) and external voltage frequencies (νn) on
two different substrates (glass and Teflon).

A mercury drop is placed on a glass or Teflon substrate
of diameter of 15 cm. The drop is covered by 1 M H2SO4

acidic solution. The system is driven by an external oscillatory
voltage of a square waveform; this is applied through the
contact of the exposed tip of a platinum wire covered with
parafilm with the mercury drop. This small tip is placed such
that it touches only the center position of the mercury drop
and not the acidic solution. One iron nail is placed vertically
into the acidic solution and far from the mercury drop (i.e., not
touching it even as it oscillates), serving as an electrode. To
provide square wave potential, we used a function generator
(Tektronix, AF 3021B) with 10 Vpp magnitude. Various parts
of the experimental setup are shown in Fig. 1(a). The two
substrates, the glass and Teflon, are used and are schematically
shown in Figs. 1(b) and 1(c), respectively. The distinction of
the conical surface of Teflon [Fig. 1(c)] as compared to glass
[Fig. 1(b)] is that the angle of tangent to the surface is the
same at all contact points between the substrate and the drop,
and this helps in getting cleaner results for the system using
Teflon.

Let us briefly discuss the redox reactions involved in
the MBH process. In the nonautonomous MBH system, in
the presence of the applied external potential between the
mercury drop and iron electrodes and dissolved O2, oxidation
and reduction processes occur cyclically. Due to oxidation,
charges accumulate on the drop surface and increase its area,
simultaneously flattening it. This charging is followed by
a discharging process, associated with a reduction reaction
during which the drop contracts back to its initial shape.
The competition between the forces of surface tension and
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FIG. 2. Logarithmic plot of observed radius R of the mercury
drop vs the drop volume V on (a) the glass plate and (b) the Teflon
plate. Solid lines show power law fits to both the figures with power
0.5.

electrostatic charges during the charging and discharging of
the drop leads to mechanical oscillations of the drop. The
reactions are as follows:

a. The oxidation cycle:
At anode (Hg): 2Hg0 −→ Hg2+

2 + 2e−
At cathode (Fe): O2 + 2H+ + 2e− −→ H2O
Hg2+

2 is the free ion in the solution, and it combines with the
sulfate ion [SO2−

4 (aq)] to form the insoluble Hg2SO4 film on
the mercury surface:
Hg2+

2 + SO2−
4 (aq) � Hg2SO4 (insoluble)

b. Reduction cycle:
At anode (Fe): Fe −→ Fe2+ + 2e−
At cathode (Hg drop): Hg2+

2 + 2e− −→ 2Hg0

The above redox reactions lead to oscillations of the mercury
drop which continue until all H+ ions are converted to H2O.

The shape of mercury drop is not spherical as it flattens
under gravity on the substrate (glass or Teflon plate). Rayleigh
considers spherical drop in his work, so the volume V ∝ R3

in Eq. (1), where R is the radius of the undisturbed drop. In
this work, the mercury drop is roughly cylindrical in shape
so that volume V ∝ R2. Experimental evidence for this is
presented in Fig. 2 for both the glass and teflon plates. The
images of the drops were taken from the top. The radii of the
drops were calculated using an image-processing method in
Matlab.

It was shown in Dinesh et al. [11] that in a nonautonomous
MBH system various polygonal pulsating drops are produced
as a function of frequency of the applied voltage for a fixed
volume. Here for completeness, four such shapes are shown in
Fig. 3. Depending on the number of sharp corners, each shape
is labeled by a lobe number n. In the Figs. 3(a)–3(d) drops with
n = 2, 3, 5, and 6 are shown. Next it is shown that the lobe
numbers vary with the simultaneous variation of the external
voltage frequency as well as the drop volume.

Results

In Dinesh et al. [11] it was shown that the lobe numbers of
the pulsating drop increases linearly with the frequency of the
applied voltage. Note that this is different from the expression
of Rayleigh [1] [Eq. (1)]. In the present work, the simultaneous
dependence of lobe number on volume and frequency is
examined. The volume of the mercury drop was varied within

FIG. 3. Shapes of oscillating mercury drops: (a) elliptical (n =
2), (b) triangular (n = 3), (c) pentagonal (n = 5), (d) hexagonal (n =
6).

the range 1–10 ml in steps of 1 ml. Subsequently, the frequency
of the applied voltage was changed slowly in steps of 0.2 Hz.
We waited to see that for a chosen volume of the drop V ,
external frequency νn stabilized a pulsation of lobe number n.
For three such n values a logarithmic plot of the frequency
νn against volume V was plotted (Fig. 4). Reasonable power
law dependences ∼V −0.5 are seen, the data for Teflon being
closer to the theoretical fit compared to the glass substrate.
Furthermore, the simultaneous dependence is presented by
plotting the scaled variable νn/n against V in Fig. 5. Data
collapse is seen, confirming the power law expectation from
Eq. (1). Thus the volume dependence of νn is indeed like in
Rayleigh [1], although the lobe number dependence is distinct.

III. SYNCHRONIZATION OF TWO COUPLED
NONIDENTICAL MBH OSCILLATORS

Synchronization of multiple coupled but identical au-
tonomous MBH oscillators (i.e., drops of equal volume,

FIG. 4. Logarithmic plot of frequency νn vs mercury drop volume
V for n = 3 (•), 5 (�), 6 (�), for (a) the glass plate and (b) the Teflon
plate. Solid lines show the power law fits with power −0.5.
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FIG. 5. Logarithmic plot of frequency or lobe number (νn/n) vs
mercury drop volume V for n = 3 (•), 5 (�), 6 (�), for (a) the glass
plate and (b) the Teflon plate. Solid line shows the power law fits with
power −0.5.

pulsating with same lobe number) have been studied [21,22].
Here the goal is to explore the possibility of synchronization
of two nonidentical oscillators (i.e., drops of different volume,
pulsating with different lobe numbers). The two MBH oscilla-
tors are forced with the same forcing potential (same frequency
and amplitude) from the two different function generators prior
to the coupling and subsequently coupled through a variable
resistance box, where the drop volume of the one oscillator
is kept fixed, while the other is varied. It is found that for
certain specific values of the volume of the second oscillator,
nonidentical pulsating lobe numbers of the two oscillators
synchronize.

The experimental setup (schematic presented in Fig. 6) of
two coupled MBH oscillators is shown in Fig. 7. The substrate,
reagents, electrodes, and external potential are identical to the
single-drop system described in the previous section. The new
thing is the bidirectional coupling via a resistance box. The
coupling resistance is kept very low (15–70 �) to ensure that
the coupling is strong.

In the experiment, to begin, the frequencies of external
driving potential of the two oscillators are set to be equal to a
certain value. For example, the results in the next subsection
are presented for ν(1) = ν(2) = 7.3 Hz (superscripts stand for
oscillator numbers 1 and 2). Then the volume V1 of the first
drop is adjusted so that it pulsates at a certain lobe number
n1 of our choice. From Eq. (2) it would be expected that
ν(1)

n1
∝ n1/

√
V1. Then the volume V2 of the second drop is

varied incrementally in a small steps of 0.1 ml. We wanted to
see if a volume V2, at which a certain pulsating lobe of lobe
number n2 stabilizes for the second drop in synchrony with the

FIG. 6. Schematic diagram for the bidirectional coupling.

FIG. 7. View of the experimental setup with two coupled non-
identical oscillators. Different shapes of the drops, triangular (n1 = 3)
and elliptical (n2 = 2), may be seen.

pulsation of the first drop satisfies the desired relationship:
(

V2

V1

)1/2

= n2

n1
. (3)

This is a reasonable expectation given that in isolation the
second drop has ν(2)

n2
∝ n2/

√
V2, and as the frequency is set

to ν(2) = ν(1). Yet it is interesting to note that synchronization
of the two drops in nonidentical conditions is being tested.
The experimental observations are presented below, and to
characterize the extent of synchrony a suitable quantitative
measure is defined and used. It will be seen that as V2 is
increased, higher lobe numbers (n2) appear on the second
drop, and for specific rational numbers (n2/n1) where Eq. (3)
is satisfied, enhanced synchrony is observed.

Results

Experimentally, the oscillation of the two drops are char-
acterized by the time-dependent distance D of a polygonal
corner from the center of the drop. Videos of the oscillating
drops are recorded, and images are extracted from the videos
using online software (Free Video to JPG converter v. 5.0.63
build 913). The values of D of the two drops are plotted as
a function of camera frame number in Fig. 8. The intervals
between the frame numbers are 0.033 s. As stated above
ν(1) = ν(2) = 7.3 Hz was used. n1 = 5 was set by choosing
V1 = 3.6 ml. Then the volume V2 is varied over the range
0.1–10 ml in steps of 0.1 ml. In Figs. 8(a)–8(i) the first lobe
shows regular oscillation of the distance D corresponding
to its lobe number n1 = 5. In contrast, the lobes of the
second oscillating drop show the oscillations in the distance
D with a concentric circular mode [Figs. 8(a), 8(e), and 8(f)],
irregular mixed lobe numbers [Figs. 8(c) and 8(h)], and with
well-defined lobe numbers n2 in synchrony with the first
drop [Figs. 8(b), 8(d), 8(g), and 8(i)]. It can be observed the
synchrony appears, disappears, and reappears as V2 is varied.

To quantify the synchronization behavior, cross-correlation
coefficient (CCC) is measured between the oscillations of the
two distances D

(1)
j and D

(2)
j at every frame number j defined

as follows:

CCC =
∑

j

(
D

(1)
j − D̄(1)

)(
D

(2)
j − D̄(2)

)
√∑

j

(
D

(1)
j − D̄(1)

)2(
D

(2)
j − D̄(2)

)2
, (4)

where D̄(1) and D̄(1) are the averages of D
(1)
j and D

(2)
j

respectively.
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FIG. 8. Radial distance D of the two mercury drops on glass
plates, plotted as a function of the frame number j (equivalent to
time series). The nine subfigures (a)–(i) correspond to the different
points indicated in the curves in Fig. 9. Applied frequencies are
ν1 = ν2 = 7.3 Hz and V1 = 3.6 ml. The signals D(1), D(2) for the
first and the second drops in all subfigures are denoted by � and
�, respectively. The different subfigures correspond to the following
pairs of lobe numbers: (a) n1 = 5, n2 = 0 (circular), (b) n1 = 5, n2 =
2, (c) n1 = 5,n2= mixed lobe numbers, (d) n1 = 5, n2 = 3, (e) n1 =
5, n2 = 0 (circular), (f) n1 = 5, n2 = 0 (circular), (g) n1 = 5, n2 = 5,
(h) n1 = 5, n2= mixed lobe number, (i) n1) = 5, n2 = 6.

CCC is plotted as a function of
√

V2/V1 in Figs. 9(a)–9(b).
Corresponding to Fig. 8(a) the CCC value is found very low
in Fig. 9(a). Corresponding to Fig. 8(b), the CCC is found to
a value to peak, but the

√
V2/V1 value is slightly less (≈0.3)

than the ratio n2/n1 = 2/5 as expected from Eq. (3). Having

FIG. 9. CCC vs
√

V2/V1 for (a) n1 = 5, V1 = 3.6 ml, ν1 = ν2 =
7.3 Hz, on a glass substrate, and (b) n1 = 5, V1 = 3 ml, ν1 = ν2 = 8.2
Hz, on a Teflon substrate.

performed a similar experiment with the Teflon substrate it is
found [Fig. 9(b)] that the corresponding peak is at

√
V2/V1 ≈

0.4; thus Eq. (3) works almost perfectly. This is followed by a
dip in CCC corresponding to Fig. 8(c). The next peak appears
at

√
V2/V1 ≈ 0.5 for the glass substrate [Fig. 9(a)], which is

again slightly less than the expected ratio n2/n1 = 3/5 from
Eq. (3), while for the Teflon geometry the peak position is
almost at

√
V2/V1 ≈ 0.6 [see Fig. 9(b)]. It should be noted that

we never found a stable oscillatory shape of lobe number n2 =
4, so there is no peak at

√
V2/V1 = 4/5. Again a dip is seen

corresponding to Fig. 8(e) and then the next peak at
√

V2/V1 ≈
1.0 for the glass as well as the Teflon substrate and which is the
same as n2/n1 = 5/5 = 1 (the case of synchrony of identical
oscillators). Finally, again the CCC plunges corresponding to
Fig. 8(h). The next peak [Fig. 8(i)] expected according to
Eq. (3) at

√
V2/V1 = n2/n1 = 6/5 is seen at values ≈1.3 and

≈1.2 for the glass and Teflon substrates, respectively.
Figure 9 describes a single experimental run obtained by

incrementally increasing the volume V2 of the second drop.
Many such experimental runs were performed, and the peaks
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FIG. 10. Plot of lobe number ratios (n2/n1) of the oscillating
drops of the two oscillators vs

√
V1/V2 on (a) a glass substrate and

(b) a Teflon substrate. The solid lines correspond to straight lines with
unit slopes.

in CCC obtained at various values of
√

V2/V1 along with their
corresponding lobe numbers ratios n2/n1 gave us a data set.
All the points in this data set are plotted against a straight line
with unit slope [reflecting Eq. (3)] as shown in Figs. 10(a)
and 10(b) for the glass and Teflon substrates, respectively. For
Teflon, the match is nearly perfect, while for glass it is close.

IV. CONCLUSIONS

Two sets of experiments were performed on MBH systems,
where an electrochemical redox reaction produces pulsating
drops with polygonal shapes. The driving frequency νn, lobe

number n, and volume V of such a drop has interesting power
law relationships among themselves. A dependence of n ∝ νn

was known from an earlier experiment [11]. The first goal of
the present paper was to explore the scaling relationship of
frequency (νn) to volume (V ). In this regard, it was verified
for a single-drop oscillation, νn ∝ 1/

√
V [Eq. (2)] similar

to the prediction of Rayleigh [Eq. (1)]. In the second set
of experiments, the synchrony of two coupled nonidentical
mercury drop systems driven at the same frequency was
demonstrated. It was found that precisely close to where the
relationship

√
V ∝ n [see Eq. (3)] is satisfied for both the

drops, there is an enhancement (peak) of cross-correlation
coefficient (CCC), implying enhanced synchronous activity
(Fig. 9). Thus synchronization follows the scaling relation in
Eq. 3 (Fig. 10). Moreover, the effect of substrate geometry
[Figs. 1(b)–1(c)] on the algebraic dependence on volume was
also studied. In Figs. 5, 9, and 10, we compared the results
for a curved glass substrate to a Teflon substrate with a
linear shape in the radially outward direction. It was found
that the experiments on the Teflon substrate give much better
convergence to the scaling relationship on volume. This could
be because the Teflon surface provides same tangential contact
direction to drops of different sizes and thus ensures some
uniformity, as compared to the curved glass surface. At least,
experimentally, this uniformity seems to matter in producing
cleaner scaling results.

Real systems are not exactly identical due to the inherent
parameter mismatches in the systems. So it is important and
interesting to study the synchronization between the noniden-
tical systems. In this work, we came up with an approach to
achieve the synchonization behavior between two nonidentical
nonautonomous MBH oscillators. As Figs. 8 and 9 indicate, a
coupled state of two MBH oscillators with different stable os-
cillating lobe numbers of the mercury drops and different drop
volumes can indeed be synchronized. To the best of our knowl-
edge this is the first time the study of synchrony has been done
on a forced chemical system. Furthermore, the synchronization
of two nonidentical systems exhibiting different dynamical be-
havior is indeed challenging and a novel problem. This is pre-
cisely due to the fact that coupling is seldom able to dominate
the forcing term. In our experiment, we were able to exploit
the scaling relation to devise the situation where coupling
could indeed overcome the forcing term and consequently two
nonidentical forced systems could attain synchronization.
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