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We investigate the defocusing coupled nonlinear Schrödinger equations from a 3 × 3 Lax pair. The Darboux
transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions
including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue
wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze
these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained
solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly
unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear
waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related
fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation, as an im-
portant physical and completely integrable model, appears
in many fields of science such as nonlinear optics [1–3],
hydrodynamics [4], plasma physics [5], molecular biology [6],
Bose-Einstein condensates [7], and even finance [8,9]. The
focusing NLS equation has been shown to possess bright
solitons with zero initial condition and breather solutions with
plane-wave initial condition by using the inverse scattering
method or Darboux transformation [10]. In particular, rogue
wave (RW) solutions, as the parameter limits of breather
solutions, of the focusing NLS equation had been presented in
the rational form in 1983, which was also called the Peregrine
soliton. Darboux transformation, originating from the work of
Darboux in 1882 on the Sturm-Liouville equation, is a pow-
erful method to derive some types of localized wave solutions
of many nonlinear integrable systems [11]. More recently,
higher-order RWs of the focusing NLS equation have been
found by using the modified Darboux transformation [12,13].
Moreover, the nonautonomous rogue waves (rogons) were
presented for the NLS equation and its extensions with varying
coefficients [14]. After that, the generalized Darboux transfor-
mation [15] was used to investigate separable higher-order RW
solutions of the focusing NLS equation and other nonlinear
integrable equations [16]. Furthermore, another generalized
perturbation Darboux transformation was also presented to
find higher-order RW solutions of integrable nonlinear wave
equations [17,18].

The regular rogue wave solutions of the defocusing NLS
equation were not found yet since its rational solutions
were shown to have the singular points up to now. The
two-component NLS equations are of the more complicated
structures than the scalar NLS equation since their Lax systems
are distinct. The two-component focusing NLS equations have
been shown to admit the vector RW solutions [9,19,20]. The
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two-component defocusing NLS equations have also been
shown to admit the first-order vector RW solutions [21], which
differ from the scalar defocusing NLS equation and may be
due to the interactions of different components. Recently, the
mixed two-component NLS equations have been shown to
admit the RW solutions and dark-dark-rogue wave solutions
by using the Darboux transformation [22].

In this paper, we consider the defocusing coupled nonlinear
Schrödinger (dCNLS) equations in dimensionless form,

ipt + pxx − 2(|p|2 + |q|2)p = 0,
(1)

iqt + qxx − 2(|p|2 + |q|2)q = 0,

where p(x,t) and q(x,t) denote the complex amplitudes of
two wave packets and the subscripts stand for the partial
derivative with respect to the variables. System (1) usually
describes the pulse propagation in a long normally dispersive
optical fiber with random birefringence [23,24]. System (1)
can also modulate the interaction between waves of different
frequencies and between orthogonally polarized components
in nonlinear optical fibers [1,2,25]. System (1) was used to
describe the electromagnetic wave propagation in isotropic and
homogeneous nonlinear left-handed materials [26]. System (1)
gave a suitable model for crossing sea waves within the
hydrodynamics context [27]. Moreover, system (1) can also
describe the evolution of a two-component Bose-Einstein
condensate composed of different hyperfine states in the case
of an elongated trap (the aspect ratio of the condensate is
small enough and the densities of both components are low
enough) [28,29].

System (1) should first be deduced by Benney and
Newell [30] from two interacting nonlinear wave packets in a
dispersive and conservative system. After that, Manakov [31]
showed that system (1) was completely integrable. The
dCNLS system has been shown to possess the fundamental
exploration of complex coupled soliton dynamics (e.g., dark-
dark and dark-bright soliton pairs) [32–38]. Recently, some
first-order RWs of system (1) have been found using the
Darboux-dressing construction [21,39]. However, it is still
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an important subject to explore new wave structures (e.g.,
RWs and interactions of RWs and solitons) and to further
study their dynamical behaviors. It is known that the Darboux
transformation for the dCNLS equations is not positive or
negative definite. In this work, we will extend the idea [22]
to present a unified N -fold Darboux transformation such that
generalized localized wave solutions and interactions between
solitons, breather solutions, and RWs are found for the dCNLS
equation (1).

This paper is organized as follows. In Sec. II, we present
the N -fold Darboux transformation for the dCNLS equations.
In Secs. III–V, we choose the plane-wave solutions as the seed
solutions to find the new solutions of the dCNLS equations by
means of the obtained N -fold Darboux transformation. These
obtained solutions contain dark-dark and bright-dark solitons,
breather-breather solutions, and different types of new vector
rogue wave solutions, as well as interactions between distinct
types of localized wave solutions. Moreover, we analyze these
solutions by means of parameters modulation. In Sec. VI, we
analyze some respective wave structures and their dynamical
behaviors by means of numerical simulations such that nearly
stable and strongly unstable solutions are found. Finally, some
conclusions and discussions are given in Sec. VII.

II. N-FOLD DARBOUX TRANSFORMATION AND
SOLUTIONS VIA THE DETERMINANTS

The dCNLS system (1) admits a Lax pair [31],

�x = U�, U (λ,P ) = λJ + P,

�t = V �, (2)

V (λ,P,Px) = 2iλ2� − 2λP + i�(P 2 − Px),

where � = �(x,t) is an eigenfunction, λ is a complex
isospectral parameter, J = −i�,� = diag(−1, − 1,1), and
the potential matrix is

P =
⎛
⎝ 0 0 p

0 0 q

p∗ q∗ 0

⎞
⎠,

where the star denotes the complex conjugation. The compat-
ibility condition of the Lax pair (2) just generates the dCNLS
equations (1). Inspired by the idea in [40,41], we can verify
that system (1) admits the following DT.

Theorem 1. Let �1 be a column vector solution for the Lax
pair (2) with the initial potential function P and λ = λ1; then
the unified Darboux transformation of system (1) is given by

P [1] = P + [G,J ], (3)

where G = (λ∗
1−λ1)y1y

†
1�

y
†
1�y1

, with y1 = ν1(x,t,λ)�1, ν1(x,t,λ) �= 0

being an arbitrarily complex function, and † representing the
conjugate transpose.

Similarly, we also find the N -fold Darboux transformation
of the dCNLS equation (1).

Theorem 2. Suppose �j ’s are solutions of the Lax pair
(2) with the initial solution (p,q) and distinct spectral
parameters λ = λj , (j = 1,2, . . . ,N ) and yj = νj�j , where
νj = νj (x,t,λj ) is some function of x and t ; then the N -fold

DT of system (1) is given by

p[N ] = p − 2i

∣∣M̂ Y
†
3

Y1 0

∣∣
|M̂| , q[N ] = q − 2i

∣∣M̂ Y
†
3

Y2 0

∣∣
|M̂| , (4)

where the Darboux matrix T = I − YM̂−1(λI − S)−1Y †�,
S = diag(λ∗

1, . . . ,λ
∗
N ), M̂ = [y†

i �yi/(λj − λ∗
i )]N×N , yj is

the j th column of Y , and Yj is the j th row of Y .
Particularly, if we choose the plane-wave seed solution (6),

νj = e−i[λj x+2(c2
1+c2

2−λ2
j )t],

yj = νj�j = K

⎛
⎝�j

ψj

φj

⎞
⎠,

⎛
⎝�j

ψj

φj

⎞
⎠ = νj M̂Nlj ,

j = 1,2, . . . ,N,

where K,M̂,N are given in Sec. III, lj is column vector, then
we can reduce DT (4) to the form

p[N ] = c1

∣∣ M̂
2i

+ φ†�
∣∣∣∣ M̂

2i

∣∣ eiθ1 , q[N ] = c2

∣∣ M̂
2i

+ φ†ψ
∣∣∣∣ M̂

2i

∣∣ eiθ2 , (5)

where � = (�1, . . . ,�N ), ψ = (ψ1, . . . ,ψN ), and φ =
(φ1, . . . ,φN ).

For the given initial solution (p,q), one can obtain the exact
solutions of system (1) in terms of the above-obtained DT. In
this paper, we restrict Im(λ1) � 0.

III. LOCALIZED WAVE SOLUTIONS FOR Im(λ1) > 0

We now begin with the “seed” solution of system (1) in the
form of plane waves,

p(x,t) = c1e
iθ1 , q(x,t) = c2e

iθ2 ,

θj (x,t) = ajx − [
a2

j + 2
(
c2

1 + c2
2

)]
t (j = 1,2), (6)

to obtain localized solutions of system (1) by using the above-
obtained DT, where c1,2 are amplitude, a1,2 are real wave
numbers, the phase velocity is aj + 2(c2

1 + c2
2)/aj , and the

group velocity is 2aj . The key and hard problem in the DT is
how to find the proper eigenfunction � of the Lax pair (2).

The Lax pair (2) with the seed solution (6) and λ = λ1 is a
linear system with variable coefficients for �, which may be
difficult to be solved directly. Following the idea [19], we can
convert the Lax system into one with constant coefficients,

	1x = −iU0	1,
(7)

	1t = i
[
U 2

0 + 2λ1U0 + (
2c2

1 + 2c2
2 − λ2

1

)
I
]
	1,

by a gauge transformation �1 = K	1, where

U0 =
⎛
⎝a1 − λ1 0 ic1

0 a2 − λ1 ic2

ic1 ic2 λ1

⎞
⎠,

K =
⎛
⎝eiθ1

eiθ2

1

⎞
⎠.

In the following we will discuss the solutions of the Lax
Eq. (7) for two cases.
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A. For the case a1 = a2

We further make the matrix transformation for Eq. (7),

	1 = M
1, M =

⎛
⎜⎝

ic1
χ−a1

ic1
μ−a1

−c2

ic2
χ−a1

ic2
μ−a1

c1

1 1 0

⎞
⎟⎠, (8)

where χ and μ are two distinct roots of the quadratic equation

x2 − (a1 + 2λ1)x + 2a1λ1 + c2
1 + c2

2 = 0; (9)

then Eq. (7) reduces to the Lax system with the eigenmatrices
being the diagonal matrices


1x = −iK0
1,
(10)


1t = i
[
K2

0 + 2λ1K0 + (
2c2

1 + 2c2
2 − λ2

1

)
I
]

1,

where K0 = M−1U0M = diag(χ − λ1,μ − λ1,a1 − λ1), with
χ �= μ. The Lax system (10) can easily be solved to get its
solutions N = diag(e−iξ (χ),e−iξ (μ),e−iξ (a1)), with ξ (z) = (z −
λ1)x − [z2 + 2(c2

1 + c2
2 − λ2

1)]t .
Thus, the fundamental solution of system (2) can be found

as �1 = KMN.

Lemma 1 [42]. Let A be an n × n Hermitian matrix and the
leading principal minor of order j be not zero, denoted by Di .
Then A and diag(D1,

D2
D1

, . . . , Dn

Dn−1
) are congruent.

Proof. When n = 1, the Lemma holds. Suppose any
(n − 1) × (n − 1) Hermitian matrix A has the conclusion.
In the following, we show that the n × n matrix also
has the same conclusion. The n × n matrix A can be
represented as A = (

An−1 αn−1

α
†
n−1 an,n

), where An−1 is the (n −
1) × (n − 1) Hermitian matrix and αn−1 is a n − 1 di-
mensional column vector. an,n is a scalar value. By the
assumption, there exists an (n − 1) × (n − 1) invertible ma-
trix Sn−1 satisfying S

†
n−1An−1Sn−1 = �n−1, where �n−1 =

diag(D1,
D2
D1

, . . . ,
Dn−1

Dn−2
). Let Sn = (Sn−1 −Sn−1�

−1
n−1S

†
n−1αn−1

0 1 ),

then S
†
nASn = (�n−1 0

0 bn
), where bn = 1 − α

†
n−1Sn−1�

−1
n−1

S
†
n−1αn−1. Taking the determination, we can obtain bn =

|detSn|2 Dn

Dn−1
. Thus, A and diag(D1,

D2
D1

, . . . , Dn

Dn−1
) are congru-

ent. This completes the proof of the lemma. �
Notice that � is either a positive-definite or a negative-

definite matrix, so y
†
1�y1 may be zero for some y1. We will

consider how to choose y1 to make sure y
†
1�y1 �= 0. Let l be

a nonzero vector l = (l1,l2,l3)T and ν1 = e−i[λx+2(c2
1+c2

2−λ2)t].
Then we choose y1 in the form y1 = ν1�1l = ν1KMNl such
that we have

y
†
1�y1 = (ν1�1l)

†�(ν1�1l) = (ν1Nl)†(M†�M)(ν1Nl),

where

M†�M =

⎛
⎜⎜⎝

2(λ∗
1−λ1)

χ∗−χ

2(λ∗
1−λ1)

χ∗−μ
0

2(λ∗
1−λ1)

μ∗−χ

2(λ∗
1−λ1)

μ∗−μ
0

0 0 −(
c2

1 + c2
2

)
⎞
⎟⎟⎠,

Thus, y
†
1�y1 is a complex quadratic form about matrix

M†�M . Thus, by Lemma 1, M†�M and diag [Im(χ ),
Im(μ),−1] are congruent. Moreover, Im(χ )Im(μ) < 0. With-
out loss of generality, we assume Im(χ ) < 0, Im(μ) > 0;

FIG. 1. The time-periodic breather solutions (11) with parameters
a1,2 = 0, c1,2 = 1, λ1 = i, χ = (1 − √

3)i. (a) |p|2; (b) |q|2.

thus, when l1l3 �= 0, l2 = 0, we can obtain y
†
1�y1 �= 0. If we

take l1 = 1, l2 = 0, l3 = [− 2Im(λ1)
Im(χ)(c2

1+c2
2)

]
1/2

, then we can obtain

y
†
1�y1 = 2(λ∗

1−λ1)
χ∗−χ

eA1 , where A1 = 2Im(χ )[x − 2Re(χ )t].
Finally, it follows from Theorem 1 that we can obtain the

solutions of system (1),

p[1] = c1e
iθ1

(
C1 − 1

2
tanh

A1

2
+ c2D1

c1

× sech
A1

2
eiB1 + C1 + 1

2

)
,

q[1] = c2e
iθ2

(
C1 − 1

2
tanh

A1

2
− c1D1

c2

× sech
A1

2
eiB1 + C1 + 1

2

)
, (11)

where

C1 = χ∗ − a1

χ − a1
, D1 =

[−2Im(λ1)Im(χ )

c2
1 + c2

2

]1/2

,

B1 = [Re(χ ) − a1]x + [
a2

1 − Re(χ2)
]
t + 3

2
π.

By choosing special parameters, we can obtain the distinct
wave structures of solutions (11) including the time-periodic
breather solutions (see Fig. 1 for c1,2 �= 0), which are also
called temporal cavity solitons [43,44], and dark-bright soli-
tons (see Fig. 2 for c2 = 0); that is, the amplitudes c1,2

of the seed solutions can modulate the wave structures.
When c1,2 �= 0, the two components p and q of the seed
solution are both nonzero plane waves, which excites the new
breather solutions, but when c1 �= 0, c2 = 0 or c1 = 0, c2 �= 0,

FIG. 2. Dark-bright solitons (11) with parameters a1,2 = c2 =
0, c1 = 1, λ1 = i, χ = (1 − √

2)i. (a) Dark soliton (|p|2); (b) bright
soliton (|q|2).
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FIG. 3. Breather solutions (15): (a),(b) |p|2; (c),(d) |q|2; with parameters a1 = 4, a2 = 0, c1,2 = 2, λ = i/2, l1,2 = 1.

the two components p and q of the seed solution reduce
to the case that one is a zero solution and another is a
nonzero plane solution, which generates the dark-bright (or
dark-bright) soliton solutions. It should be pointed out that
the obtained breather solitons are of the potential significance
for applications in many fields such as nonlinear optics,
hydrodynamics, plasma physics, and superconductivity (see,
e.g., [45,46] and references therein).

B. For the case a1 �= a2

For the case a2 �= a1, we have the matrix decomposition
M−1

1 U0M1 = K1 with

K1 = diag(χ − λ1,μ − λ1,ν − λ1),
(12)

M1 =

⎛
⎜⎝

ic1
χ−a1

ic1
μ−a1

ic1
ν−a1

ic2
χ−a2

ic2
μ−a2

ic2
ν−a2

1 1 1

⎞
⎟⎠,

where χ, μ, and ν are three different roots of the following
cubic equation:

x3 − (a1 + a2 + 2λ1)x2 + [
a1a2 + 2(a1 + a2)λ1 + c2

1 + c2
2

]
x

− (2a1a2λ1 + a1c
2
2 + a2c

2
1) = 0. (13)

Thus, the fundamental solution of system (2) can be found
as �1 = KMN , where N = diag(e−iξ (χ),e−iξ (μ),e−iξ (ν)), with
ξ (z) = (z − λ1)x − [z2 + 2(c2

1 + c2
2 − λ2

1)]t .
It follows from the matrix

M
†
1�M1 =

⎛
⎜⎜⎝

2(λ∗
1−λ1)

χ∗−χ

2(λ∗
1−λ1)

χ∗−μ

2(λ∗
1−λ1)

χ∗−ν

2(λ∗
1−λ1)

μ∗−χ

2(λ∗
1−λ1)

μ∗−μ

2(λ∗
1−λ1)

μ∗−ν

2(λ∗
1−λ1)

ν∗−χ

2(λ∗
1−λ1)

ν∗−μ

2(λ∗
1−λ1)

ν∗−ν

⎞
⎟⎟⎠

that we can find that M
†
1�M1 and diag[Im(χ ),Im(μ),Im(ν)]

are congruent. Without loss of generality, let us assume
Im(χ ) < 0, Im(μ) < 0, Im(ν) > 0. Finally, we take

y1 = DM1(ν1Nl)

= D

⎛
⎜⎝

ic1
χ−a1

ic1
μ−a1

ic1
ν−a1

ic2
χ−a2

ic2
μ−a2

ic2
ν−a2

1 1 1

⎞
⎟⎠

⎛
⎜⎝

l1e
−iB(χ)

l2e
−iB(μ)

0

⎞
⎟⎠, (14)

where B(z) = zx − z2t , C = i[B(χ ) − B(μ)].
Case 1. Breather solutions. It follows from Theorem 1 that

we find another family of breather solutions

p[1] = c1e
iθ1

⎡
⎣ (χ∗−a1)|l1|2

χ−a1
+ (μ∗−a1)(χ∗−χ)|l2|2

(μ∗−μ)(μ−a1) eC+C∗ + (μ∗−a1)(χ∗−χ)l1l∗2
(μ∗−χ)(χ−a1) eC∗ + (χ∗−a1)(χ∗−χ)l∗1 l2

(χ∗−μ)(μ−a1) eC

|l1|2 + (χ∗−χ)|l2|2
μ∗−μ

eC+C∗ + (χ∗−χ)l1l∗2
μ∗−χ

eC∗ + (χ∗−χ)l∗1 l2
χ∗−μ

eC

⎤
⎦, (15a)

q[1] = c2e
iθ2

⎡
⎣ (χ∗−a2)|l1|2

χ−a2
+ (μ∗−a2)(χ∗−χ)|l2|2

(μ∗−μ)(μ−a2) eC+C∗ + (μ∗−a2)(χ∗−χ)l1l∗2
(μ∗−χ)(χ−a2) eC∗ + (χ∗−a2)(χ∗−χ)l∗1 l2

(χ∗−μ)(μ−a2) eC

|l1|2 + (χ∗−χ)|l2|2
μ∗−μ

eC+C∗ + (χ∗−χ)l1l∗2
μ∗−χ

eC∗ + (χ∗−χ)l∗1 l2
χ∗−μ

eC

⎤
⎦, (15b)

which are displayed in Fig. 3. Figure 3 implies that the breather solutions (15) of system (1) are periodic in both spatial and
temporal directions, which can be called the spatial-temporal cavity solitons and differ from the above-mentioned breather
solutions (11), whose main reason is that the wave numbers a1,2 of the seed solutions for breather solutions (11) are the same
(see Fig. 1 with a1 = a2 = 0), but the wave numbers a1,2 of the seed solutions for breather solutions (15) are distinct (see Fig. 3
with a1 = 4, a2 = 0).

Case 2. Rogue wave solutions. To obtain rogue wave solutions from the breather solutions (15), we choose |l1|2 + |l2|2 +
2Re(l1l∗2 ) = 0 and consider the limit process (as μ → χ ) such that the new vector rogue wave solutions of system (1) can be
derived as

p[1] = c1

[
1 − 2ir

χ − a1

(x − 2st)2 + 4r2t2 − i
χ−a1

(x − 2st + 2irt)(
x − 2st − 1

2r

)2 + 4r2t2 + 1
4r2

]
eiθ1 ,

(16)

q[1] = c2

[
1 − 2ir

χ − a2

(x − 2st)2 + 4r2t2 − i
χ−a2

(x − 2st + 2irt)(
x − 2st − 1

2r

)2 + 4r2t2 + 1
4r2

]
eiθ2 ,
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FIG. 4. (a) Bright and (b) dark rogue waves with parameters a1 = −a2 = c1 = 1, c2 = 3, λ = 2.369 536 229 + 1.197 202 880i, χ =
0.677 924 890 0 − 0.600 014 1248i. (c) Bright and bright rogue waves with parameter a1 = −a2 = 1, c1 = 2, c2 = 4, λ = 1.421 593 632 +
2.562 931 182i, χ = 0.225 980 808 4 − 2.145 543 790i.

where s = Re(χ ) and r = Im(χ ), which exhibit the distinct
types of RW structures of system (1) including dark-dark,
bright-bright, bright-dark, dark-four-petals RW solutions (see
Figs. 4, 5, and 6). Particularly, there are two maximum and
two minimum points for novel RWs in Figs. 5(c) and 5(d) and
Fig. 6(b), which differ from the usual RW solutions. Notice
that our results are of more new wave structures than the known
ones [21]. Similar to Ref. [47,48], these obtained distinct types
of rogue wave solutions may be active modulation for the
stimulated supercontinuum generation.

IV. LOCALIZED WAVE SOLUTIONS FOR Im(λ1) = 0

When λ1 is a real number, we can obtain the dark-
dark solitons according to the above-mentioned Darboux
transformation. We choose

y1 = D

⎛
⎜⎝

ic1
χ−a1

ic1
χ∗−a1

ic2
χ−a2

ic2
χ∗−a2

1 1

⎞
⎟⎠

(
e−iB

α(λ∗
1 − λ1)e−iB∗

)
(17)

such that we can obtain the dark-dark solitons of system (1),

p[1] = c1

2

[
1 + χ∗ − a1

χ − a1
− χ − χ∗

χ − a1
tanh(X)

]
eiθ1 ,

(18)

q[1] = c2

2

[
1 + χ∗ − a2

χ − a2
− χ − χ∗

χ − a2
tanh(X)

]
eiθ2 ,

where

X = Im(χ )[x − 2Re(χ )t] − 1

2
ln β,

β = 2Im(χ )Im

{[
1 − 1

(χ∗ − a1)2
− 1

(χ∗ − a2)2

]
α

}
> 0.

Figure 7 displays the usual dark-dark solitons of system (1)
for the distinct parameters.

V. INTERACTIONS OF LOCALIZED WAVE SOLUTIONS

In the following we will investigate the interactions of
distinct types of solutions.

A. Interactions with N = 2 and a2 �= a1

Case 1. Interactions of dark-dark and breather-breather
solutions. For this case, we choose⎛

⎜⎝
�1

ψ1

φ1

⎞
⎟⎠ =

⎛
⎜⎝

i
χ1−a1

i
μ1−a1

i
χ1−a2

i
μ1−a2

1 1

⎞
⎟⎠(

e−iA1

e−iB1

)
,

(19)⎛
⎜⎝

�2

ψ2

φ2

⎞
⎟⎠ =

⎛
⎜⎝

i
χ2−a1

i
χ∗

2 −a1

i
χ2−a2

i
χ∗

2 −a2

1 1

⎞
⎟⎠

(
e−iA2

α(λ∗
2 − λ2)e−iA∗

2

)
,

FIG. 5. (a) Dark and (b) dark rogue waves with parameters a1 = 4, a2 = 0, c1 = c2 = 2, λ = 1 + 1
2 i

√
−22 + 10

√
5, χ =

− 1
2 i

√
−22 + 10

√
5
√

5 − 1
2 i

√
−22 + 10

√
5 + 2. (c),(d) Four-petals rogue wave with parameters a1 = −a2 = 1, c1 = c2 = 3, λ = 4.025 178

563i, χ = 0.000 000 000 0 − 0.903 701 720 4i.
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FIG. 6. (a) Dark rogue wave and (b) four-petals rogue wave with
parameters a1 = −a2 = c2 = 1, c1 = 2, λ = −0.991 854 667 7 +
0.636 002 000 8i, χ = −0.399 160 590 9 − 0.645 847 282 8i.

where Aj = χjx − χ2
j t (j = 1,2), B1 = μ1x − μ2

1t , and β =
2Im(χ2)Im{[1 − 1

(χ∗
2 −a1)2 − 1

(χ∗
2 −a2)2 ]α} > 0 for some α. we

can obtain general formulas,

p[2] = c1
D1

D
eiθ1 , q[2] = c2

D2

D
eiθ2 , (20)

where

D = e2Re(C2) + β

4Im(χ2)

[
1

Im(χ1)
+ e2Re(C1)

Im(μ1)
− 4Im

(
eC1

χ∗
1 − μ1

)]

+ e2Re(C2)

∣∣∣∣ 1

χ∗
1 − χ2

+ eC∗
1

μ∗
1 − χ2

∣∣∣∣
2

,

Di =
χ∗

2 −ai

χ2−ai
e2Re(C2) + β

2Im(χ2)

[
χ∗

1 − ai

χ1 − ai

1

2Im(χ1)
+ μ∗

1 − ai

μ1 − ai

e2Re(C1)

2Im(μ1)

− μ∗
1 − ai

χ1 − ai

eC∗
1

μ∗
1 − χ1

− χ∗
1 − ai

μ1 − ai

eC1

χ∗
1 − μ1

]

− e2Re(C2)

(
χ∗

1 − ai

χ2 − ai

1

χ∗
1 − χ2

+ μ∗
1 − ai

χ2 − ai

eC∗
1

μ∗
1 − χ2

)

×
(

χ∗
2 − ai

χ1 − ai

1

χ∗
2 − χ1

+ χ∗
2 − ai

μ1 − ai

eC1

χ∗
2 − μ1

)
,

FIG. 7. Dark-dark solitons (18) with parameters a1 = 1,

a2 = −1, c1,2 = 2, λ1 = β = 0, χ = −i
√

7. (a) |p|2; (b) |q|2.

and C1 = −i(μ1 − χ1)[x − (μ1 + χ1)t], C2 = −iχ2(x −
χ2t).

By choosing special parameters, we can obtain the distinct
wave structures of solutions (20) including the parallel strong
interactions of dark-dark and time-periodic breather-breather
solutions (see Figs. 8 and 9), vertical strong interactions
of dark-dark and space-periodic breather-breather solutions
(see Fig. 10), the parallel weak interactions of dark-dark
and time-periodic breather-breather solutions (see Fig. 11),
and the cross strong interactions of dark-dark and (space,
time)-periodic breather-breather solutions (see Fig. 12). It
follows from Figs. 8–10) that for the fixed a1 = −a2 =
1, c1,2 = 2, λ2 = β = 1, we change λ1 such that (i) when
λ1 = i,1.5i, Figs. 8 and 9 display the similar profiles except
for the distinct temporal periods. Moreover, its period becomes
bigger for the larger |λ1|; (ii) when the imaginary part of λ1

becomes larger, e.g., λ1 = 2i, the parallel interactions (see
Figs. 8 and 9) are changed into the vertical interactions (see
Fig. 10), and the time-periodic profiles are also changed to the
space-periodic one.

Case 2. Interactions of dark solitons and rogue wave
solutions. Next, we analyze the interaction between dark-dark
solitons and rogue wave solutions. We take the limit technique
μ1 → χ1 such that we can obtain solutions of system (1),

p[2] = c1

(
D1

D

)
eiθ1 , q[2] = c2

(
D2

D

)
eiθ2 , (21)

where

D = β + e2Re(C2)

4Im(χ1)Im(χ2)

{
|x − 2χ1t |2 − iRe(x − 2χ1t)

Im(χ1)
− 1

2[Im(χ1)]2

}
+ e2Re(C2)

|χ∗
1 − χ2|2

∣∣∣∣i(x − 2χ∗
1 t) − 1

χ∗
1 − χ2

∣∣∣∣
2

,

Di = Fi

[
β

χ∗
2 − χ2

+ (χ∗
2 − ai)e2Re(C2)

(χ2 − ai)(χ∗
2 − χ2)

]
+ (χ∗

1 − ai)

χ2 − ai

[
− 1

(χ∗
1 − ai)(χ∗

1 − χ2)
+ 1

(χ∗
1 − χ2)2

− i(x − 2χ∗
1 t)

χ∗
1 − χ2

]

× χ∗
2 − ai

χ1 − ai

[
− 1

(χ1 − ai)(χ∗
2 − χ1)

+ 1

(χ∗
2 − χ1)2

− i(x − 2χ1t)

χ∗
2 − χ1

]
e2Re(C2),

Fi = χ∗
1 − ai

2(χ1 − ai)Im(χ1)

{
iRe(x − 2χ1t)

Im(χ1)
+ 1

2[Im(χ1)]2
− |x − 2χ1t |2

}

+ 1

2Im(χ1)(χ∗
1 − ai)

[
i(x − 2χ1t) + i(x − 2χ∗

1 t)
χ∗

1 − ai

χ1 − ai

+ 1

Im(χ1)

]
,

and C2 = −iχ2(x − χ2t).
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FIG. 8. Interactions of dark-dark and time-periodic breather-breather solutions with parameters a1 = −a2 = 1, c1,2 = 2, λ1 = i, λ2 = β =
1, χ1 = −1.597 735 188 118 88i, μ1 = −0.319 550 804 974 658i, χ2 = −√

7i. (a), (b) |p|2; (c), (d) |q|2.

FIG. 9. Interactions of dark-dark and time-periodic breather-breather solutions with parameters a1 = −a2 = 1, c1,2 = 2, λ1 = 1.5i, λ2 =
β = 1, χ1 = −1.000 000 000 0i, μ1 = −0.645 751 311 1i,χ2 = −√

7i. (a), (b) |p|2; (c), (d) |q|2.

FIG. 10. Interactions of dark-dark and space-periodic breather-breather solutions with parameters a1 = −a2 = 1, c1,2 = 2, λ1 = 2i, λ2 =
β = 1, χ1 = −0.478 389 888 327 022 − 0.712 979 628 930 493i, μ1 = 0.478 389 888 327 022 − 0.712 979 628 930 493i, χ2 = −√

7i. (a), (b)
|p|2; (c), (d) |q|2.

FIG. 11. Interactions of dark-dark and (space, time)-periodic breather-breather solutions with parameters a1 = 1
50 , a2 = − 1

50 , c1 =
2, c2 = 1, λ1 = i, λ2 = 0, χ1 = 0.845 107 014 6 − 1.449 359 273i, μ1 = −0.120 015 975 2 − 0.102 388 198 7i, χ2 = 0.600 030 719 8 −
2.236 002 686i, β = 1. (a), (b) |p|2; (c), (d) |q|2.
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FIG. 12. Interactions of dark-dark and (space, time)-periodic breather-breather solutions with parameters a1 = 1
50 , a2 = − 1

50 , c1 =
2, c2 = 1, λ1 = 1 + i, λ2 = 0, χ1 = 0.570 266 583 5 − 1.280 656 011i, μ1 = −0.121 029 972 3 − 0.100 437 747 8i, χ2 = 0.600 030 719 8 −
2.236 002 686i,β = 1. (a), (b) |p|2; (c), (d) |q|2.

By choosing special parameters, we can find some distinct
wave structures: strong interactions of dark-dark solitons
and dark-dark rogue wave solutions (Fig. 13) and dark-dark
solitons and bright-dark rogue wave solutions (Fig. 14). It
follows from Fig. 13 that the interactions mainly focus on the
dark solitons and the branches under the nonzero backgrounds
of dark rogue waves; however, it follows from Fig. 14 that the
interactions mainly focus on the dark solitons and the branches
above the nonzero backgrounds of bright-dark rogue waves.

B. Interactions of localized waves for N = 2 and a1 = a2

For the special case a1 = a2, we choose special solutions

⎛
⎜⎝

�1

ψ1

φ1

⎞
⎟⎠ =

⎛
⎜⎝

i
χ1−a1

−d1

i
χ1−a1

d2

1 1

⎞
⎟⎠(

e−iA1

e−iB1

)
,

(22)⎛
⎜⎝

�2

ψ2

φ2

⎞
⎟⎠ =

⎛
⎜⎝

i
χ2−a1

i
χ∗

2 −a1

i
χ2−a2

i
χ∗

2 −a2

1 1

⎞
⎟⎠

(
e−iA2

α(λ∗
2 − λ2)e−iA∗

2

)
,

where Aj = χjx − χ2
j t (j = 1,2), B1=a1x − a2

1 t, and d1=
c2
c1

, d2 = 1
d1

. As a result, we can obtain the solutions of
system (1)

p[2] = c1
D1

D
eiθ1 , q[2] = c2

D2

D
eiθ2 , (23)

where

D = e2Re(C2) + β

χ∗
2 − χ2

[
1

χ∗
1 − χ1

− c2
1 + c2

2

2(λ∗
1 − λ1)

e2Re(C1)

]

− e2Re(C2)

(χ∗
1 − χ2)(χ∗

2 − χ1)
,

D1 =
χ∗

2 −a1

χ2−a1
e2Re(C2) + β

χ∗
2 − χ2

[
χ∗

1 − a1

χ1 − a1

1

χ∗
1 − χ1

− c2
1 + c2

2

2(λ∗
1 − λ1)

e2Re(C1) + id1e
c1

]
− χ∗

1 − a1

χ2 − a1

e2Re(C2)

χ∗
1 − χ2

×
(

χ∗
2 − a1

χ1 − a1

1

χ∗
2 − χ1

+ id1e
C1

)
,

D2 =
χ∗

2 −a1

χ2−a1
e2Re(C2) + β

χ∗
2 − χ2

[
χ∗

1 − a1

χ1 − a1

1

χ∗
1 − χ1

− c2
1 + c2

2

2(λ∗
1 − λ1)

e2Re(C1) − id2e
c1

]
− χ∗

1 − a1

χ2 − a1

e2Re(C2)

χ∗
1 − χ2

×
(

χ∗
2 − a1

χ1 − a1

1

χ∗
2 − χ1

− id2e
C1

)
,

and C1=i(χ1 − a1)[x − (a1 + χ1)t], C2 = −iχ2(x − χ2t).
By choosing special parameters, we can obtain the pattern

of interactions between temporal breather-breather solutions
and dark-dark solitons (see Fig. 15). Figure 15 implies that
the interactions are elastic and the interaction style for the
component p begins with the suction part of the breather

FIG. 13. Interactions of dark-dark solitons and dark-dark rogue-rogue wave solutions with parameters a1 = −a2 = 1, c1,2 = 2, β =
1, λ1 = 1

2 i
√

16
√

2 − 13, λ2 = 0, χ1 = − 2i

7

√
16

√
2 − 13

√
2 + i

7

√
16

√
2 − 13, χ2 = −i

√
7. (a), (b) |p|2; (c), (d) |q|2.
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FIG. 14. Interactions of dark-dark solitons and bright-dark rogue wave solutions with parameters a1 = −a2 = 1, β = c1 = 1, c2 = 3, λ1 =
2.369 536 229 + 1.197 202 880i, λ2 = 0, χ1 = 0.677 924 890 0 − 0.600 014 124 8i, χ2 = −0.413 110 434 6 − 3.084 149 914i. (a), (b) |p|2;
(c), (d) |q|2.

FIG. 15. Interaction of breather-breather and dark-dark solitons with parameters a1,2 = 0, c1,2 = 1, λ1 = 2i, λ2 = β = 1, χ1 = (2 −√
6)i, χ2 = 1 − i. (a), (b) |p|2; (c), (d) |q|2.

FIG. 16. Dynamical behaviors of time-periodic breather solutions (11) with parameters a1,2 = 0, c1,2 = 1, λ1 = i, χ = (1 − √
3)i (see

Fig. 1). (a1),(c1) Simulated evolution using breather solutions (11) as the initial conditions without a noise; (b1),(d1) the evolution initiated by
the exact solution perturbed by weak random noise with amplitude 0.02.

FIG. 17. Dynamical behaviors of dark-bright soliton solutions (11) with parameters a1,2 = c2 = 0, c1 = 1, λ1 = i, χ = (1 − √
2)i (see

Fig. 2). (a1),(c1) Simulated evolution using dark-bright soliton solutions (11) as the initial conditions without a noise; (b1),(d1) the evolution
initiated by the dark-bright soliton solutions perturbed by weak random noise with amplitude 0.02.
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FIG. 18. Dynamical behaviors of bright-dark rogue wave solutions (16) with parameters a1,2 = c2 = 0, c1 = 1, λ1 = i, χ = (1 − √
2)i

[see Figs. 4(a) and 4(b)]. (a1),(c1) Simulated evolution using bright-dark rogue wave solutions (16) as the initial conditions without a noise;
(b1),(d1) the evolution initiated by the bright-dark rogue wave solutions perturbed by weak random noise with amplitude 0.02.

solution and then finishes with its calling part [see Figs. 15(a)
and 15(b)]; however, the interaction style for the component
q is opposite [see Figs. 15(c) and 15(d)]. The new pattern
containing the dark soliton and temporal breather solution
may excite the study of new soliton dynamics in the related
nonlinear science such as nonlinear optics [1,2,45] and Bose-
Einstein condensates [7].

VI. DYNAMICAL BEHAVIORS OF THE SOLUTIONS

To further exhibit the wave propagations of the above-found
solutions, we here consider their dynamical behaviors by
comparing them with their time evolution using them as the
initial conditions with a small noise 2% in terms of numerical
simulations.

Figures 16(a1) and 16(c1) illustrate the time evolutions
of the temporal breather solutions (11) (see Fig. 1). Fig-
ures 16(b1) and 16(d1) exhibit the time evolution of temporal
breather solutions (11) perturbated by a small noise 2% as the
initial conditions. Figures 16(b1) and 16(d1) exhibit obviously
strong instability for the simulated evolutions at about t > 1.
This may happen due to the rapid changes of the amplitudes
of the temporal breather solutions.

Figures 17(a2) and 17(c2) illustrate the time evolutions of
the dark-bright soliton solutions (11), with c2 = 0 (see Fig. 2).
Figures 17(b1) and 17(d1) exhibit the time evolution of the
dark-bright soliton (11) perturbated by a small noise 2% as the
initial conditions. Figures 17(b1) and 17(d1) also display an
obviously strong instability for the the simulated evolutions at
about t > 1. This may happen due to the interaction of dark
and bright solitons in this nonlinear system.

Figures 18(a3) and 18(c3) exhibit the stable wave evolutions
of the bright-dark rogue wave solutions (16) in the absence of
the initially added random noise [see Figs. 4(a) and 4(b)].
Figures 18(b1) and 18(d1) exhibit the time evolution of the
bright-dark rogue wave solutions (16) perturbated by a small
noise 2% as the initial conditions such that the simulated
evolutions show obviously strong instability at about t > 0.8.
This may happen due to the interaction of bight and dark rogue
wave solutions in this nonlinear system.

Figures 19(a4) and 19(c4) display the stable wave evolu-
tions of the bright-bright rogue wave solutions (16) in the
absence of the initially added random noise [see Figs. 4(c)
and 4(d)]. Figures 19(b4) and 19(d4) exhibit the time evolution
of the bright-bright rogue wave solutions (16) perturbated by a
small noise 2% as the initial conditions such that the simulated
evolutions appear almost stable. This may happen due to the
two components p and q possessing the similar bright rogue
wave patterns in this nonlinear system.

VII. CONCLUSIONS AND DISCUSSIONS

We have used the matrix analysis method to avoid singu-
larity and derived some newly localized wave solutions for
the defocusing coupled nonlinear Schrödinger equation (1)
by using the generalized N -fold Darboux transformation. A
variety of obtained patterns contain the dark-dark solitons,
bright-dark solitons, breather-breather solutions, and distinct
types of vector rogue wave solutions (e.g., dark-dark, bright-
bright, bright-dark, dark-pair, pair-pair rogue waves solutions).
We also find the general N -fold Darboux transformation to
generate the various of interactions between distinct types of

FIG. 19. Dynamical behaviors of bright-bright rogue wave solutions (16) with parameters a1,2 = c2 = 0,c1 = 1,λ1 = i,χ = (1 − √
2)i

[see Figs. 4(c) and 4(d)]. (a1),(c1) Simulated evolution using bright-bright rogue wave solutions (16) as the initial conditions without a noise;
(b1),(d1) the evolution initiated by the bright-bright rogue wave solutions perturbed by weak random noise with amplitude 0.02.
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patterns (e.g., dark solitons and breather solutions, as well as
dark solitons and RW solutions). Moreover, we also analyze
the parameter modulation for these solutions. Finally, for some
respective waves, we numerically illustrate their dynamical
behaviors such that we find all considered waves have the
stable wave propagations without a noise, and the most
considered waves have the strongly unstable behaviors under
the role of a small noise 2% except that the bright-bright rogue
waves display the almost stable state. Particularly, similar
to the single-component models (see [43–48] and references
therein), in the coupled optical media, the obtained new vector
rogue waves may reveal another means to exert maximal
control over a nonlinear system with minimal effort to produce
highly stable supercontinuum, and the temporal and spatial-
temporal breather solutions may be of significance for the ap-

plications of the coupled systems in spectroscopy, astronomy,
navigation, or telecommunications. Similar to the idea [14,49],
the method can also be used to generate the nonautonomous
wave structures of the corresponding defocusing coupled NLS
equations with varying coefficients and nonlocal coupled
NLS equations. The results may excite the relevant experi-
mental investigations in the Manakov-type optical and other
media.
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