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Anomalous scaling of stochastic processes and the Moses effect
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The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution
whose width scales like t

1
2 . However, processes in which the probability distribution is not normal and the scaling

exponent differs from 1
2 are known. The search for possible origins of such “anomalous” scaling and approaches to

quantify them are the motivations for the work reported here. In processes with stationary increments, where the
stochastic process is time-independent, autocorrelations between increments and infinite variance of increments
can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect,
respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous
scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined
and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time
series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic
processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their
anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the
Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
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I. INTRODUCTION

A stochastic process is a sequence of random variables
indexed either continuously or discretely, through a parameter
often interpreted as time. Stochastic processes have been used
to model a range of phenomena from stock prices [1–3] to
precipitation levels [4–6] and animal locomotion [7–9]. A
standard example is Brownian motion, which is described by
the Wiener process Bt . It has Gaussian distributed increments
Bt+τ − Bt that are uncorrelated and independent of t . The
probability distribution of Bt is also Gaussian, but with a
width that grows as t1/2. Thus, Bt , also referred to as “normal”
diffusive motion [10], is said to scale as t

1
2 . More generally,

processes are found that scale as tH , where H is referred to as
the self-affine exponent or the Hurst exponent [11].

Following experimental observations including those in
biological systems [12], financial markets [3], and turbulence
[13], it is of considerable interest to understand the nature
of stochastic processes that scale anomalously. For example,
H �= 1/2 has been associated with the failure of the efficient
market hypothesis (EMH) [14,15], namely that asset prices
do not fully reflect all pertinent information on the market
[16–18].

For processes whose increments lie on stationary, time-
independent probability distributions, Mandelbrot identified
two causes of anomalous scaling, which he referred to as
the Noah effect and the Joseph effect, and furthermore he
defined scaling exponents to characterize them [10,19,20].
The Noah effect represents the occurrence of large increments
with anomalously large frequency resulting in a probability
distribution with infinite variance. It is quantified by the latent
exponent L; increment distributions with L > 1/2 have “fat
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tails” and exhibit anomalous scaling. The Joseph effect occurs
when increments are correlated, and it is quantified by the
Joseph exponent J . When J �= 1/2, increment correlations
can result in anomalous scaling. Mandelbrot’s nomenclature
is composed of biblical references: Noah built an ark to
save mankind and other creatures from the great flood [21],
an occurrence of an anomalously large event, and Joseph,
interpreting a dream of Pharaoh’s, counseled him concerning
what he predicted would be a correlated sequence of years of
abundance, followed by years of famine [22].

In this paper, we extend the characterization of scaling
of stochastic processes to include those with nonstationary
increments. Such processes can model the intraday prices of
financial markets [23–25], daily precipitation levels [5,26–29],
the abundance of solar flares [5,29–31], and temperature
fluctuations in turbulence [5,13,29]. An additional mechanism
that can produce anomalous scaling is identified. It is referred
to as the Moses effect and characterized by the Moses exponent
M , which quantifies the growth of the increment distribution.
The nomenclature continues Mandlebrot’s tradition: Moses led
the Israelites after their Exodus from Egypt as they wandered
through the wilderness having no stationary settlements [32].

We will generalize the definitions of H , L, and J

and show that the sum of increments scales as tH , with
H = L + J + M − 1. For normal diffusive processes with
stationary increments, L = J = M = 1/2 and thus H = 1/2.
Anomalous scaling can occur when any of the exponents L, J ,
or M differs from 1/2. We argue the even for processes with a
Moses effect, as we have previously discussed [33], the EMH
should be validated by measuring the Joseph exponent J , not
the Hurst exponent H , since the EMH relates to the absence
of correlations in market returns. A measurement of J �= 1/2,
indicating the presence of the Joseph effect, would violate the
EMH, but anomalous scaling resulting from a combination
of Noah or Moses effects can still be consistent with the
EMH.
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The principal result of the work is the decomposition of the
overall scaling H of the probability distributions into Joseph,
Noah, and Moses effects via H = J + L + M − 1. Accurate
numerical methods for establishing the four scaling exponents
independently will be presented. They account for finite-time
corrections to the scaling behavior, and they will be applied to
standard and scaled versions of example stochastic processes
to highlight the roles played by H , L, J , and M . Finally,
exponents for a model of intraday trading in financial markets,
i.e., variable diffusion processes [23,33–40], will be computed
and compared to the results with an empirical analysis of
financial market data.

The paper is organized as follows. Definitions of the scaling
exponents and methods to quantify them are given in Sec. II. A
collection of example stochastic processes that will be studied
and the numerical methods to simulate them are given in
Sec. III. Section IV presents the analysis of scaling in the
various processes, demonstrating how the different effects can
combine to yield an overall anomalous scaling. The methods
used to accurately measure scaling indices are also presented
in this section. In Sec. V, empirical financial market data are
analyzed and compared to that of variable diffusion processes.
The results are discussed in Sec. VI.

II. SCALING IN STOCHASTIC PROCESSES

Consider a one-dimensional stochastic process {Xt ; t ∈ T }
in which the set T can either be a subset of the real numbers
or a subset of the integers. If the increments of the process

δt (τ ) = Xt+τ − Xt (1)

have a probability distribution that is independent of t , then the
stochastic process is said to be a stationary increment process
(SIP). If instead the probability distribution of δt (τ ) depends
on t , the process is referred to as a nonstationary increment
process (NIP). Statistical analyses of SIPs can be preformed
on a single time series of data, as the time independence of
the increments permits a statistical ensemble to be constructed
by time translations of the starting point. Statistical analyses
of NIPs, on the other hand, generally cannot be performed
on a single time series, requiring instead an ensemble of time
series. If, however, a NIP begins anew at certain times, such as
after a triggering event, then corresponding time translations
may be used to construct a statistical ensemble from a single
time series [23,41,42]. However, this may only be possible
if the time between renewals has a finite average [43], since,
more generally, weak ergodicity breaking [44,45] may prevent
time averages from being equated with ensemble averages in
diffusive processes that scale anomalously.

The generalization of time-series analyses to include NIPs
necessitates generalizing the definitions of indices used to
characterize scaling in SIPs. Consider an ensemble of realiza-
tions of a stochastic process, X = {X(p)

t , p = 1,2, . . . }, each
of which starts at the origin, i.e., X(p)

0 = 0, and has increments
δ

(p)
t (τ ). The increments are random variables with probability

distributions that can depend on t , but they are the same for all
realizations p. These realizations can either have continuous or
discrete time, but for the purposes of analyzing the scaling of
the process, assume that they are sampled at regular intervals

of time τ , which can be taken to be unity. The sampled times
are then t = 1,2,3, . . . . Then

Xt =
t−1∑
s=0

δs, (2)

where here and in what follows the p superscript is suppressed
for simplicity and δt = δt (1). Define also the following random
variables: the sum of the absolute values of increments,

Yt =
t−1∑
s=0

|δs |, (3)

and the sum of increment squares,

Zt =
t−1∑
s=0

δ2
s . (4)

Probability distributions of these variables and of Xt over the
ensemble X will be used to characterize and quantify the
scaling of NIPs. The definitions of the scaling exponents that
follow, which involve ensemble averages, i.e., over p, become
equivalent to standard definitions for processes with stationary
increments.

A stochastic process X is self-similar if, for any a > 0,
there exists an exponent H � 0 such that

Xat
d= aHXt , (5)

where “
d=” represents equality “in distribution,” and H quan-

tifies the scaling of the overall process. Note that, in general,
only the one-point probability distribution W (Xt ) scales in
self-similar processes; higher-order, multipoint distributions
do not necessarily scale. Operationally, scaling of a suitable
“width” of the probability distribution of Xt can be used to
estimate H ,

w[Xt ] ∼ tH . (6)

In this paper, we use the difference of the 75th quantile and the
25th quantile of the ensemble probability distribution as the
measure of this width. For SIPs, this definition of H becomes
equivalent to Mandelbrot’s [10,11,20] and can be estimated by
a variety of means, including detrended fluctuation analysis
[46]. Using the quantiles circumvents difficulties in cases in
which moments of the probability distribution diverge.

Since Xt is the sum of increments [Eq. (2)], it follows
from the central limit theorem (CLT) that if the increment
probability distributions (a) are uncorrelated, (b) have finite
variance, and (c) are identical, independent of time, then the
process will scale “normally,” with H = 1

2 . Anomalous scaling
in stochastic processes (H �= 1

2 ) may originate from the failure
of one or more of these conditions. Joseph, Noah, and Moses
effects are associated with the failures of conditions (a), (b),
and (c), respectively, which are analyzed in the following
subsections.

A. Joseph effect

The Joseph effect is associated with the failure of condition
(a), and it can be quantified through a variant of rescaled
range statistics (R/S) [10,19,47–49]. Estimate the range Rt
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and standard deviation St of a stochastic process as

Rt = max
1�s�t

[
Xs − s

t
Xt

]
− min

1�s�t

[
Xs − s

t
Xt

]
,

S2
t = 1

t
Zt −

[
1

t
Xt

]2

. (7)

Then the ensemble averaged ratio of Rt and St scales as

E[Rt/St ] ∼ tJ , (8)

where J is the Joseph exponent. Negatively dependent pro-
cesses have J ∈ (0,1/2), positively dependent processes have
J ∈ (1/2,1), and independent processes have J = 1/2.

B. Noah effect

The Noah effect refers to the failure of condition (b), and it
is quantified by the latent exponent L [10,19,20]. Suppose the
tails of the increment distributions decay as

lim
x→∞ Pr(|δt | > x) ∼ x−γ , (9)

where γ ∈ (0,∞). Then L(t) := max( 1
2 , 1

γ
). In this paper,

we only consider processes for which L is independent
of time. Note that CLT condition (b) fails when L > 1

2 ,
because the variance of δt is then infinite. If the incre-
ment distribution is Gaussian, log-normal, or is any dis-
tribution with γ � 2, then L = 1

2 . If instead the incre-
ment distribution has fat tails with γ < 2, then L = 1

γ
.

We further limit our considerations to processes with L <

1, as otherwise the increment distributions have infinite
mean [50].

For time-series analyses, a more convenient and stable
way to estimate the latent exponent is from the scaling of
the ensemble probability distribution of the sum of increment
squares, which can be estimated by the scaling of the median
of the probability distribution of Zt ,

m[Zt ] ∼ t2L+2M−1, (10)

where M is the Moses exponent introduced below. A proof for
Eq. (10) is given in the Supplemental Material [51].

C. Moses effect

We define the failure of condition (c) as the Moses effect. It
occurs when the increment distribution is time-dependent. We
consider processes with increment distributions whose mean
absolute deviation scales as

E[|δt − E(δt )|] ∼ tM− 1
2 , (11)

where, as before, E is the ensemble average. For SIPs, M = 1
2 ,

whereas for NIPs, M �= 1
2 .

In time-series analyses, a convenient and more robust
way to estimate the Moses exponent is from the scaling
of the ensemble probability distribution of the sum of the
absolute value of increments, which can be estimated by
the scaling of the median of the probability distribution
of Yt ,

m[Yt ] ∼ tM+ 1
2 . (12)

A proof for Eq. (12) and a discussion of the effects on changes
in the measurement frequency are given in the Supplemental
Material [51]. Typically, we find that varying the increment
interval, τ in Eq. (1), does not affect the leading scaling
behavior of Yt .

The anomalous scaling of NIPs can arise due to a combina-
tion of all three effects listed above. Equations (6), (8), (10),
and (12) provide independent estimates of the four exponents.
However, they are related through

H = J + L + M − 1. (13)

This scaling relation provides a useful independent check of
the estimates of the four exponents.

III. EXAMPLES OF SELF-SIMILAR PROCESSES

In this section, several model stochastic processes are
introduced that will be used to illustrate the relation-
ship (13). However, we emphasize that the relationship
is expected to be valid for other stochastic processes as
well.

A. Processes with Gaussian increments

The classic example is Brownian motion (BM), which
consist of a sequence of identical, independent Gaussian
increments [52]. BM can be generalized by including (a)
correlations between increments and (b) time-dependent
increments. One way to include long-term correlations is

through fractional Brownian motion (FBM), denoted B(J, 1
2 )

t ,
and defined below. These “correlations” can be characterized
by an index J , which, as shown below, is the Joseph exponent.
As for time-dependent increments, we limit consideration to
processes whose increments scale in time. As shown below,
growth can be characterized by the Moses exponent M . A
stochastic process consisting of correlated and scaled Gaussian
increments is denoted B(J,M)

t . In this notation, Brownian

motion Bt is denoted B( 1
2 , 1

2 )
t .

Fractional Brownian motions B(J, 1
2 )

t that scale in time have
the form

B(J, 1
2 )

t ∝
∫ 0

−∞
[(t − s)J− 1

2 − (−s)J− 1
2 ]dBs

+
∫ t

0
(t − s)J− 1

2 dBs , (14)

where the proportionality constant is 1/�(J + 1
2 ), and dBs ≡

Bs+ds − Bs = Bds . The Gaussian increments of FBM are
correlated [53,54], and the scaling exponents are derived as
follows:

(i) Using Donsker’s theorem [55] and the continuous
mapping theorem [56,57], Avram et al. proved that the index
J is the Joseph exponent [48,53,54].

(ii) Since individual increments are Gaussian-distributed,
L = 1/2.

(iii) Since FBM is a SIP, M = 1
2 .

(iv) To derive H , let v = s/t , then ds = tdv, dBs
d=

Bds
d= Btdv

d= t
1
2 dBv . Thus, B(J, 1

2 )
t = ∫ t

−∞(t − s)J− 1
2 dBs

d=
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∫ 1
−∞(1 − v)J− 1

2 tJ− 1
2 t

1
2 dBv

d= tJ
∫ 1
−∞(1 − v)J− 1

2 dBv
d=

tJB(J, 1
2 )

1 . From definition (5), H = J .
Observe that H = J + L + M − 1.
A scaled FBM is an NIP, except when M = 1

2 , and it is
defined as

B(J,M)
t =

∫ t

0
sM− 1

2 dB(J, 1
2 )

s , (15)

where dB(J, 1
2 )

s = B(J, 1
2 )

s+ds − B(J, 1
2 )

s . Since increments dB(J,M)
t =

tM− 1
2 dB(J, 1

2 )
t and FBM is a SIP, M is the Moses expo-

nent of B(J,M)
t . Furthermore, since B(J,M)

t = tM− 1
2 B(J, 1

2 )
t =

tJ+M− 1
2 B(J, 1

2 )
1 [see (iv) above], the self-similarity exponent

is H = J + M − 1
2 . Consequently, H = J + L + M − 1.

1. Generation of FBM and scaled FBM

There are several methods proposed to generate FBM.
Three of them—the Hosking method [58], the Cholesky
method [59,60], and the Davies-Harte method [61–63]—are
exact. We used the Davies-Harte method, which requires
O(N log N ) operations, due to its computational efficiency.
The algorithm is predicated on computing the square root
of the covariance matrix using the circulant matrix and a
fast Fourier transform instead of much slower lower-upper
triangular decomposition [59,60].

B. Processes with Lévy increments

Independent and identically distributed increments in the
classic Lévy motions can be characterized by a single index
L [50], which, as shown below, turns out to be the latent
index. As before, we can generalize the underlying process
by including correlations and time-scaling of increments. The
resulting process will be denoted L(J,L,M)

t .

Increments of the Lévy motion L( 1
2 ,L, 1

2 )
t are stochastic

variates from a probability distribution whose characteristic
function is [64–66]

E[exp(iθδ)] = exp[−|θ |(1/L)]. (16)

The scaling exponents for Lévy motions are evaluated as
follows:

(i) It has been shown that L( 1
2 ,L, 1

2 )
t /tL

d= L( 1
2 ,L, 1

2 )
1 , where

t � 0 [11,50]. Consequently, R(t) ∼ tL. For L > 1
2 , incre-

ments of LM have the property that Pr(|δt | > x) ∼ x−1/L,
which implies that Pr(δ2

t > x2 = y) ∼ x−1/L = y−1/2L. Ap-
plying CLT for processes with infinite variance [64,65],
we obtain that Z(t) ∼ t2L, S(t) = √

Z(t)/t ∼ tL−1/2. Thus,
E[R(t)/S(t)] ∼ t1/2, and J = 1

2 [10].
(ii) Increments satisfy Pr(|δt | > x) ∼ x−1/L, implying that

L is the latent exponent.
(iii) For δt with L < 1, the first-order moment is bounded;

since LM is a SIP, we have E[|δt − E(δt )|] ∼ t0, therefore
M = 1

2 .
(iv) H = L [11,50].
Note that H = L + J + M − 1.
As with the Brownian case, correlations between the

variates can be induced using the fractional Lévy motion

(FLM) defined as

L(J,L, 1
2 )

t ∝
∫ 0

−∞
[(t − s)J− 1

2 − (−s)J− 1
2 ]dL( 1

2 ,L, 1
2 )

s

+
∫ t

0
(t − s)J− 1

2 dL( 1
2 ,L, 1

2 )
s , (17)

where dL( 1
2 ,L, 1

2 )
s = L( 1

2 ,L, 1
2 )

s+ds − L( 1
2 ,L, 1

2 )
s = L( 1

2 ,L, 1
2 )

ds and the pro-
portionality constant is 1/�(J + 1

2 ). Only the exponents J

and H of a FLM differ from those of the corresponding Lévy
motion. The Joseph exponent cannot be defined using R/S

statistics when J < 1
2 , since the process is nowhere bounded in

that case [11,20,50]. Thus, we restrict consideration to J � 1
2 .

Avram et al. proved that the index J here is a Joseph exponent
[48,54].

To estimate H , setting s = av, Eq. (17) can be expressed
as

L(J,L, 1
2 )

at

d∝
∫ 0

−∞
[(at − av)J− 1

2 − (−av)J− 1
2 ]aLdL( 1

2 ,L, 1
2 )

v

+
∫ t

0
(at − av)J− 1

2 aLdL( 1
2 ,L, 1

2 )
v ,

where the proportionality constant is the same as before. It

follows that L(J,L, 1
2 )

at
d= aJ+L− 1

2 L(J,L, 1
2 )

t , and hence that H =
J + L − 1

2 .
Finally, time-dependent increments can be generated

through scaled FLM, which is defined via

L(J,L,M)
t =

∫ t

0
sM− 1

2 dL(J,L, 1
2 )

s ,

where dL(J,L, 1
2 )

s = L(J,L, 1
2 )

s+ds − L(J,L, 1
2 )

s . Only the values of M

and H of a scaled FLM differ from the corresponding expo-
nents of the associated FLM. Specifically, using a calculation

similar to that of H for FBM, L(J,L,M)
t

d= tJ+L+M−1L(J,L,M)
1 ,

thus H = J + L + M − 1.

1. Generation of Lévy-stable random variables

Let ε be a uniform random variate on (−π
2 , π

2 ) and let a
random variable 	 be exponential with mean 1. Assume ε and
	 to be independent. Then the random variable

δ = sin(ε/L)

(cos ε)L

(
cos((L − 1)ε/L)

	

)(L−1)

is known to be distributed as Eq. (16) [50,67].
The Davies-Harte method cannot be used to generate FLM

variates since the associated correlation function does not exist.
We used an approach introduced by Stoev and Wu [68,69] that
takes advantage of the circulant matrix and the fast Fourier
transform to generate FLM. It requires O(N log N ) operations.
However, the algorithm can only simulate FLM approximately.

C. Variable diffusion process

Processes with Gaussian or Lévy increments, discussed
above, have one common characteristic, namely that the
increments are from a stable process and independent of the
stochastic variable Xt . In this subsection, we introduce a set
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of diffusive processes whose increments depend on Xt as
well. Variable diffusion processes (VDPs) were introduced as
a model for intraday variations in financial markets [23,39,40].
Here {Xt,t � 0} satisfies the stochastic differential equation:
dXt = √

D[Xt,t]dBt , where D(Xt,t) is the diffusion coeffi-
cient. If the probability distribution function W (Xt ) at time t

is self-similar [as given by Eq. (5)],

W (Xt ) = t−HF(u), (18)

where the scaling variable is u = Xt/t
H . Variable diffusion

processes exhibit many stylized facts (i.e., common statistical
features) reported in financial markets [34].

For variable diffusion processes with finite variance,
Eq. (18) shows that E[Xt ] ∼ tH and E[X2

t ] ∼ t2H , and
hence that var[Xt ] = t2H var[X1]. The self-similarity of the
probability distribution implies further that the diffusion
coefficient scales as [34]

D(Xt,t) = t2H−1D(u). (19)

The probability distribution W (Xt ) satisfies the Fokker-Planck
equation:

∂

∂t
W (Xt ) = 1

2

∂2

∂X2
[D(Xt,t)W (Xt )]. (20)

Using Eqs. (18) and (19), we obtain 2H [uf (u)]′ +
[D(u)f (u)]′′ = 0, whose solution is

F(u) = C

D(u)
exp

(
−2H

∫
udu

D(u)

)
. (21)

As an example, if D(u) is constant D0, F(u) =
C0 exp (− 1

2D0
u2). If D(u) = D0(1 + ε|u|) and D0 = 2H

ε2 ,
where ε is a constant, then F(u) = ε

2 exp(−ε|u|), which is
the biexponential distribution. The corresponding variable
diffusion process {XH (t),t � 0} is given by

Xt =
∫ t

0
sH− 1

2

√
2H

ε2

(
1 + ε

∣∣∣∣Xs

sH

∣∣∣∣
)

dBs .

The associated exponents are as follows:
(i) Since VDP is a Markov process, J = 1

2 .
(ii) For VDP with finite variance, L = 1

2 .

(iii) dXt = √
D(Xt,t)dBt = tH− 1

2
√
D(u)dBt , thus

M = H .
(iv) Since W (Xat ) = aHW (Xt ), the Hurst exponent is H .
Once again, H = J + L + M − 1.
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FIG. 1. Nonlinear fitting for SFLM (J = 0.6, L = 0.6, M = 0.6) using the form y(t)/t� = a + bt−c for finite-time corrections.
(a) y(t) = E[Rt/St ], � = J . (b) y(t) = m[Zt ], � = 2L + 2M − 1. (c) y(t) = m[Yt ], � = M + 0.5. (d) y(t) = w[Xt ], � = H .
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TABLE I. Estimates of the exponents for several classes of self-similar processes using the form y(t) = at�′ + bt�′−c for finite-time
corrections. Note that when J < 1

2 , FLM cannot be evaluated using the R/S method [11].

Processes J L M J + L + M − 1 H

BM 0.4997(5) 0.5000(1) 0.5000(1) 0.4997(5) 0.501(1)
SBM(M = 0.3) 0.4996(5) 0.5000(1) 0.3000(1) 0.2996(5) 0.300(3)
SBM(M = 0.4) 0.4999(5) 0.5000(1) 0.4000(1) 0.3999(5) 0.400(1)
SBM(M = 0.6) 0.4995(4) 0.5000(1) 0.6000(1) 0.5995(5) 0.601(1)
SBM(M = 0.7) 0.4993(4) 0.5000(1) 0.7000(1) 0.6993(5) 0.700(2)
LM(L = 0.71) 0.4998(2) 0.7139(6) 0.5001(2) 0.7139(6) 0.714(2)
LM(L = 0.58) 0.4996(3) 0.5883(2) 0.5000(1) 0.588(3) 0.588(3)
LM(L = 0.53) 0.5004(4) 0.5266(2) 0.5000(1) 0.5270(5) 0.5256(9)
SLM(L = 0.53, M = 0.3) 0.4998(3) 0.5268(3) 0.3000(1) 0.3266(6) 0.3254(4)
SLM(L = 0.53, M = 0.4) 0.4999(7) 0.5263(2) 0.4000(1) 0.4263(9) 0.426(2)
SLM(L = 0.53, M = 0.6) 0.4989(6) 0.5265(2) 0.6000(1) 0.6253(8) 0.626(2)
SLM(L = 0.53, M = 0.7) 0.5000(4) 0.5265(2) 0.7000(1) 0.7265(5) 0.726(1)
SLM(L = 0.77, M = 0.3) 0.5000(2) 0.769(5) 0.3004(4) 0.569(5) 0.569(1)
SLM(L = 0.77, M = 0.4) 0.4998(2) 0.768(2) 0.4009(5) 0.669(2) 0.669(2)
SLM(L = 0.77, M = 0.6) 0.5002(2) 0.769(5) 0.6006(5) 0.870(4) 0.869(2)
SLM(L = 0.77, M = 0.7) 0.4997(2) 0.768(4) 0.7006(5) 0.969(3) 0.970(1)
FBM(J = 0.3) 0.2994(5) 0.5000(1) 0.5000(1) 0.2994(5) 0.300(1)
FBM(J = 0.4) 0.4000(5) 0.5000(1) 0.5000(1) 0.3999(5) 0.400(1)
FBM(J = 0.6) 0.6001(3) 0.5000(1) 0.5000(1) 0.6001(3) 0.598(2)
FBM(J = 0.7) 0.6998(2) 0.5000(1) 0.5000(1) 0.6998(2) 0.700(1)
SFBM(J = 0.3, M = 0.3) 0.2988(7) 0.5000(1) 0.3000(1) 0.0988(8) 0.097(3)
SFBM(J = 0.3, M = 0.4) 0.3004(5) 0.5000(1) 0.4000(1) 0.2004(5) 0.201(2)
SFBM(J = 0.3, M = 0.6) 0.2997(5) 0.5000(1) 0.6000(1) 0.3998(6) 0.400(2)
SFBM(J = 0.3, M = 0.7) 0.2989(6) 0.5000(1) 0.7000(1) 0.4989(6) 0.500(1)
SFBM(J = 0.4, M = 0.3) 0.3990(6) 0.5000(1) 0.3000(1) 0.1990(6) 0.2007(5)
SFBM(J = 0.4, M = 0.4) 0.3991(6) 0.5000(1) 0.4000(1) 0.2991(6) 0.3006(4)
SFBM(J = 0.4, M = 0.6) 0.3993(4) 0.5000(1) 0.6000(1) 0.4993(4) 0.500(1)
SFBM(J = 0.4, M = 0.7) 0.3994(4) 0.5000(1) 0.7000(1) 0.59994(4) 0.6001(5)
SFBM(J = 0.6, M = 0.3) 0.5998(5) 0.5000(1) 0.3000(1) 0.3998(5) 0.4004(6)
SFBM(J = 0.6, M = 0.4) 0.5998(3) 0.5000(1) 0.4000(1) 0.4998(3) 0.5004(5)
SFBM(J = 0.6, M = 0.6) 0.5998(2) 0.5000(1) 0.6000(1) 0.6998(2) 0.700(1)
SFBM(J = 0.6, M = 0.7) 0.6000(3) 0.5000(1) 0.7000(1) 0.8000(3) 0.800(2)
SFBM(J = 0.7, M = 0.3) 0.6989(8) 0.5000(1) 0.3000(1) 0.4989(8) 0.498(2)
SFBM(J = 0.7, M = 0.4) 0.6999(3) 0.5000(1) 0.4000(1) 0.5999(3) 0.5987(7)
SFBM(J = 0.7, M = 0.6) 0.7000(2) 0.5000(1) 0.6000(1) 0.7999(2) 0.7997(4)
SFBM(J = 0.7, M = 0.7) 0.6999(1) 0.5000(1) 0.7000(1) 0.8999(2) 0.900(2)
FLM(J = 0.4, L = 0.60) – 0.600(4) 0.4999(1) – 0.4991(5)
FLM(J = 0.6, L = 0.60) 0.5996(3) 0.600(3) 0.4999(1) 0.699(3) 0.699(1)
FLM(J = 0.4, L = 0.56) – 0.5560(3) 0.4999(1) – 0.4564(7)
FLM(J = 0.6, L = 0.56) 0.5996(3) 0.5558(4) 0.5000(1) 0.6553(7) 0.6547(4)
SFLM(J = 0.4, L = 0.60, M = 0.3) – 0.601(2) 0.2998(1) – 0.300(1)
SFLM(J = 0.4, L = 0.60, M = 0.4) – 0.600(3) 0.4000(1) – 0.401(3)
SFLM(J = 0.4, L = 0.60, M = 0.6) – 0.6003(4) 0.5999(1) – 0.5995(4)
SFLM(J = 0.4, L = 0.60, M = 0.7) – 0.6002(4) 0.6999(1) – .6992(9)
SFLM(J = 0.6, L = 0.60, M = 0.3) 0.5990(6) 0.602(3) 0.2998(2) 0.500(4) 0.499(1)
SFLM(J = 0.6, L = 0.60, M = 0.4) 0.6000(2) 0.600(2) 0.4001(1) 0.600(2) 0.600(1)
SFLM(J = 0.6, L = 0.60, M = 0.6) 0.5996(4) 0.6003(4) 0.5998(1) 0.7998(7) 0.798(1)
SFLM(J = 0.6, L = 0.60, M = 0.7) 0.6000(3) 0.5993(8) 0.7001(1) 0.900(4) 0.898(1)
VDP(H = 0.3) 0.4999(5) 0.498(4) 0.302(4) 0.300(5) 0.2996(7)
VDP(H = 0.4) 0.4999(5) 0.500(3) 0.400(3) 0.400(4) 0.4003(5)
VDP(H = 0.6) 0.4994(4) 0.500(2) 0.600(1) 0.599(2) 0.6008(4)
VDP(H = 0.7) 0.4993(4) 0.499(5) 0.701(4) 0.699(5) 0.6999(7)
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IV. RESULTS FROM SIMULATIONS

A. Finite-size corrections

Rescaled range statistics (R/S) analysis has been used
extensively in studying persistence and long-term dependence
in natural time series. The classical approach using the best
linear relationship between log{E[R/S(t)]} and log(t) yields
a biased estimate unless t is large [70–73]. Corresponding
approaches to measure L, M , and H also suffer from analogous
finite-time corrections. Reference [73] showed that the first-
order finite-time corrections take the form

y(t)/t� = a + bt−c, (22)

where a,b,c are constants. As an example, Fig. 1 shows the
nonlinear fit given by Eq. (22) for a SFLM with parameters
J = 0.6, L = 0.6, and M = 0.6 for the (known) indices J ,
2(L + M − 1

2 ), M + 1
2 , and H . Here, the reciprocal of the

variance has been used as the weight of a point.
When exponents for a stochastic process are unknown (e.g.,

financial markets), we use the form

y(t) = at�
′ + bt�

′−c (23)

for finite-time corrections, and we estimate �′ as well. For the
remainder of the paper, we use this approach to estimate the
exponents H , J , L, and M .

B. Exponents for different processes

For model stochastic processes, we use an ensemble of
100 000 stochastic realizations, each of length tmax = 1
million. The lower cutoff is chosen to be tmin = 50. We
select t# = 500 points between tmin and tmax; the ith point
t(i) (i ∈ [1,2, . . . ,t#]) is

t(i) = round

[
tmin

(
tmax

tmin

) i
t#
]
, (24)

where round[x] represents the integer nearest to x; these points
are (approximately) uniformly distributed in log scale. J , L +
M , M , and H , estimated independently, are given in Table I.
The reported standard errors are obtained through a bootstrap
method. The relation H = L + M + J − 1 is found to hold
for each process.

V. APPLICATION TO FINANCIAL MARKETS

A. Financial markets data

The data used for the analyses were 1-min valuations for
the most actively traded exchange-traded funds (ETFs) in
the U.S. market extracted from PiTrading.com. We restrict
consideration to the most recent 2500 trading days (∼10 y).
Intraday trading is assumed to be a realization of the same
stochastic process. The data provide open, close, high, and
low prices within every minute; we use the close price for our
analysis. Missing data, perhaps due to technical problems or
errors, are replaced by the last recorded price. We studied the
three most traded ETFs, namely the Dow Jones Industrial
Average (DIA), the S&P 500 (SPY), and the PowerShare
NASDAQ-100 (QQQ).

0 100 200 300 400
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6
x 10

−4

t(minutes)

E
(|

δ t
|)

 

 

FIG. 2. Mean absolute value E(|δt |) of the increments of the SPY
as a function of the time of day (beginning at 9:30 EST). Two scaling
intervals where E(|δt |) can be fitted by power law E(|δt |) ∼ tM−0.5,
where t is measured from the start of each interval.

Stochastic processes underlying financial time series are
represented using the return

Xt = ln
Pt

P0
,

where Pt is the price of a financial asset at time t , and P0 is
a reference price, typically the price at the start of a session.
The 1-min increments are

δt = Xt − Xt−1 = ln
Pt

Pt−1
.

Note that Xt=0 = 0, which is the necessary condition for Xt

to scale, i.e., Xt
d= tHX1.

B. Scaling regions

1. Intraday seasonality

The analysis is predicated on the assumption that intraday
variations of the return follow the same stochastic process
each day. Consequently, return data from the 2500 trading
days constitute the ensemble. To eliminate any drift within
the trading day, the data are “detrended” by subtracting the
ensemble average E(δt ) at each t . The intraday pattern of
E(|δt |) shows that the stochastic behavior is nonstationary
within the day. E(|δt |) of SPY (as well as for the other ETFs)
appears to scale as a power law within two intervals during
the day, the first following the opening of the market and the
second in the afternoon; see Fig. 2. The horizontal bars indicate
the start and end of the two scaling intervals. The first ranges
from 30 to 190 min and the second from 260 to 380 min from
the start of the trading day.

C. Estimation of the exponents

The duration of the two scaling intervals is 160 and
120 min, respectively. The lower cutoff tmin for the finite-time
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FIG. 3. Nonlinear fit for the S&P500 index SPY(30:190) using model y(t) = at�′ + bt�′−c for finite-time corrections. (a) y(t) = E[Rt/St ],
�′ = J = 0.500(2). (b) y(t) = m[Zt ], �′ = 2L + 2M − 1 = 0.587(4). (c) y(t) = m[Yt ], �′ = M + 0.5 = 0.790(2). (d) y(t) = w[Xt ], �′ =
H = 0.298(7). The error bars in (a), (b), and (c) are too small to be observed.

analysis (Sec. IV B) was set to 10 min. The total number of
points used for the analysis, with intervals given by Eq. (24),
is t# = 60. Methods outlined in the previous section were
used for the analysis, and Fig. 3 shows the nonlinear fit
for SPY(30:190). The indices extracted from the analyses
are given in Table II, and conclusions include (i) L ≈ 1

2 ,
implying that increments of the prices of ETFs are not

from fat-tailed distributions, and (ii) J ≈ 1
2 , implying the

absence of long-term memory. The latter is validated using the
autocorrelation function, which vanishes for time delays larger
than 1 min. Furthermore, the relation H = J + L + M − 1 is
validated.

The analyses outlined in Sec. IV were carried out for
100 000 ensembles of length 1 million. In contrast, financial

TABLE II. Estimates for the exponents for exchange traded funds using the form y(t) = at�′ + bt�′−c for finite-time corrections. SPY,
DIA, and QQQ are abbreviations for the Standard and Poor 500 Index, the Dow Jones Industrial Average, and the PowerShare NASDAQ-100
Index, respectively.

Processes J L M J + L + M − 1 H

SPY(30:190) 0.500(2) 0.503(4) 0.290(2) 0.294(4) 0.298(7)
DIA(30:190) 0.502(2) 0.497(6) 0.287(4) 0.286(4) 0.29(1)
QQQ(30:190) 0.500(2) 0.501(6) 0.295(2) 0.296(5) 0.29(1)
SPY(260:380) 0.500(2) 0.511(9) 0.552(4) 0.564(7) 0.55(1)
DIA(260:380) 0.499(1) 0.50(1) 0.552(2) 0.56(1) 0.55(1)
QQQ(260:380) 0.501(1) 0.50(1) 0.550(4) 0.56(1) 0.55(1)
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FIG. 4. Nonlinear fit for a variable diffusion process (H = 0.3) of length 370 using finite-time corrections of the form y(t) = at�′ + bt�′−c.
(a) y(t) = E[Rt/St ], �′ = J = 0.499(3). (b) y(t) = m[Zt ], �′ = 2L + 2M − 1 = 0.596(4). (c) y(t) = m[Zt ], �′ = M + 0.5 = 0.8002(2).
(d) y(t) = w[Yt ], �′ = H = 0.301(2). The errors bars are too small to be visible.

market analysis was conducted for an ensemble of size 2500,
and the intervals were 160 and 120 min, respectively. One
may inquire whether the information extracted from these
short processes through finite-size corrections is reliable. To
address this issue, we recomputed the indices for the variable
diffusion process over a time interval tmax. As described below,
tmax is evaluated using the relaxation of the finite-time indices.
Specifically, we write Eq. (22) as

E[R/S(t)] = atJ
[

1 −
(

t

τ

)−c]
,

where τ = (− b
a

)
1
c = 0.18(1) is a time scale for convergence

of the index. To estimate tmax for the VDP, we note that
the nonlinear fit for J for SPY(30:190) gives τ = 0.42(5).
The corresponding analysis of the VDP (H = 0.3) should
be of length tmax = 0.42

0.18 × 160 ≈ 370, tmin = 0.42
0.18 × 10 ≈ 20.

Figure 4 shows the nonlinear fit for this VDP with tmax = 370.
The estimated exponents are J = 0.499(3), L = 0.497(6),
M = 0.300(4), J + L + M − 1 = 0.297(5), and H = 301(2).
We thus infer that exponents computed for financial markets
are reliable.

VI. CONCLUSIONS

There are increasing numbers of examples, ranging from
variations in biological systems [12] and thermal fluctuations
in turbulence [13] to price variations in financial markets [3],
where the probability distributions associated with a stochastic
process exhibit anomalous scaling and are non-Gaussian. The
anomalies can have different origins, and the goal of the work
reported here is to disentangle them. Previous studies on sta-
tionary processes [10,20] had established that infinite variance
of increments (the Noah effect) and long-time correlations
between increments (the Joseph effect) are two sources of
the anomaly. However, these studies failed to recognize that
the time dependence of the increments themselves can also
be a source of anomalous scaling. In this paper, we showed
how scaling of the increments with time, referred to as the
Moses effect, can also contribute to anomalous scaling. Noah,
Joseph, and Moses effects, characterized by L, J , and M ,
respectively, are independent, and the overall scaling of the
probability distributions, quantified by the Hurst exponent
H , is given by H = L + J + M − 1. As was emphasized,
definitions of the exponents require the use of an ensemble
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of (nominally identical) stochastic trajectories when the
underlying processes are time-dependent.

Numerical approaches of time-series analysis to accurately
estimate each of the four scaling exponents independently
were introduced. They are based on the use of medians
and quantiles, which is especially appropriate for probability
distributions lacking finite variance. These methods account
for finite-time power-law corrections to scaling. The fact that
the four indices can be measured independently allows the
scaling relation that connects them to be verified, providing a
stringent numerical check on the accuracy of the time-series
analysis. The new numerical techniques were applied to a
variety of different stochastic processes, including ones with
both stationary and nonstationary increments, with and without
long-time autocorrelations, and with both finite and infinite
increment variance, to demonstrate the role of each effect
toward anomalous scaling.

Financial time series of exchange-traded funds (ETFs) were
analyzed as an application of the methods introduced here.
As has been found to be the case for other financial markets
[23,39,40], the intraday prices of ETFs can be considered to
be governed by nonstationary stochastic processes that repeat
each trading day. We find two intervals where the underlying
stochastic process scales anomalously with H �= 1/2, which
is often associated with a violation of the efficient market
hypothesis (EMH). However, we find that L = 1/2 and J =
1/2, i.e., neither the Noah effect nor the Joseph effect is
observed in financial markets. The deviation from H = 1/2
results solely from the Moses effect (M �= 1/2). Previously,
it was proposed that the true test of the EMH should be the
lack of correlations, i.e., J = 1/2, and not H = 1/2 [33].
Therefore, our analysis reiterates that ETF markets satisfy the
EMH, despite the fact that they exhibit anomalous scaling.
Finally, consistent with other recent studies of intraday trades
in financial markets [23,33,42], we found that a variable
diffusion process accurately models the scaling behavior in
the two scaling intervals.

Although the scaling exponents defined here characterize
the sources of anomalous scaling of the distribution functions,

they do not uniquely identify higher-order statistics or the
underlying stochastic processes themselves. As an example, a
scaled Brownian process and a variable diffusion process can
have the same exponents as the first stage of stock markets
(i.e., with J = 1

2 , H = 1
2 , and M = 0.3). As discussed in the

Supplemental Material [51], VDP exhibits volatility clustering
(i.e., the absolute values and the squares of increments exhibit
long-time correlations) while the corresponding scaled BM
fails to do so. Volatility clustering is one of the well-known
stylized facts on financial market dynamics [74].

It would be interesting to apply the methods of time-series
analysis developed here to other, more physical, recurring
stochastic processes with nonstationary increments. For ex-
ample, the amount of daily precipitation recorded at a fixed
location [5,26–29] may be amenable to such analysis. If the
underlying (stochastic) process is assumed to repeat itself each
year, an ensemble can be constructed using the data for each
year. Similarly, the daily or monthly abundance of solar flares
[5,29–31] may also be amenable to our methods of analysis.
Solar activity is known to have an 11-year cycle, so that the
days or months at the same phase each cycle may form an
ensemble. The approach may also be useful for analyzing hard
turbulence [13]; here the temperature variation at a given loca-
tion may be taken to be a stochastic process with nonstationary
increments [5,29]. The process may then be considered to
repeat after a nonperiodic triggering event, such as a boundary
layer separation [13]. In this case, the temperatures at a given
time following the triggering event form an ensemble. In
each of these systems, it would be interesting to learn if the
scaling is anomalous, and, if so, which of the Noah, Joseph,
and Moses effects, or what combination thereof, leads to the
anomaly.
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