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Thermodynamics of complexity and pattern manipulation
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Many organisms capitalize on their ability to predict the environment to maximize available free energy and
reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—
temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices
that convert thermodynamic work to patterns or vice versa—and use them to build a “pattern engine” that
facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is
achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining
the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally
nonzero and connected with the pattern’s intrinsic crypticity—a complexity theoretic quantity that captures the
puzzling difference between the amount of information the pattern’s past behavior reveals about its future and
the amount one needs to communicate about this past to optimally predict the future.
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I. INTRODUCTION

The manipulation of patterns is as important to living
organisms as it is for computation. Living things capitalize
on structure in their environment for available energy and
use this energy to generate new complex structures. Similarly,
a crucial task in the modern era of big data is to identify
patterns in large data sets in order to make predictions about
future events—often at great energetic cost. Here, we consider
the thermodynamic costs intrinsic to this sort of pattern
manipulation and ask: is there a preferred method by which
this manipulation should be done? Our intuition is that simpler
is better, a longstanding tenant of natural philosophy known
as Occam’s razor. To formalize this, we first qualify what is
meant both by simpler and by better.

In complexity science, computational mechanics formal-
izes what is simpler in the context of pattern manipulation
[1–3]. The premise is that everything we observe in the
environment can be considered to be a pattern—a temporal
sequence of data exhibiting certain statistical structure. Much
of science then deals with building models that can explain
such statistics—machines that take information from past
observations and use it to generate statistically coinciding
conditional future predictions. Given two machines that
exhibit the same pattern of behavior, the one that stores less
information from the past is considered simpler, the motivation
being that it better isolates indicators of future behavior. The
simplest such machine then defines exactly how much memory
is required to produce a given pattern and thus quantifies the
pattern’s intrinsic structure. Known as statistical complexity,
this measure has been applied to quantify structure in diverse
contexts [4–6].
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Meanwhile, in thermodynamics, better originally described
heat engines that produce more work with less wasted heat.
This carries through to modern thermodynamics: the best
approach for a given task being the one that minimizes the
expenditure of a limited resource [7,8] (e.g., work or hard-to-
create states). Since information is physical [9–12], patterns,
which are correlated information, are also physical and hence
subject to the laws of thermodynamics. In this context, a pattern
may be treated as an information reservoir—a source of free
energy encoded in correlations (e.g., Refs. [9,12–19]). Pattern
manipulators, which convert a pattern to useful work or vice
versa, are thus a type of heat engine. The pattern manipulator
that effects a prescribed change in a pattern with the minimal
heat dissipation can thus be regarded as better.

Here, we derive the fundamental thermodynamic limits for
the manipulation of patterns by devices operating in a cycle
(see Fig. 1). We do not rederive the second law, but (believing
it highly likely to be true) consider the implications that it
places on the work dissipation intrinsic to all possible patterns
manipulators. Our approach is to connect pattern manipulators
in the context of thermodynamics to predictive models in
the context of computational mechanics—observing that the
creation or consumption of a given pattern involves retaining
enough of the past to correctly anticipate its expected future
statistics. We show that simplest patterns manipulators (i.e.,
ones that store the least information about the past of the
pattern) results in the least dissipation—and thus simpler is
thermodynamically better.

We describe the simplest, most thermodynamically efficient
causal pattern manipulators—those whose memory require-
ment is given by the pattern’s statistical complexity—and show
that they, remarkably, still must dissipate some excess heat.
We show that this heat dissipation is lower-bounded by the
crypticity of the pattern [20], a hitherto complexity—theoretic
property quantifying the puzzling difference between the
amount of information the past of a pattern reveals about
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FIG. 1. Cycle of pattern generation and extraction. A tape moves
through the system in a clockwise manner. A generator expends work
to write a pattern to the tape. The extractor then uses the pattern on this
tape to extract work. To run cyclically, each device maintains prescient
memory that keeps track of the pattern. In this article, we identify
the dissipative work costs. We find that the simplest generator has the
best thermodynamic performance; but surprisingly for the extractor,
the choice of memory has no thermodynamic consequence.

its future, and the amount of information one needs to
communicate about the past of the pattern in order to predict
its future. These bounds apply to any model in any physical
framework that can implement pattern manipulation tasks
described in a manner consistent with Landauer’s principle
and computational mechanics. Our work thus highlights the
many thermodynamic consequences of complexity in pattern
manipulation.

II. PATTERNS AS A RESOURCE

Knowing a system’s internal state has thermodynamic
consequence. This knowledge can be used to perform work
(drive a mechanical task), as illustrated by the Szilárd engine
thought experiment [11]: A box has a single particle inside,
on the left- or right-hand side. A movable barrier inserted in
the box’s center acts as a piston that expands as the particle
pushes against it. If an agent knows which side of the barrier
the particle is on, she can couple the barrier (e.g., via a pulley)
to raise a weight. As the piston expands, it lifts the weight
and generates an amount of work kBT ln 2 at temperature T

by drawing in the same amount of heat from its surroundings.
Knowledge about patterns may also be exploited. Consider

a sequence of Szilárd engines arranged in a linear configuration
on a conveyer belt (or more abstractly, symbols on a tape),
indexed sequentially by t ∈ Z. These engines are prepared
such that the particle in engine t is on the same side of the
barrier as the in engine t − 1 with probability p �= 1

2 . Suppose

now that an agent attempts to extract work from these engines
in sequential order. An agent unaware of this pattern would
only be able to correctly predict the particle’s location half of
the time and, hence, will extract less work than an agent who
knows the pattern and couples her pulley accordingly. As such,
the ability to predict grants thermodynamic advantage.

This is a manifestation of Maxwell’s dæmon—an ap-
parently paradoxical conversion of heat into work that is
only resolved by accepting that information is physical and
hence subject to the laws of thermodynamics [9–12]. For the
single Szilárd engine, we must also account for the cost of
resetting the agent’s memory about the particle’s location—
this knowledge must be thought of as a resource. Likewise,
since it is more thermodynamically useful that the sequence
follows a pattern than be uncorrelated, the pattern itself must
also be considered as a resource. Producing a pattern hence
requires an investment of work. Moreover, any physical device
that generates (or exploits) a pattern contains some memory
about what has been observed in the pattern so far, in order
to accurately generate (or anticipate) upcoming parts of the
pattern. Any thermodynamic costs of maintaining this internal
memory must also be accounted for. One thus can think of a
tape with a pattern as one thinks of a rising weight (or any
other form of battery) and treat it as an information reservoir
[9,12–16]. This approach has been used recently as a bridge
from computational mechanics to modern thermodynamics
[17–19].

The quantitative link between information, entropy, and
heat dissipation is given by Landauer’s principle [11]: the
minimum work cost of any information-processing task is
proportional to the total change in information entropy1 (just
like macroscopic thermodynamics, where the minimum work
required to slowly change between two states of the same
internal energy is proportional to the change in thermodynamic
entropy).

Landauer’s principle sets a lower bound on the work cost
of performing an information processing task. In this article,
we shall take Landauer’s principle as our starting point.
Our results have meaning in any physical framework that:
(1) provides a way of mapping random variables to physical
states and (2) has definitions of heat and work exchange, such
that any allowed reconfiguration of these mapped states has
a work cost bounded by Landauer’s principle, as applied to
the associated random variables. A list of such frameworks
satisfying these criteria includes the trajectory formalism
[21–26] (see Physical Example in the Appendix), the resource
theory of thermodynamics (e.g., Refs. [7,8]), single-shot
statistical mechanics (e.g., Refs. [27–29]), among others.

In these frameworks, Landauer’s principle is not an addi-
tional imposition on top of the physics but rather manifests
from microdynamical behavior—it is an emergent law, much
like the second law of thermodynamics. It is not necessary
to know the particulars of the microdynamics to derive or
apply the results in this article—so long as the framework
obeys Landauer’s principle, any model in that framework

1Classically, given by the Shannon entropy H (X) =
−∑

i P (X = xi) log2 P (X = xi). Using a base 2 logarithm
gives units of bits.
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that implements the pattern manipulations presented in the
following sections will be bound by our results.

III. THE FRAMEWORK OF PATTERNS

Computational mechanics provides a formal framework
for describing patterns [1–3,20]. Consider a sequence of
physical systems indexed by a parameter t ∈ Z, each having
a configuration space {x}. A general pattern on such a
sequence of systems is defined by a bi-infinite sequence of

random variables
↔
X = . . . Xt−1XtXt+1 . . ., where Xt governs

the configuration of system t . Here, one generally considers
devices that observe the systems in some sequential order, such

that system t is observed at time t . Thus,
→
Xt = . . . Xt−1Xt

govern the configurations of all systems that could have been

observed in the past, and
←
Xt = Xt+1Xt+2 . . . governs the

configurations of all systems that could be observed in the
future. A statistical description of the pattern is given by

the probability distribution P (
←
Xt,

→
Xt ), where each instance

of such a pattern taking on a particular configuration
↔
x =

. . . xt−1xtxt+1 . . . occurs with probability P (
↔
X = ↔

x).
When there is a meaningful pattern, the past and future

are correlated. For a particular instance of the pattern where
←
x is observed, the statistics of future observations are given

by P (
→
Xt |

←
Xt = ←

x). The mutual information2 I (
←
Xt ;

→
Xt ) =

H (
→
Xt ) − H (

→
Xt |

←
Xt ) then quantifies how useful this past

knowledge is for predicting the future. In computational
mechanics, this value is known as the excess entropy E (see
Definition 13 of Ref. [2]).

We make the simplifying assumption that the pattern is a

stationary—the statistics P (
←
Xt,

→
Xt ) are invariant under time

translation. This does not mean that every output xt in
the sequence is identical, or that the pattern is Markovian,
but rather that the statistics of Xt+1 onwards, given a past

sequence, have no explicit time dependence: P (
→
Xt |

←
Xt =

←
x) = P (

→
Xt ′ |

←
Xt ′ = ←

x) for all t , t ′, and
←
x. Hence, we can often

omit the superscript t .

IV. CYCLIC PATTERN MANIPULATION

The classical expressions of thermodynamic laws (e.g.,
Kelvin’s statement that a device cannot convert heat into
work with no other effect [30]) concern cyclic behavior—
processes that leave the system in a state allowing for repetition
with the same thermodynamic consequences. Without a full
cycle in mind, there is the danger that the thermodynamic
benefit of a process may come at the expense of consuming
an unaccounted-for resource. A cycle does not require the
microstate of the system to return to its original value. Consider
a piston of gas expanding and compressing: it does not matter

2The mutual information between random variables A and B

with domains A and B, respectively, is given I (A ; B) = H (A) −
H (A | B), where H (A | B) := −∑

b∈B P (B)
∑

a∈A P (A = a | B =
b) log2 P (A = a | B = b) is the conditional entropy of A given B.
Using logarithms of base 2, all have units of bits.

if the individual molecules have moved to new locations by
the end of the cycle, as long as the important thermodynamic
variables—the pressure and volume—return to their original
values.

We now establish a framework for understanding the ther-
modynamics of generating and consuming patterns as a cyclic
process (Fig. 1). Consider a sequence of physical systems
indexed by a parameter t ∈ Z, each having a configuration
space {x}. We assume that the default configuration for these
systems to be uncorrelated, such that the configuration of each
system is governed by some default random variable Xdflt. The
mathematical results of this article will hold for any choice of
Xdflt, though for clarity, we shall frame our discussion as if
Xdflt represents the uniformly random distribution.

For each run of the cycle, we act on a moving window of
length k on this sequence. We index the first system in this
window as t + 1, and the final system as t + k. Between each
run of the cycle, the window advances by k systems, such that
the subsequent cycle acts on systems t + k + 1 to t + 2k. We
refer to k as the stride of the cycle.

In each cycle, the tape is acted on by two machines

(Fig. 1) associated with the same pattern P (
←
X,

→
X). Each

machine is in contact with a thermal reservoir (i.e., heat bath
at inverse temperature β = 1

kBT
) and a battery for storing

free energy (e.g., a rising weight). The first machine, a
generator, does work in order to act on the systems in the win-
dow t + 1,t + 2, . . . ,t + k, taking their configurations from
Xdflt

⊗k to configurations governed by the random variables
Xt+1Xt+2 . . . Xt+k from the pattern. The second machine, an
extractor, resets these k systems back to their uncorrelated
default state Xdflt

⊗k , outputting work as it does so. Collectively,
we refer to these devices as pattern manipulators.

Each of these two devices can operate independently.
By itself, the generator operating ad infinitum encodes an
arbitrarily long section of the pattern onto a sequence of
physical systems that were initially in the default configuration.
This will require an investment of work and produces a pattern
as a resource. Likewise, the extractor consumes a section of
the pattern of arbitrary length, extracting work and resetting
the systems back to their default configuration. However,
to account for all thermodynamic resources, it is helpful to
consider them operating together as the cycle described above
(or in Fig. 1).

V. PRESCIENT MEMORY

For any device to generate a particular pattern
↔
X in

time-sequential order, it must contain an internal memory (with
some configuration space {r}) that records some information
about what it has generated before. Consider any pattern with
two possible pasts

←
x and

←
x ′ that yield differing conditional

future statistics; i.e., P (
→
X |

←
X = ←

x) �= P (
→
X |

←
X = ←

x ′). A ma-
chine that generates such a pattern must behave differently
depending on whether it has generated

←
x or

←
x ′ so far. Thus,

the state of the machine’s memory {r} must be dependent on
←
x. Likewise, an extractor must also adjust its future actions
based on what past

←
x it has observed so far to best harness the
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free energy in
→
x. Thus, it must also field some

←
x-dependent

memory.
Each particular strategy for recording this past information

can be captured by some mapping f that describes the state of
the memory, r , depends on

←
x. f is referred to as an encoding

map and defines a particular strategy in which a given generator
or extractor keeps track of the past. The encoding map then
induces a probability distribution over r , governed by some
random variable R.

To generate a desired pattern governed by P (
←
X,

→
X), the

memory R must be prescient with respect to the pattern. That

is, for all possible
←
x, R satisfies P (

→
X |

←
X = ←

x) = P (
→
X | R =

r), for any r assigned by f (
←
x). In words: for the purpose of

inferring or generating the pattern’s future statistics behavior
→
X, knowing the state of prescient memory r is as useful
as knowing the entire semi-infinite string of past outcomes
←
x. It follows that for any prescient memory R, the mutual

information I (R ;
→
X) = I (

←
X ;

→
X). We shall consider only

memory that acts in a causal way, such that the state of the
memory at time t does not contain any information about

the future of the pattern
→
X, that is not already contained in

the past. (In the language of computational mechanics, we do
not allow the memory to have oracular information [31]).

Given any pattern, there are clearly many encoding maps
that generate memory states satisfying prescience. The most
obvious choice is the identity map, which represents a
generator that remembers every single step of the pattern it
has generated up to the present. Such choices are clearly
wasteful. Formally, the Shannon entropy of the memory, H (R)

would coincide with H (
←
X), and be unboundedly large—even

when generating patterns with no structure (e.g., a completely
random sequence). This has motivated complexity theorists to
look for more efficient encodings—corresponding to genera-
tors whose corresponding memory, H (R), is minimized.

The causal states [1,2] represent the most efficient prescient
encoding. They coincide with the equivalence classes defined
by the equivalence relation ∼ε , where

←
x ∼ε

←
x ′ if and only

if P (
→
X |

←
X = ←

x) = P (
→
X |

←
X = ←

x ′). The optimal machine does
not store which past

←
x has occurred, but rather which

equivalence class s that
←
x belongs to—the rationale being

that two pasts in the same equivalence class do not need to be
distinguished as they have coinciding conditional futures. This
motivates a particular encoding map ε that deterministically
takes each

←
x to a particular causal state s whenever x ∈ s.

The resulting random variable S over causal states is uniquely

defined for each pattern
↔
X and represents the prescient memory

with minimal entropy [1,32]. The memory required to store
these states, given by the Shannon entropy Cμ = H (S), is
known as the pattern’s statistical complexity and quantifies the
pattern’s intrinsic structure.

In computational mechanics, generators and predictors
that store only the causal states are considered the simplest
such devices and are known as ε-machines. Furthermore,
any pattern can be described by dynamics on causal states
(see Ref. [33] or our subsequent example in Fig. 4), and
significant work exists on inferring causal states and the

resulting ε-machines from raw observational data [1,4,5,32].
Throughout this article, we use S to represent the random
variable governing the pattern’s causal state and R to represent
the random variable governing the state of some generic choice
of prescient memory. R could be in one-to-one correspondence
with S (since ε is a specific choice of encoding map f ), but in
general it does not have to be.

VI. PRESCIENT PATTERN MANIPULATORS

To operate continually in a cycle, a pattern manipulator’s
memory must be prescient before and after the device has
acted on the pattern. Suppose a generator at time t starts with
memory in configuration Rt = ri . After encoding k systems
into the pattern Xt+1 . . . Xt+k = xt+1 . . . xt+k , the final state

of memory Rt+k = rj must satisfy P (
→
Xt+k | Rt+k = rj ) =

P (
→
Xt+k | Rt = ri,X

t+1 . . . Xt+k = xt+1 . . . xt+k). We call this
condition maintaining prescience, since it implies that Rt+k

must also be prescient for the entire history of the pat-
tern to that point, including the variate xt+1 . . . xt+k just
produced. Likewise, if an extractor encounters and resets
Xt+1 . . . Xt+k = xt+1 . . . xt+k on the tape, it must also update
its memory from Rt to Rt+k in a way that satisfies the same
condition.

For a generator and extractor that maintain prescient mem-
ory R and R′, respectively, if the initial configurations ri and

r ′
i satisfy P (

→
Xt | Rt = ri) = P (

→
Xt | R′t = r ′

i ), then the final
configurations rj and r ′

j (after k steps of the pattern have been

written and subsequently reset) will satisfy P (
→
Xt+k | Rt+k =

rj ) = P (
→
Xt+k | R′t+k = r ′

j ). This follows almost immediately
from the definition of maintaining prescience (see Lemma 1 in
the Appendix for a proof). In words: at the beginning of each
run of the cycle, the portion of the pattern that the generator an-
ticipates to next produce remains in alignment with the portion
of the pattern that the extractor anticipates to next consume.

We have thus specified the action of pattern manipulators
in terms of the initial and final states of their related
information variables (i.e., state of the tape and state of the
internal prescient memory). In the following sections, we
provide bounds on the minimum work costs of any process
in any framework consistent with Landauer’s principle that
implements manipulations according to this specification.

VII. INVESTING WORK TO GENERATE A PATTERN

For any given pattern, there is a family of generators,
characterized by their choice of prescient memory R and by
the number of steps k of the pattern that they generate at once.
In Theorem 2 of the Appendix, we prove that for any such
generator, the work investment Wk

gen(R) required to generate
k steps of the pattern when the tape is subject to a degenerate
Hamiltonian (that is, all configurations of the tape have equal
energy), and the tape-memory system is coupled to a heat bath
with inverse temperature β = 1

kBT
, is bounded by

βWk
gen(R) � k[H (Xdflt) − H (Xt+1 | St )]

+ [H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k)], (1)
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P(Xdflt X(P) t+1|St)P(Xt+1|St)

No Hamiltonian Hamiltonian
given by St No Hamiltonian

quasistatic
raising of

levels

adiabatic
lowering of

levels

W
o
rk

H
e
a
t

W
o
rk

FIG. 2. One method of writing a pattern to a tape. The various
choices of symbols on a tape can each be associated with a different
energy level of a system (drawn as a black horizontal lines whose
relative height indicates relative energy). The statistical state of
the symbol is a probability distribution (drawn as gray bars) over
these configurations. By changing the Hamiltonian of the tape while
remaining in contact with a thermal reservoir, the statistics can be
altered to P (Xt+1 | St ). At this point, the system is isolated from
the heat reservoir and the Hamiltonian is adiabatically removed. The
whole procedure requires an investment of work proportional to the
reduction in the state’s entropy. (See also Sec. 7 in the Appendix.)

where St are the causal states of the pattern. The bound holds
regardless of what physical mechanism is used to generate the
pattern and relies only on the assumption that the generator
obeys Landauer’s principle. Equality is achieved when the
theoretically optimal mechanism is used. If the tape’s Hamilto-
nian is not degenerate, the minimum work investment requires
an additional contribution �E := k[E(X) − E(Xdflt)], where
E(X) is the expectation value of a tape system’s energy when
configured into the pattern Xt , and E(Xdflt) is the expectation
value of the tape system’s energy in its default state Xdflt.

We can divide the work cost of generating a pattern into two
contributions: one from changing the entropy (and thus the
free energy) of the systems on the tape, and one from updating
the internal memory. The cost Wk

tape associated with writing
k symbols onto the tape (at inverse temperature β = 1

kBT
) is

given by the first line of Eq. (1):

β Wk
tape � k[H (Xdflt) − H (Xt+1|St )]. (2)

This value is determined by the distribution over causal states
S (recall that this is unique for any given pattern [2]) rather
than the specific device-dependent internal memory R. As
such, Wk

tape has no dependence on the choice of prescient
memory, and scales trivially with the stride k, and is therefore
an intrinsic property of the pattern rather than of the machine
generating it (see Fig. 2 for one possible physical realization
of this cost using the framework of, e.g., Ref. [27], or the
“physical example” in Sec. 7 of the Appendix). (If the systems
onto which the pattern is encoded do not have a degenerate
Hamiltonian, the additional energy term �E should also be
associated with the tape, and incorporated into Wk

tape).
The remaining contribution Wk

diss corresponds to the cost
of updating the internal memory from Rt to Rt+k so that the
generator maintains prescience. This is bounded by

βWk
diss(R) � H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k), (3)

which is always nonnegative for all k, and all choices of
memory R (see Lemma 5). Figure 3 illustrates one possible
realization of this limit, but we stress that the bound given in

Rt

Rt Rt+k

Rt+k

Rt+k

Xt+1

Reversible control gate

Reversible control gate 

Landauer erasure, at work cost H(Rt|Xt+1...Xt+kRt+k)

1. Updating

2. Decorrelating

3. Resetting

Rt

Xt+1

Xt+1

Xt+1

Rdflt

Rdflt

Xt+k

Xt+k

Xt+k

Xt+k

Work

Heat

FIG. 3. One method of updating the generator’s memory. (The
case for unifilar R is shown.) A blank pure ancilla state Rdflt is
updated at no cost to Rt+k , conditioned on the values of the initial
internal state Rt and systems on the tape Xt+1 . . . Xt+k . The old
state Rt is then decorrelated from Rt+1 and Xt+1 . . . Xt+k , and the
mutual information used to reduce the entropy of the internal state
(transforming it into R̃). Finally, R̃ is reset back to the blank ancilla
state at work cost H (Rt | Xt+1 . . . Xt+kRt+k), so that the generator’s
internal state is ready to produce the next part of the pattern. (See also
Sec. 7 in the Appendix.)

Eq. (1) is general for any method of prescient pattern gen-
eration. In particular, any nondegeneracy within the internal
memory’s Hamiltonian does not play a role in this quantity,
since the process is assumed to be stationary: the average
memory state remains the same at each time-step and so the
memory’s average energy does not change from step to step.

The first term in Eq. (3) represents the cost of erasing the
previous state Rt , offset by the mutual information between
the new state of the memory Rt+k and the patterned outputs
Xt+1 . . . Xt+k .

The second term reflects the effect of (non-)unifilarity.
Memory R is defined as unifilar (see, e.g., Ref. [34]) if
H (Rt+k | RtXt+1 . . . Xt+k) = 0. If the update is not unifilar,3

according to Landauer’s principle we can recover a portion
of the work cost associated with the memory’s change in
entropy. However, the first term in Eq. (3) may be expanded
as H (Rt | Xt+1 . . . Xt+kRt+k) = H (Xt+1 . . . Xt+k | Rt ) −
H (Xt+1 . . . Xt+k | Rt+k) + H (Rt+k | Xt+1 . . . Xt+kRt ), allo-
wing us to alternatively express the bound on dissipated work
as

βWk
diss(R) � H (Xt+1 . . . Xt+k|Rt ) − H (Xt+1 . . . Xt+k|Rt+k),

(4)

[see Lemma 4(iii) in the Appendix]. Here, it can be seen that the
nonunifilar term has been explicitly canceled. Whatever work
might have been gained by introducing randomness into Rt+k

is entirely canceled out by the cost of resetting this randomness
in the previous state Rt . Hence, unifilarity does not per se play

3Causal states are automatically unifilar [2], but we do not need to
make this assumption for the broader class of memory considered in
this article.
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a role in deciding the thermodynamic advantage of prescient
memory.

Rather, we see that the dissipative cost is proportional to
the difference between Rt ’s predictive power to guess the
next k symbols, and Rt+k’s retrodictive power to remember
the preceding k symbols. Failure to predict increases the first
entropy and hence the amount of dissipation. On the other
hand, failure to retrodict increases the second entropy and
lessens the total dissipation.

VIII. EXTRACTING WORK FROM A PATTERN

Let us now evaluate how much work we can extract by
consuming a pattern, by considering the prescient extractor.
Recall that the extractor takes k systems on the tape from a
configuration according to the pattern Xt+1 . . . Xt+k into the
default configuration Xdflt . . . Xdflt and must update its internal
memory from Rt to Rt+k . In order to fully account for all the
changes in entropy in our system, again we consider both the
tape on which the pattern is written and the internal memory
of the extractor. In the Appendix (see Theorem 3), we prove
that the maximum work-output when the tape Hamiltonian is
degenerate is bounded by

βWk
out � k[H (Xdflt) − H (Xt+1 | St )]. (5)

The work output is entirely proportional to the change in
entropy of the k symbols on the tape and has no dependence on
the choice of internal memory R. If the tape Hamiltonian is not
degenerate, such as would typically be the case in experimental
applications, the above acquires the additional term −�E,
corresponding to a change in the expectation value of the tape’s
energy that is equal and opposite to the term in generation.
Unlike with the generator, it does not matter what sort of
memory is used for extraction. Here the cost of updating the
memory appears to be zero.

This curiosity may be explained by carefully considering
the operational difference between generators and extractors.
First, note that these two processes are not exactly the reverse
of each other in terms of initial and final states: in both
generator and extractors, the memory advances in the same
direction from Rt to Rt+k in each cycle. Next, observe that
at the end of the extraction, there is only one copy of the
pattern’s relevant past information (encoded in the extractor’s
internal memory), whereas in generation, this information
is retained in both the generator’s internal memory and on
the tape. The extractor can move the information from the
systems on the tape Xt+1 . . . Xt+k into its internal memory
Rt+k , but the generator must copy this information. Moving
information is a logically reversible process, whereas copying
information is not—and it is logical irreversibility that lies
behind the dissipative costs in computation [9]. This subtle, but
important, distinction reveals to us why updating the memory
must dissipate heat during pattern generation, but not pattern
extraction.

IX. SIMPLER IS THERMODYNAMICALLY BETTER

We are now in a position to consider the whole thermo-
dynamic cycle, as illustrated in Fig. 1. What is the minimal
amount of heat dissipation in such a cyclic process? Suppose

a generator and extractor make use of a particular encoding
map resulting in prescient memory governed by R. In the limit
where both devices are implemented optimally at the same
inverse temperature β, such that the inequalities (1) and (5)
are both saturated, we find that Wk

gen(R) − Wk
out = Wk

diss(R),
where [as per inequality (4)]:

βWk
diss(R) = H (Xt+1 . . . Xt+k|Rt ) − H (Xt+1. . . Xt+k|Rt+k).

(6)

Physically, this represents the minimal amount of heat we must
dissipate given a particular choice of prescient memory, given
that we generate k steps of the pattern per cycle. We now state
two immediate results:

Result I: Wk
diss > 0 whenever I (R ;

←
X) > I (

←
X ;

→
X): If our

choice of prescient states stores more information about the
past of a pattern than the information that the past contains
about the future, then any thermodynamic cycle based on such
states will be wasteful.

Result II: Out of all the possible prescient states R to use
as our internal memory, the simplest ones—corresponding to
the causal states S—dissipate the least heat, i.e., minimize
Wk

diss(R). Thus, simpler is thermodynamically better.
We briefly outline the reasoning here, leaving the formal

proofs for the Appendix. Consider Eq. (4). The first term
is the same for all choices of prescient memory, since they
all contain equal capacity to reduce uncertainty about future
outputs. However, the second term takes its largest value when
Rt+k contains the least information about the preceding k

symbols. This suggests the the less information we retain about
the past, the less heat is dissipated. The minimal dissipation is
then satisfied by using the causal states.

X. THERMODYNAMICS AND COMPLEXITY

Naïvely, one may expect that it is always possible (in
principle) to set Wk

diss(R) = 0 by choosing prescient states

such that I (R ;
←
X) = I (

←
X ;

→
X). That is, given that the past

of a pattern contains b bits about its future, we can build a
fully reversible cycle of pattern generation and extraction by
ensuring our pattern manipulators’ memories contain no more
than b bits about the pattern’s past.

Surprisingly, a fundamental result in computational me-
chanics implies this is not true. Given a generic pattern

P (
←
X,

→
X), its statistical complexity Cμ = H (S) = I (

←
X ; S) is

generally strictly greater than the amount of information

its past contains about it future, I (
←
X ;

→
X). That is, for

most patterns, even the most-efficient prescient memory—the
causal states—contain superfluous information about the past

[20,35]. For these patterns, I (R ;
←
X) > I (

←
X ;

→
X) for all choices

of prescient memory R. This yields us our third result:
Result III: A thermodynamically reversible cycle of pattern

generation and extraction is impossible for any pattern where

Cμ > I (
←
X ;

→
X).

In the Appendix [see Lemma 4(iv)], we also prove that the
minimum dissipative cost may be expressed as a difference in
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mutual information:

βWk
diss(R) = I (Xt+1. . . Xt+k ; Rt+k) − I (Xt+1. . . Xt+k ; Rt ).

(7)

In the instantaneous limit k = 1, this recovers a mathematical
quantity similar to that introduced by Still et al. [36] as
the useless instantaneous nostalgia. This coincidence is
particularly striking, given that the two results are derived
using very different mathematical frameworks.

Increasing the number of steps of the pattern processed per
cycle k never increases the amount of dissipation per step of
the pattern (Theorem 9). (Cf. the dissipation per cycle, which
certainly must not decrease with the step size—Theorem 6.) In
the limit of large k, the minimum dissipation of produce a string

of k parts of the pattern tends toward I (R ;
←
X) − I (

←
X ;

→
X).

Any attempts using smaller k to produce the same number
amount of the pattern will dissipate at least as much work as
this. Moreover, when most efficient memory—the causal states
S—are used, this limiting quantity becomes the crypticity of

a process χ = Cμ − I (
←
X ;

→
X), which captures the minimal

amount of superfluous information that any predicative model
of the given pattern must unavoidable store [20,33,34,37],
coinciding with a previous result of Wiesner et al. [35].

We hope that future work will also bridge the results of this
article with specific physical frameworks, such as presented in
Ref. [13]. This requires further development in the nascent field
of continuous time computational mechanics [38], to identify
whether the process in [13] is indeed an example of prescient
pattern manipulator (as presented in this text), or if its internal
state instead describes another nonprescient type of memory
(e.g., containing oracular information [31]).

XI. GENERAL FRAMEWORK OF PATTERN
MANIPULATION

The two types of device—generators and extractors—that
we have presented in this article are building blocks that can
be combined into complex pattern manipulators. The simplest
example is the cycle of generation followed by extraction at
the same temperature (Fig. 1). This configuration could be
considered as charging a battery that stores energy in the form
of a pattern, to be later released by the extractor. Since the
contributions from writing and consuming the pattern cancel
out, the net cost is from the work dissipation whilst updating
the generator’s memory. Using the simplest internal memory
ensures that the least work is wasted.

However, the cycle presented in Fig. 1 could be modified
such that the generator and extractor act at different temper-
atures. In the scenario where the extractor bath temperature
TE is greater than the generator bath temperature TG and
H (Xt+1 | St ) < H (Xdflt), and the tape is subject to a degenerate
Hamiltonian, the system will function as a heat engine with
efficiency η given:

η = 1 − TG

TE

− TGχR(k)

TEk[H (Xdflt) − H (Xt+1 | St )]
, (8)

where χR(k) = H (Rt |Xt+1 . . . Xt+kRt+k) − H (Rt+k |
RtXt+1 . . . Xt+k) is the right-hand side of Eq. (6). It follows
that the Carnot efficiency ηC = 1 − TE

TG
can only be achieved

SH ST
1-p | H p | H

p | T
1-p | T

FIG. 4. Perturbed coin pattern ε-machine (k = 1). The “perturbed
coin” pattern may be produced by a weighted random walk on
this network. The nodes represent the two configurations of the
ε-machines internal memory R ∈ {sh,st } (i.e., the causal states). The
directed edges represent the effect of a single time step: a (possible)
change in memory configuration, and the setting of the system on
the tape to some value. The labels P | x gives the probability P of
transitioning to the particular memory configuration Rt+1 (conditional
on the initial memory configuration Rt ), while configuring the system
at index t + 1 on the tape into the state x ∈ {H,T }).

when the statistical complexity Cμ = I (
←
X ;

→
X) such that the

pattern has zero crypticity.

XII. SIMPLE EXAMPLE

Let us explicitly evaluate the thermodynamics of a simple
pattern described by the perturbed coin process. Envision a
coin in a box that takes one of two possible configurations:
{x} = {H,T } (standing for “heads” and “tails,” respectively).
At each discrete time step, the box is perturbed such that with
probability p ∈ (0,1) the coin flips from H to T (or vice versa).

The pattern
↔
X consists of bi-infinite string of random variables

describing which side of the coin faces up at each time
step.

It is clear that this pattern is Markovian: the statistics of

future outputs
→
X depend only on the very last output Xt ,

corresponding to state of coin at the current time step. The
past thus divides into two causal states, denoted sH and sT ,
corresponding to the two possible values of Xt . The statistics
of the pattern can then be represented by transitions between
these causal states (see Fig. 4). By symmetry, P (S = sH ) =
P (S = sT ) = 1

2 , and so the process has statistical complexity
Cμ = 1 bit.

Here we study the thermodynamic quantities when running
a thermodynamic cycle at different strides k using a variety
of different machines: (1) The simplest pattern manipulators,
that stores only the causal states, (2) the “last two” machines
that stores the last two values the coin took (i.e., setting
R = Xt−1Xt as per Fig. 5), and (3) a more general “last
N” machine that stores the last N outputs (i.e., setting R =
Xt−n+1 . . . Xt−1Xt ). The cases N = 1 and N = 2 correspond
to the ε-machine and “last two” machine, respectively.

The change in free energy for k-symbols of the pattern
[Eq. (2)], extractable work when consuming k-symbols of
the pattern [Eq. (5)], and unavoidable heat dissipation are
summarized in Table I. Detailed calculations can be found
in Sec. 6 of the Appendix. We make several observations:

(1) The free energy change of the tape from Eq. (2) and the
extractable work from Eq. (5) are always equal and opposite.
Although this cost must be accounted for when running
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A

TH TT

HH HT

1-p|H

p|H

1-p|T

p|T

1-p|H

1-p|T

p|H
p|T

FIG. 5. Perturbed coin process “last two” machine (k = 1). The
random walk on this network produces exactly the same pattern as
the ε-machine (Fig. 4). This machine’s memory corresponds to the
last two outcomes of the pattern.

the generator or extractor in isolation, the two cancel in a
thermodynamic cycle.

(2) Choosing different Xdflt affects the amount of work
required to write to the tape, and the amount of work generated
when the tape is consumed, but does not change the total heat
dissipated per cycle. Suppose that Xdflt is maximally mixed,
such that H (Xdflt) = 1 bit. In this case, work must be invested
to write the pattern to the tape (except when p = 1

2 ). If instead
Xdflt is always heads, such that H (Xdflt) = 0, then we would
instead extract h(p) := −p log p − (1 − p) log (1 − p) units
of work from each time step (at the cost of reducing the free
energy of the tape). Another interesting choice would be to
set H (Xdflt) = h(p), such that the free energy of the tape does
not change during generation or consumption, and only the
dissipative terms remain. In all cases, the total amount of heat
dissipated over the entire cycle is the same.

(3) Simpler is better. Out of all possible last-N machines,
the one that minimizes the dissipation per cycle occurs when
N = 1, corresponding to the simplest machines that store
only the current causal state of the past. Heat dissipation is
monotonically nondecreasing with N . Note, however, there are
subtleties: For a given stride k, the penalty for remembering

more of the past ‘saturates’ when N = k. This is because
when the stride k < N , part of the memory can be updated in
a logically reversible way (see appendix for details).

(4) If one wants to create as much of the pattern as possible
with minimal heat dissipation per output symbol, it is generally
advantageous to use large strides. For example, when using
ε-machines, the heat dissipation remains fixed at h(p) for all
k. Thus, that generating k outputs per cycle will reduce the
dissipation per symbol by a factor of k.

Finally, the ultimate limits on heat dissipation can be
immediately evaluated by noting that the crypticity of the
pattern is nonzero. In particular the pattern has crypticity χ =
Cμ − I (

←
X,

→
X) = h(p). This bounds the minimal dissipation

regardless of stride or what machine is used.
In Sec. 7 of the Appendix, we provide a discussion of

this pattern manipulation, as it could be implemented in a
more immediately physical framework. There, we provide one
mechanism for implementing pattern manipulations at work
costs that saturate the bounds of the first row of Table I, and we
consider explicitly the efficiency of a heat engine constructed
from a cycle of generation followed by extraction.

XIII. DISCUSSION AND OUTLOOK

Here we have presented a formal framework for treating
patterns as thermodynamic resources that require energy
to synthesize, which can then in turn be used to perform
work. This involved the study of generators that convert
work into a pattern and extractors that consume patterns to
perform useful work. These components were then combined
to construct a full thermodynamic cycle of pattern generation
and consumption. We then identified the dissipative work costs
involved within such a cycle and related it to the complexity
of the generators and extractors used. We found that simpler is
thermodynamically better; the less past information retained,
the less dissipation. Optimality is achieved when we retain just
enough information to be able to replicate desired operational
behavior. The resultant unavoidable dissipation is then given
by the crypticity of the pattern. These relations present
thermodynamic interpretations for a fundamental complexity-
theoretic property.

TABLE I. Minimum thermodynamic costs for perturbed coin process. Here h(p) := −p log p − (1 − p) log (1 − p) denotes the binary
entropy. To arrive at the value in these columns, we calculate that H (Xt+1 | St ) = h(p) by noting that both H and T states are equally likely to
occur, and both have an uncertainty of h(p) as to the value of the next output. It can be seen immediately from the form of Eqs. (2) and (5) that
these values scale linearly with k: the number of pattern elements written or consumed per cycle.

Machine Tape cost βWk
tape Extractable work βWk

out Dissipation βWk
diss Dissipation per output

name Ineq. (2) Ineq. (5) Ineqs. (3), (4), (7), or (6) βWk
diss/k

ε-machine (k = 1) [H (Xdflt) − h(p)] [H (Xdflt) − h(p)] h(p) h(p)

ε-machine (k = 2) 2[H (Xdflt) − h(p)] 2[H (Xdflt) − h(p)] h(p) h(p)
2

ε-machine (k � 3) k[H (Xdflt) − h(p)] k[H (Xdflt) − h(p)] h(p) h(p)
k

“Last two” (k = 1) [H (Xdflt) − h(p)] [H (Xdflt) − h(p)] h(p) h(p)

“Last two” (k = 2) 2[H (Xdflt) − h(p)] 2[H (Xdflt) − h(p)] 2h(p) h(p)

“Last two” (k � 3) k[H (Xdflt) − h(p)] k[H (Xdflt) − h(p)] 2h(p) 2
k
h(p)

“Last N” (k � N ) k[H (Xdflt) − h(p)] k[H (Xdflt) − h(p)] kh(p) h(p)

“Last N” (k > N ) k[H (Xdflt) − h(p)] k[H (Xdflt) − h(p)] Nh(p) N

k
h(p)
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One can extend this framework to consider alternative
scenarios where generators and extractors act in parallel on
different patterns. For example, consider a scenario where an
extractor consumes one pattern, and the energy released is
then used to power a generator that writes a different pattern.
This could approximate the actions of a living organism:
for example, a lion metabolizes the structure of an antelope
(destroying it in the process) and uses the energy released
to build more lion. Using the simplest internal memory for
generation grants the advantage that less antelope needs to be
consumed in order to produce the same amount of lion.

A foundational question of interest is whether this unavoid-
able heat dissipation is truly fundamental, or could it somehow
be surpassed with more exotic information processing. Recent
research indicates that quantum processors can generate
certain statistical patterns of behavior more simply [39],
resulting in a push to generalize computational mechanics into
the quantum regime [40–44]. Could this simplicity also yield
thermodynamic advantage? Any such results would present
exciting new thermodynamic signatures of quantumness.
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APPENDIX

1. Prescient pattern manipulators

Lemma 1 (Cycle remains in step). Consider a generator
with prescient memory R and an extractor with prescient
memory R′. At time t , let these memories initially be in

configurations r and r ′ respectively, satisfying P (
→
Xt | R =

r) = P (
→
Xt | R = r ′). After k symbols are produced by the

generator and then subsequently consumed by the extractor,

the two devices remain “in step” such that P (
→
Xt+k | R = r̃) =

P (
→
Xt+k | R = r̃ ′) for the updated configurations r̃ and r̃ ′.
Proof. This follows almost immediately from the fact

that both devices maintain the prescience of their memory.
When a prescient generator produces k steps of the pattern
Xt+1 . . . Xt+k = xt+1 . . . xt+k , it updates its memory to a new
prescient state with configuration R̃ = r̃ that satisfies

P (
→
Xt+k | R̃ = r̃)

= P (
→
Xt+k | R = r,Xt+1 . . . Xt+k = xt+1 . . . xt+k). (A1)

The generator can only produce sequences xt+1 . . . xt+k that
satisfy P (Xt+1 . . . Xt+k = xt+1 . . . xt+k | R = r) > 0. Simi-
larly, when the prescient extractor receives a sequence, it also
updates its internal memory to some state R̃′ = r̃ ′ such that

P (
→
Xt+k | R̃′ = r̃ ′)

= P (
→
Xt+k | R′ = r ′,Xt+1 . . . Xt+k = xt+1 . . . xt+k). (A2)

We now show that if the devices are initially in step,

such that P (
→
Xt | R = r) = P (

→
Xt | R′ = r ′), the above updates

involving the same string will keep them in step.
The semi-infinite future of a pattern expected at the

initial time t ,
→
Xt , can be split into a finite string of

length k, Xt+1 . . . Xt+k , and another semi-infinite string
→
Xt+k = Xt+k+1 . . .. Noting that both r and r ′ initially predict

the same statistics for
→
Xt (and hence also for any finite

substring thereof), for any realization of the future
→
xt =

xt+1 . . . xt+k→
xt+k , it follows from the probability chain rule

on
→
Xt conditioned on the initial state of both devices:

P (
→
Xt = →

xt | R = r) = P (
→
Xt = →

xt | R′ = r ′)

= P (Xt+1 . . . Xt+k = xt+1 . . . xt+k | R = r)

·P (
→
Xt+k = →

xt+k | R = r,Xt+1 . . . Xt+k = xt+1 . . . xt+k),

= P (Xt+1 . . . Xt+k = xt+1 . . . xt+k | R′ = r ′)

·P (
→
Xt+k = →

xt+k | R′ = r ′,Xt+1 . . . Xt+k = xt+1 . . . xt+k),

(A3)

and since also

P (Xt+1 . . . Xt+k = xt+1 . . . xt+k | R = r)

= P (Xt+1 . . . Xt+k = xt+1 . . . xt+k | R′ = r ′), (A4)

we can then conclude that

P (
→
Xt+k = →

xt+k | R = r,Xt+1 . . . Xt+k = xt+1 . . . xt+k)

= P (
→
Xt+k = →

xt+k | R′ = r ′,Xt+1 . . . Xt+k = xt+1 . . . xt+k),

(A5)

for arbitrary xt+1 . . . xt+k , and all possible futures xt+k . Thus,
substituting in Eqs. (A1) and (A2):

P (
→
Xt+k | R̃ = r̃) = P (

→
Xt+k | R̃′ = r̃ ′). (A6)

The devices hence remain in step after each cycle. �

2. Proofs of thermodynamic costs

Theorem 2 (Work cost of generation). For a generator of a

pattern
↔
X that maintains prescient memory R, the work cost

Wk
gen to configure k systems according to the pattern is bounded

by

βWk
gen(R) � k[H (Xdflt) − H (Xt+1 | St )]

+H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k). (A7)
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Proof. We prove this using information theoretical means.
In the generation process, the generator’s internal memory is
initially distributed according to Rt , and the k systems on the
tape according to Xdflt . . . Xdflt. After generation, the final state
of the generator’s internal memory is Rt+k , and the k systems
on the tape are in states Xt+1 . . . Xt+k .

As such, a device-independent lower bound on the cost of
generation may be found by considering Landauer’s principle
as applied to these states

βWgen(R) � H (RtXdflt . . . Xdflt) − H (Rt+kXt+1 . . . Xt+k).

(A8)

First, we note that H (RtXt+1 . . . Xt+kRt+k) may be ex-
panded using the chain rule in two different ways:

H (RtXt+1 . . . Xt+kRt+k)

= H (Rt ) + H (Xt+1 | Rt ) + . . .

+H (Xt+k | RtXt+1 . . . Xt+k−1)

+H (Rt+k | RtXt+1 . . . Xt+k)

= H (Rt+k) + H (Xt+k | Rt+k) + . . .

+H (Xt+1 | Rt+kXt+k . . . Xt+2)

+H (Rt | Rt+kXt+k . . . Xt+1). (A9)

This allows us to re-express the final state entropy
H (Rt+kXt+1 . . . Xt+k) in the form

H (Rt+kXt+1 . . . Xt+k)

= H (Rt+k) + H (Xt+k | Rt+k) + . . .

+H (Xt+1 | Rt+kXt+k . . . Xt+2),

= H (Rt ) + H (Xt+1 | Rt ) + . . .

+H (Xt+k | RtXt+1 . . . Xt+k−1)

+H (Rt+k | RtXt+1 . . . Xt+k)

−H (Rt | Rt+kXt+k . . . Xt+1). (A10)

Moreover, since the internal memory R is prescient about
the future of X, and all choices of prescient memory must
correspond to a fine-graining of the causal states St (see
Lemma 7 in Ref. [2]). As such RtXt+1 . . . Xt+j is sufficient to
perfectly determine St+j , which is in turn as exactly as useful
as RtXt+1 . . . Xt+j for predicting values of Xt+j+1 onwards.
Thus, the term H (Xt+j | St+j−1) may be substituted for every
addend of the form H (Xt+j | RtXt+1 . . . Xt+j−1) in Eq. (A10).
Moreover, by stationarity, H (Xt+1 | St ) = H (Xt+2 | St+1) =
. . ., and hence the sum over k of these terms may be combined
into the single expression kH (Xt+1 | St ). As such, we can
re-express the final entropy following generation as

H (Rt+kXt+1 . . . Xt+k)

= H (Rt ) + kH (Xt+1 | St )

+H (Rt+k | RtXt+1 . . . Xt+k)

−H (Rt | Rt+kXt+k . . . Xt+1). (A11)

Meanwhile, the initial entropy H (RtXdflt . . . Xdflt) can
straightfowardly be written

H (RtXdflt . . . Xdflt) = H (Rt ) + kH (Xdflt), (A12)

since there are no correlations within the initial state.

Hence, from Landauer’s principle, the difference between
these two quantities yields the minimum work exchange
required to generate a pattern and update the generator’s
internal memory:

βWk
gen(R) � k[H (Xdflt) − H (Xt+1 | St )]

+H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k). (A13)

�
Theorem 3 (Work output from extraction). No extractor

with prescient internal memory R can extract from k symbols

of a pattern
↔
X, more work Wk

out than the following bound:

βWk
out � k[H (Xdflt) − H (Xt+1 | St )]. (A14)

The choice of internal memory plays no limiting role in
determining the amount of work extractable.

Proof. As with Theorem 2, we consider the fundamental
limitations placed by Landauer’s principle. A cyclically
operating prescient extractor must result in the transformation
of the tape from Xt+1 . . . Xt+k to Xdflt . . . Xdflt, while updating
its internal memory from Rt to Rt+k . As such, the bound from
Landauer’s principle is

βWk
out � H (Rt+kXdflt . . . Xdflt) − H (RtXt+1 . . . Xt+k).

(A15)

In this case, the final entropy H (Rt+kXdflt . . . Xdflt) is easy
to calculate, since there is no correlation between any of the
variables:

H (Rt+kXdflt . . . Xdflt) = H (Rt+k) + kH (Xdflt). (A16)

On the other hand, the entropy of the initial state
H (RtXt+1 . . . Xt+k) is lower than if the variables were
independent, since Rt contains some information that can
be used to infer Xt+1 . . . Xt+k . We can use the chain rule
expansion to see that this entropy is

H (RtXt+1 . . . Xt+k)

= H (Rt ) + H (Xt+1 | Rt ) + . . .

+H (Xt+k | RtXt+1 . . . Xt+k−1). (A17)

Using exactly the same logic as in Theorem 2, each term of
the form H (Xt+j | RtXt+1 . . . Xt+j−1) can be substituted with
a term H (Xt+j | St+j−1) (because the memory is prescient),
and from stationarity these terms are all the same, and so may
be collectively replaced by kH (Xt+1 | St ). Thus, the initial
entropy is

H (RtXt+1 . . . Xt+k) = H (Rt ) + kH (Xt+1 | St ). (A18)

Finally, from stationarity we note that H (Rt ) = H (Rt+k)
and so computing the difference in these entropies, and
applying Landauer’s principle, we arrive at the bound

βWk
out � k[H (Xdflt) − H (Xt+1 | St )], (A19)

which has no explicit dependence on R. �

3. Dissipative work term

As discussed in the article, since the work cost in the first
line of Eq. (15) of Ref. [2] has no dependence on the choice of
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memory used, but is entirely a function of the pattern on the
tape, and moreover is exactly equal to the energy that may be
recovered according to Ref. [3], we may naturally divide the
cost into two parts:

βWk
tape � k[H (Xdflt) − H (Xt+1 | St )], (A20)

βWk
diss(R) � H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k). (A21)

In an optimally implemented cycle of generation and
extraction of the same pattern using the same type of memory
R in both devices (where both run at the same temperature),
the change in work is given by the quantity that saturates
Eq. (A21). For notational convenience, we denotate this
minimum difference as χR(k),

χR(k) : = H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k), (A22)

such that Theorem 2 may be rephrased as

βWk
diss(R) � χR(k). (A23)

We can garner some additional physical insight about
χR(k), by expressing it in a few alternative forms, listed below:

Lemma 4 (Equivalent forms of χR(k)). For prescient mem-
ory R, the following expressions are equal:

(1) Memory reset-nonunfilarity:

χR(k) = H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k), (A24)

(2) Past memory-future memory uncertainty:

χR(k) = H (Rt | Xt+1 . . . Xt+k)

−H (Rt+k | Xt+1 . . . Xt+k). (A25)

(3) Predictive-retrodictive uncertainty:

χR(k) = H (Xt+1 . . . Xt+k | Rt ) − H (Xt+k . . . Xt+1 | Rt+k).

(A26)

(4) Retrodictive-predictive information:

χR(k) = I (Xt−k+1 . . . Xt ; Rt ) − I (Xt+k . . . Xt+1 ; Rt ).

(A27)

(5) Pattern-memory–memory-pattern block entropy:

χR(k) = H (Xt+1 . . . Xt+kRt ) − H (Xt+k . . . Xt+1Rt+k).

(A28)

(6) Difference in memory retrodictability:

χR(k) = H (Rt |
→
X) − H (Rt+k |

→
X). (A29)

Proof. (i) We take the form of 1 as our initial definition of
χR(k):

χR(k) : = H (Rt | Xt+1 . . . Xt+kRt+k)

−H (Rt+k | RtXt+1 . . . Xt+k). (A30)

(ii) We may expand H (RtXt+1 . . . Xt+kRt+k) in two ways:

H (RtXt+1 . . . Xt+kRt+k)

= H (Xt+1 . . . Xt+k) + H (Rt | Xt+1 . . . Xt+k)

+H (Rt+k | RtXt+1 . . . Xt+k)

= H (Xt+1 . . . Xt+k) + H (Rt+k | Xt+1 . . . Xt+k)

+H (Rt | Rt+kXt+1 . . . Xt+k). (A31)

Since the terms H (Xt+1 . . . Xt+k) cancel, we see

H (Rt | Rt+kXt+1 . . . Xt+k) − H (Rt+k | RtXt+1 . . . Xt+k)

= H (Rt |Xt+1 . . . Xt+k) − H (Rt+k|Xt+1 . . . Xt+k). (A32)

The top term is i, the bottom ii, hence these are equal.
(iii) A different expansion of the joint entropy is

H (RtXt+1 . . . Xt+kRt+k)

= H (Rt ) + H (Xt+1 . . . Xt+k | Rt )

+H (Rt+k | RtXt+1 . . . Xt+k)

= H (Rt+k) + H (Xt+k . . . Xt+1 | Rt+k)

+H (Rt | Rt+kXt+k . . . Xt+1). (A33)

Using stationarity to set H (Rt ) = H (Rt+k),

H (Rt | Rt+kXt+1 . . . Xt+k) − H (Rt+k | RtXt+1 . . . Xt+k)

= H (Xt+1 . . . Xt+k|Rt ) − H (Xt+k . . . Xt+1|Rt+k). (A34)

The top term is i, the bottom is iii, hence these expressions are
equal.

(iv) From the definition of mutual information I (A ; B) =
H (A) − H (A | B), and using stationarity, we can re-express
χR(k) as

H (Xt+1 . . . Xt+k|Rt ) − H (Xt+k . . . Xt+1|Rt+k)

= I (Xt+1 . . . Xt+k; Rt+k) − I (Xt+k . . . Xt+1; Rt ),

= I (Xt−k+1 . . . Xt ; Rt ) − I (Xt+k . . . Xt+1; Rt ). (A35)

The top term is iii, the bottom is iv, hence these expressions
are equal.

(v) Again, we expand

H (RtXt+1 . . . Xt+kRt+k)

= H (RtXt+1 . . . Xt+k) + H (Rt+k | RtXt+1 . . . Xt+k)

= H (Rt+kXt+k . . . Xt+1) + H (Rt | Rt+kXt+k . . . Xt+1),

(A36)

such that

H (Rt | Rt+kXt+1 . . . Xt+k) − H (Rt+k | RtXt+k . . . Xt+1)

= H (Xt+1 . . . Xt+kRt ) − H (Xt+k . . . Xt+1Rt+k). (A37)

The top term is i, the bottom is v, hence these expressions are
equal.

(vi) Showing this last form is equivalent is slightly more
involved. It may be proven by adapting and generalizing
Theorem 1 of Mahoney et al. [37] beyond causal states into
general (possibly nonunifilar) memory R.

For some l > k, consider the expansions of the two terms:

H (RtXt+1 . . . Xt+l) = H (Xt+1 . . . Xt+l)

+H (Rt | Xt+1 . . . Xt+k), (A38)
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H (Rt+kXt+1 . . . Xt+l) = H (Xt+1 . . . Xt+l)

+H (Rt+k | Xt+1 . . . Xt+l). (A39)

The difference between these two terms is

� := H (RtXt+1 . . . Xt+l) − H (Rt+kXt+1 . . . Xt+l)

= H (RtXt+1 . . . Xt+k)

+H (Xt+k+1 . . . Xt+l |RtXt+1 . . . Xt+k)

−H (Rt+kXt+1 . . . Xt+k)

−H (Xt+k+1 . . . Xt+l |Rt+kXt+1 . . . Xt+k). (A40)

Both the conditional entropy terms are the conditional
entropy of the future of the pattern (steps t + k + 1 to
t + l) with respect to the part of the pattern (and mem-
ory) that they are conditioned on (steps t to t + k). This
allows us to use the fact that R is prescient to argue that

H (
→
Xt+k | Rt+kXt+1 . . . Xt+k) = H (

→
Xt+k | Rt+k), since Rt+k

already contains all the information to predict
→
Xt+k , the

additional Xt+1 . . . Xt+k are redundant—a property of pre-
scient memory known as causal shielding [45]. Similarly,

H (
→
Xt+k | RtXt+1 . . . Xt+k) = H (

→
Xt+k | Rt+k) (see discussion

within Theorem 2). Thus, these two terms are the same, and
we can hence simplify the expression to

� = H (Rt | Xt+1 . . . Xt+l) − H (Rt+k | Xt+1 . . . Xt+l)

= H (RtXt+1 . . . Xt+k) − H (Rt+kXt+1 . . . Xt+k). (A41)

Thus, � = χR(k) in the form given by v. Since this equality is
true for all l > k, we can then take the limit l → ∞ (such that

Xt+1 . . . Xt+l →
→
X) and arrive at

χR(k) = H (Rt |
→
X) − H (Rt+k |

→
X), (A42)

proving v and vi are equivalent. �

4. Memory k-step crypticity

The crypticity of a pattern [34,37] is given χ = H (St |
→
X).

This property can be generalized to a memory crypticity χR ,
defined

χR = H (Rt |
→
X) − H (Rt |

←
X). (A43)

The second term subtracts any uncertainty in the memory state
having observed the entire sequence of pattern to date. For

causal states R = S, χS = χ , since H (St |
←
X) = 0.

Using the form of χR(k) in Lemma 4(ii), we see
limk→∞ χR(k) = χR . This motivates the naming of the quan-
tity χR(k) as the memory k-step crypticity. Moreover, in any of
the forms listed in ii when R = S, χS(k) =: χ (k), the pattern’s
intrinsic k-step crypticity (defined in [37] as the “k-cryptic
approximation”).

We also remark that by treating the k = 0 case an invitation
to completely omit the terms “Xt+1 . . . Xt+k” in Lemma 4, then
χR(0) = 0 in every form. (It is established similarly in Ref. [37]
that χ (0) = 0). Physically (i.e., when taken with Theorem 2),
this is a statement that any “generator” that produces nothing
and does not change its memory is theoretically allowed to
dissipate no work, regardless of what memory it has.

Despite not necessarily corresponding to causal states,
nor necessarily updating in a unifilar manner, the memory
k-step crypticity χR(k) shares a few useful properties with the
pattern’s intrinisic k-step crypticity χ (k), which we now prove:

Lemma 5 (χR(k) is nonnegative and nondecreasing). For
any choice of prescient memory R, χR(k) � 0 for all k � 0,
and χR(k) � χR(k′) for all k � k′.

Proof. First, recall from Theorem 4(vi) that

χR(k) = H (Rt |
→
Xt ) − H (Rt+k |

→
Xt ). (A44)

The entropy H (Rt+k | �Xt ) � H (Rt+k+1 | �Xt ). This is most
obviously seen by using stationarity to rewrite the two terms
as

H (Rt+k |
→
Xt ) = H (Rt | Xt−k+1 . . . Xt

→
Xt ), (A45)

H (Rt+k+1 |
→
Xt ) = H (Rt | Xt−kXt−k+1 . . . Xt

→
Xt ). (A46)

Since the latter term is conditioned on the same variables
as the former, plus an additional variable Xt−k , it cannot be
higher. This nonincreasing property then implies by induction

H (Rt+k |
→
X) � H (Rt |

→
X). Hence, we see that

χR(k) = H (Rt |
→
X) − H (Rt+k |

→
X) � 0 (A47)

for all k.
Since χR(k) = H (Rt |

→
Xt ) − H (Rt+k |

→
Xt ) is the difference

between a constant term and a nonincreasing term, it follows
that χR(k) is nondecreasing. �

In the context laid out in our article, the above lemma may
be interpreted physically:

Theorem 6. For any generator with prescient memory R,
the dissipative work cost of generation Wk

diss(R) is always
nonnegative. In the special case where the process is imple-
mented optimally (i.e., at the limit from Landauer’s principle),
a generator that produces k steps of the pattern never dissipates
less work than a generator that produces k′ < k steps of the
pattern.

Proof. Recall that

βWk
diss(R) � χR(k). (A48)

From Lemma 5, χR(k) � 0, hence

βWk
diss(R) � 0. (A49)

When implemented optimally (i.e., at the limit from
Landauer’s principle), this inequality βWk

diss(R) � χR(k) is
saturated. In this regime, the monotonic non-decreasing nature
of χR(k) (Lemma 5) guarantees monotonic nondecreasing
dissipation. �

We can also show that χR(k) is convex upward for k � 0.
To do this, we first prove the following lemma:

Lemma 7 (Monotonically decreasing retrodiction). If pre-
scient memory R can be used by a generator to produce a
pattern, the quantity

ρ(k) :=
⎧⎨
⎩

0 k = 0,

H (Xt | Rt ) k = 1,

H (Xt | Xt+1 . . . Xt+k−1Rt+k−1) k > 1
(A50)

is nonincreasing with respect to k.
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Proof. For causal states, an elegant proof of this presented
as Theorem 2 of Ref. [34]. However, as generic memory R

is not necessarily unifilar, their method cannot be generalized
here. Instead, we supply an alternative proof that relies on the
data-processing inequality, which states

I (A ; B) � I (A ; f (B)) (A51)

for random variables A and B, and a map f that acts on
them. (Intuitively, post-processing local data can not increase
its nonlocal correlations).

If R is memory that is physically used by a generator
to produce a pattern one step at a time, there must be
some function f : XdfltR

t �→ Rt+1Xt+1 corresponding to the
update. Thus, from the data-processing inequality,

I (XtXdflt ; Rt ) � I (XtXdflt ; Xt+1Rt+1). (A52)

Since Xdflt is uncorrelated with everything, we can omit it from
both sides of the equation,

I (Xt ; Rt ) � I (Xt ; Xt+1Rt+1), (A53)

which in terms of conditional entropy is

H (Xt | Rt ) � H (Xt | Xt+1Rt+1). (A54)

Hence, ρ(2) � ρ(1).
Closely related to the update function f is the function f ′ :

Xt+1 . . . Xt+k−1XdfltR
t+k−1 �→ Xt+1 . . . Xt+kRt+k , which de-

scribes the update in the presense of a stretch of the tape
Xt+1 . . . Xt+k , which remains undisturbed and moreover does
not affect the choice of update. This is then a tensor product
of the identity function on Xt+1 . . . Xt+k−1 with function f

on XdfltR
t+k−1; and so if f is a valid positive map, so too

must be f ′. Thus, we may once more use the data-processing
inequality:

I (Xt ; Xt+1 . . . Xt+k−1XdfltR
t+k−1)

� I (Xt ; Xt+1 . . . Xt+k−1Xt+kRt+k). (A55)

Taking into account that Xdflt has no correlations and writing
in terms of conditional entropies,

H (Xt | Xt+1 . . . Xt+k−1Rt+k−1)

� H (Xt | Xt+1Xt+kRt+k). (A56)

By induction, this proves the claim for k > 1. Trivially,
0 � H (Xt | Rt ), because the term is an entropy. Together,
these statements show that ρ monotonically increases for
all k � 0. �

Lemma 8 (Memory-crypticity is convex upwards). χR(k)
is convex upwards with respect to k. That is,

χR(k) − χR(k − 1) � χR(k′) − χR(k′ − 1) (A57)

when k � k′.
Proof. We can expand χR(k) in the form of Lemma 4(v):

χR(k) = H (Xt+1 . . . Xt+kRt ) − H (Xt+k . . . Xt+1Rt+k)

= H (Xt+k−1 . . . Xt+1Rt )

+H (Xt+k | Xt+k−1 . . . Xt+1Rt )

−H (Xt+2 . . . Xt+kRt+k)

−H (Xt+1 | Xt+2 . . . Xt+kRt+k). (A58)

Using stationarity and rearranging:

χR(k) = H (Xt+k−1 . . . Xt+1Rt )

−H (Xt+1 . . . Xt+k−1Rt+k−1)

+H (Xt+k | Xt+k−1 . . . Xt+1Rt )

−H (Xt | Xt+1 . . . Xt+k−1Rt+k−1)

= χR(k − 1) + H (Xt+k | Xt+k−1 . . . Xt+1Rt )

−H (Xt | Xt+1 . . . Xt+k−1Rt+k−1). (A59)

Using the prescience of R, the second term
H (Xt+k | Xt+k−1 . . . Xt+1Rt ) = H (Xt+k | Rt+k−1) and, from
stationarity, is equal to H (Xt+1 | Rt ). Thus,

χR(k) = χR(k − 1) + H (Xt+1 | Rt )

− H (Xt | Xt+1 . . . Xt+k−1Rt+k−1). (A60)

Thus, we find by induction

χR(k) = kH (Xt+1 | Rt ) − �(k), (A61)

where

�(k) = H (Xt | Rt ) +
k−1∑
i=1

H (Xt | Xt+1 . . . Xt+iRt+i)

=
k∑

i=0

ρ(i), (A62)

where ρ(i) is the expression from Lemma 7, which has been
established to be positive and monotonically nondecreasing.
The sum �(k) of such monotonotically nondecreasing terms
must hence be convex downward for k � 0. Since χR(k) is
then the difference between a linear contribution and a convex
downward contribution, it must be convex upward.

This property remains true when we extend the domain of
χR(k) to include χR(0) = 0 (�(0) = ρ(0) = 0). �

When taken together with Theorem 2, the above property
has the following physical implication:

Theorem 9. For any generator optimally implementing
prescient memory R, the minimum work investment per step
of the pattern produced is never larger if the generator produces
a larger string of the pattern in any given run. That is, for a
given choice of prescient memory R, it is thermodynamically
better to produce as much of the pattern as possible at once.

Proof. Since χR(k) is convex upwards (Lemma 8), includ-
ing its extension to χR(0) = 0, this immediately implies

χR(k)

k
� χR(k′)

k′ when 1 � k � k′. (A63)

Taken together with Theorem 2, this immediately implies
the claim. �

We can now show that for any choice of R, either χR(k) = 0
for all k � 1, or χR(k) �= 0 for all k � 1. That is, it is not
possible for only some of χR(k � 1) to be zero.

Lemma 10 (All zero). For a given choice of R, if χR(k) = 0
for any k � 1, then χR(k) = 0 for all k � 1. Also, if χR =
limk→∞ χR(k) = 0, then χR(k) = 0 for all k � 1. Moreover,
if χR(k) = 0 for any k � 1, then χR = limk→∞ χR(k) → 0.
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Proof. First consider k′ < k. From Lemma 5, χR is
nondecreasing and positive. Hence, χR(k) = 0 implies that
χR(k′) = 0 for all k′ � k.

Now consider for k′ > k. From Theorem 9,

χR(k)

k
� χR(k′)

k′ whenk � k′, (A64)

and since χR(k) = 0,

0 � χR(k′)
k′ , (A65)

implying that χR(k′) � 0. But Lemma 5 states χR(k′) � 0, and
hence we may conclude that χR(k′) = 0. Thus, if χR(k) = 0
for one value of k � 1, χR(k) = 0 for all values of k � 1.

The second sentence of the claim is simpler to prove. Again,
Lemma 5 states that χR is nondecreasing and positive. If its
limit χR = limk→∞ χR(k) = 0, then χR(k) = 0 for all k, since
this limit is approached from below.

Finally, to show the last sentence of the claim, we more
carefully pick at ineq. (A63) of Theorem 9. Writing as

k
χR(k′)

k′ � χR(k), k × 0 � χR(k), (A66)

where χR(k′)
k′ is strictly 0 for all k (not, say, some finite expres-

sion that becomes vanishingly small with k). Only then may
we safely take the limit k → ∞, such that limk→∞(0 × k) = 0
and hence limk→∞ χR(k) � 0. It thus follows that χR = 0. �

Corollary 11 (All nonzero). If for some k � 1, χR(k) > 0,
then χR(j ) > 0 for all j � 1, and χR = limk→∞ χR(k) > 0.
Likewise, if χR = limk→∞ χR(k) > 0, then χR(j ) > 0 for all
j � 1.

Proof. This follows by contradiction with Lemma 10.
Suppose χR(k) > 0 but either for some k′ � 1, χR(k′) = 0
or χR = 0. Lemma 10 states that this implies χR(k) = 0,
immediately leading to contradiction. Likewise, if χR > 0,
but that there was some finite k � 1 such that χR(k) = 0, from
Lemma 10 χR = 0, leading to contradiction. �

5. Proofs of main results

This allows us make our first main result:
Result I (Excessive information causes dissipation). Wk

diss >

0 whenever I (Rt ;
←
X) > I (

←
X ;

→
X).

Proof. Using the form of χR from Lemma 4(iv)

βWk
diss � χR(k)

= I (Xt−k+1 . . . Xt ; Rt ) − I (Xt+k . . . Xt+1 ; Rt ). (A67)

In the limit of k → ∞,

lim
k→∞

χR(k) = I (
←
X ; Rt ) − I (

→
X ; Rt ), (A68)

and since R is prescient, we can replace the last term with

I (
→
X ;

←
X):

lim
k→∞

χR(k) = I (
←
X ; Rt ) − I (

→
X ;

←
X). (A69)

Suppose I (
←
X ; Rt ) �= I (

→
X ;

←
X) such that χR �= 0. Then by

Corollary 11, χR(k) > 0 for all k. Putting this into Theorem
2, it then immediately follows that βWk

diss > 0 for all k. �

Result II (Simpler is thermodynamically better). For gen-

erating k steps of any given pattern
↔
X, the generator’s

dissipative work cost is minimized by choosing prescient
memory R to be in one-to-one correspondence with the
pattern’s causal states S.

Proof. Consider then Theorem 2, namely βWk
diss(R) �

χR(k). If implemented at the theoretical optimal limit dictated
by Landauer’s principle, then equality holds. It then follows
that to achieve the optimal thermodynamic performance, one
should minimize χR(k).

From Lemma 4(iii),

χR(k) = H (Xt+1 . . . Xt+k | Rt ) − H (Xt+k . . . Xt+1 | Rt+k).

(A70)

The definition of prescience for Rt tells us that

P (
→
X | Rt ) = P (

→
X |

←
X), and hence for any string of length k,

H (Xt+1 . . . Xt+k | Rt ) = H (Xt+1 . . . Xt+k |
←
X). For all choices

of memory R (including when it is in one-to-one correspon-
dence with the causal states S) this quantity is the same, and
the minimization can be performed entirely by maximizing the
second term of Eq. (A70).

Prescience implies an important condition on memory
R: namely that it encodes a refinement of causal states:
no two past histories

←
x and

←
x ′ can be mapped to the

same state r if they belong to two separate causal states.
This property immediately follows from our definition of

prescience: if P (
→
X |

←
X = ←

x) �= P (
→
X |

←
X = ←

x ′), it is clearly

impossible for P (
→
X | R = r) to be equal to both. (See also

Lemma 7 of Ref. [2].) This refinement property implies the
existence of a deterministic map 	 : {r} → {s}, such that
	(R) = S. Then, we can apply the data processing inequality
I (Xt+1 . . . Xt+k ; Rt+k) � I (Xt+1 . . . Xt+k ; 	(Rt+k)). Hence,

I (Xt+1 . . . Xt+k ; Rt+k) � I (Xt+1 . . . Xt+k ; St+k). (A71)

Expanding these mutual informations gives

H (Xt+1 . . . Xt+k) − H (Xt+1 . . . Xt+k | Rt+k)

� H (Xt+1 . . . Xt+k) − H (Xt+1 . . . Xt+k | St+k),

H (Xt+1 . . . Xt+k | St+k) � H (Xt+1 . . . Xt+k | Rt+k).

(A72)

Thus, we see that using memory in one-to-one correspon-
dence with the causal states S minimizes Eq. (A70). That is
for any pattern,

χR(k) � χS(k) for all R,k. (A73)

This proves the claim of the result. �
We remark that this lower bound is not trivially saturated

for all R. This is proven by the example in the article; where
choosing R to not correspond to causal states in general
resulted in increased dissipation.

Result III. A thermodynamically reversible cycle of pattern
generation and extraction is impossible for any pattern where

Cμ > I (
←
X ;

→
X), where Cμ is the pattern’s statistical complex-

ity.
Proof. This is a corollary of Results I and II. Consider using

memory in one-to-one correspondence with the causal states.
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In the limiting case of k → ∞,

lim
k→∞

βWk
diss � χS = I (

←
X ; S) − I (

←
X ;

→
X). (A74)

Because causal states can be synchronized, I (
←
X ; S) =

H (S) = Cμ, hence

χS = Cμ − I (
←
X ;

→
X). (A75)

When Cμ > I (
←
X ;

→
X), χS > 0, and it follows from Result I

and II that for any k there will be some dissipation with this
choice of memory. Result II then tells us that no other choice
of memory can do better than this. It hence follows that when

Cμ > I (
←
X ;

→
X), any attempt to generate a pattern will result in

some work dissipation. �

6. Perturbed coin example

Example (Further details of worked example). For a “last
N” generator that produces k steps of the perturbed coin
pattern, using as its internal memory configurations in one-to-
one correspondence with the last N outputs of the sequence,
the amount of dissipation Wk

diss is bounded from below by

βWk
diss �

{
kh(p) when k � N

Nh(p) when k > N,
(A76)

where h(p) is the binary entropy defined as

h(p) := −p log p − (1 − p) log (1 − p). (A77)

Proof. From Theorem 2, βWk
diss � χR(k). We now derive

the form of χR(k) for the last-N machine.
We begin with the form in Lemma 4(iii):

χR(k) = H (Xt+1 . . . Xt+k | Rt ) − H (Xt+k . . . Xt+1 | Rt+k).

(A78)

Let us evaluate both terms.
First,

H (Xt+1 . . . Xt+k | Rt )

= H (Xt+1 | Rt ) + H (Xt+2 | RtXt+1)

+ . . . + H (Xt+k | RtXt+1 . . . Xt+k−1). (A79)

Since R is prescient, and all the machines of the “last N” type
are unifilar (such that H (Rt+j | RtXt+1 . . . Xt+j ) = 0 for any
integer j ), it follows (using stationarity in the second step) that

H (Xt+1 . . . Xt+k | Rt )

= H (Xt+1 | Rt ) + H (Xt+2 | Rt+1)

+ . . . + H (Xt+k | Rt+k−1),

= kH (Xt+1 | Rt ). (A80)

Moreover, since R is prescient,

H (Xt+1 . . . Xt+k | Rt ) = H (Xt+1 . . . Xt+k | St ) = kh(p).

(A81)

Now we evaluate the second term H (Xt+1 . . . Xt+k | Rt+k).
When k � N , since R encodes all the available information

about the last N outputs, H (Xt+1 . . . Xt+k | Rt+k) = 0. Thus,

χR(k) = kh(p) when k � N. (A82)

Next, consider the case where k > N . We expand

H (Xt+1 . . . Xt+k | Rt+k)

= H (Xt+k−N . . . Xt+k | Rt+k)

+H (Xt+1 . . . Xt+k−N−1 | Xt+k−N . . . Xt+kRt+k)

= H (Xt+1 . . . Xt+k−N−1 | Xt+k−N . . . Xt+kRt+k), (A83)

where the first term was eliminated because Rt+k contains all
the information about the preceding N outputs of the pattern.

For short-hand, we write j = k − N + 1. We can show that
knowledge of Rt+k gives no further information beyond that
in Xt+j . . . Xt+k for the purpose of determining the values
of Xt+1 . . . Xt+j−1. This is seen by performing the following
expansion:

H (Xt+1 . . . Xt+j−1Rt+k | Xt+j . . . Xt+k)

= H (Rt+k | Xt+j . . . Xt+k)

+H (Xt+1 . . . Xt+j−1 | Xt+j . . . Xt+kRt+k)

= H (Xt+1 . . . Xt+j−1 | Xt+j . . . Xt+k)

+H (Rt+k | Xt+1 . . . Xt+k). (A84)

Since k > N , both H (Rt+k | Xt+j . . . Xt+k) = 0 and
H (Rt+k | Xt+1 . . . Xt+k) = 0, since both strings have
(at least) the N required outputs to fix the value of
Rt+k . Thus, H (Xt+1 . . . Xt+j−1 | Xt+j . . . Xt+kRt+k) =
H (Xt+1 . . . Xt+j−1 | Xt+j . . . Xt+k).

We can now use the Markovian nature of the perturbed
coin pattern to further simply the above expression. For any
Markovian process, by definition H (Xt+l | Xt+1 . . . Xt+l−1) =
H (Xt+l | Xt+l−1) for any l ∈ Z+. From this condition, it is
possible to obtain the inverse statement for any 1 < n < m:

H (Xt+1 . . . Xt+n−1 | Xt+n . . . Xt+m)

= H (Xt+1 . . . Xt+n−1 | Xt+n). (A85)

We use this to further simplify

H (Xt+1 . . . Xt+j−1 | Xt+j . . . Xt+k)

= H (Xt+j−1 | Xt+j . . . Xt+k) + . . .

+H (Xt+1 | Xt+2 . . . Xt+k)

= H (Xt+j−1 | Xt+j ) + . . . + H (Xt+1 | Xt+2)

= (j − 1)H (Xt | Xt+1), (A86)

where the final step follows from the stationary nature of the
process. Noting that j − 1 = k − N , and directly calculating
from the description of the perturbed coin process that
H (Xt | Xt+1) = h(p), we thus calculate that when k > N , the
second term of Eq. (A78) is

H (Xt+1 . . . Xt+k | Rt+k) = (k − N )h(p). (A87)

Taking the difference of Eq. (A81) and the above yields

χR(k) = Nh(p) when k > N. (A88)

From Theorem 2, βWk
diss � χR(k). Thus, Eqs. (A82) and

(A88) hence prove the claim. �
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Xt-3

Rt

Xt-2 Xt-1 Xt Xt+1 Xt+2

Rt+k

FIG. 6. Logical reversibility in the last N machine. (Shown here
for a last N = 4 machine updating with stride k = 2.) The last N

machine’s memory can be viewed as a window on the pattern of
width N that moves forwards by k steps per cycle. The darker
region indicates information stored in Rt , and the lighter region the
information stored in Rt+k . Information corresponding to steps Xt−1

and Xt (dashed region) exists in the machine’s memory both before
and after update. The part of the update pertaining to this information
can be performed in a logical reversible manner.

That dissipation is limited by k for k < N and N for k � N

may be understood in terms of the logical reversibility. The
memory R of a last N machine may be visualized (Fig. 6)
as a moving window of length N scanning over a pattern,
advancing by k steps per update. When k < N , parts of
this window overlap before and after the update: there is
shared information contained within both Rt and within Rt+k

pertaining to steps Xt−k+1 . . . Xt that can be updated using a
logically reversible operation. On the other hand, when k � N ,
this overlap between Rt and Rt+k completely vanishes, and so
the entire memory must be updated by logically irreversible
processes.

One implementation of this would be to represent the
last N machine’s memory by a compound structure Rt =
Xt−N+1 . . . Xt−N+kXt−N+k+1 . . . Xt with N registers, each
storing information about one step of the pattern. When
updating by k < N , one can first cyclically permute the
contents of the registers (equivalently, relabel their indices)
such that R̃t = Xt−N+k+1 . . . XtXt−N+1 . . . Xt−N+k . This is
an intrinsically reversible operation that requires no work
investment. As the desired final memory state is Rt+k =
Xt−N+k+1 . . . XtXt+1 . . . Xt+k , the first N − k registers of the
memory in R̃t already have their correct values, and work only
needs to be invested to bring the final k registers of the memory
up to date. On the other hand, when k � N , every register in
the memory will require updating, and the cost will hence be
bounded by the size of the memory N rather than the size of
the update k.

7. Physical example: The trajectory formalism

For illustrative purposes, we present a physical model
for the cycle of generation and extraction of the perturbed
coin pattern. We shall employ a subset of the trajectory
formalism (see, e.g., Refs. [21–28] among many), but stress
that this framework is just one arbitrary choice from many
thermodynamic models. The bounds derived in this article,
being information-theoretic in origin, hold for any model of
thermal interaction which defines heat and work in a way that
is consistent with Landauer’s principle.

We provide a few key details of this framework. Consider
a system with a finite number of well-defined energy levels

(i.e., with a Hamiltonian H = {E1 . . . EN }) and a (classical)
state, reflecting the occupation probabilities {P1 . . . PN } that
the system is in a particular energy level. The energy of
the system may change in one of two ways: (1) changes in
the Hamiltonian, at fixed occupation probability; (2) changes
in the occupation probability under a fixed Hamiltonian. We
express this energy change differentially as

dU =
N∑

i=1

PidEi +
N∑

i=1

EdPi. (A89)

The first type of energy change can be induced by some
choice of time-varying external parameter (i.e., force), and
we shall require that the change in force is independent of
the system’s state to ensures that there is no unaccounted-for
feedback.

We will place more restrictive conditions on the allowed
energy exchanges of the second type. Namely, we only admit
thermalizing interactions—such that all transformations on
the state necessarily take it closer to the Gibbs state for
a given Hamiltonian (that is, the state where Pi = e−βEi∑

j e
−βEj

for all i). This ensures consistency with the second law of
thermodynamics.4

For the purpose of the example in this article, we shall
only consider quasistatic protocols, in which whenever the
heat bath is coupled to the system, the system is allowed to
reach perfect thermal equilibrium, and so remains in the Gibbs
state associated with the Hamiltonian. This will trivially satisfy
this requirement. There is some indication [26] that the cost
of a quasistatic protocol bounds the actual finite-time cost
reasonably tightly.

When all the above conditions are met, Eq. (A89) becomes
somewhat like the first law, and the trajectory formalism allows
us to associate the first term

∑
i PidEi with work and the

second term
∑

i EidPi with heat.5 To find the total work cost of
a protocol, one typically integrates over a series of infinitesimal
contributions.

For the purpose of calculating costs of a pattern-
manipulating protocol within this framework, we now prove
the following lemma:

Lemma 12 (Work cost in a two-level system). In the trajec-
tory formalism, for a two-level system that initially and finally
is subject to a degenerate Hamiltonian, there is a quasistatic
procedure that transforms it from state (q,1 − q) with binary
entropy h(q) to the state (p,1 − p) with binary entropy h(p),
at a work cost given by

W = kBT [h(q) − h(p)], (A90)

4If additional behavioral constraints are imposed, the higher
moments of the heat and work distributions’ statistics can also be
made to match physically expected behavior (e.g., imposing detailed
balance ensures consistency with fluctuation theorems [46,47]). A
general description of models that allow this is in the trajectory
formalism is in Appendix A of Ref. [28].

5See, e.g., Refs. [48–50] for discussion of the additional consider-
ations that must be taken into account before one can also make this
equivalence in the quantum regime. In this article, we do not need to
assert a quantum definition of work.
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when the system has access to a thermal reservoir at tempera-
ture T .

Proof. We shall constructively provide a mechanism with
this cost consisting of three stages. Let E1 and E2 be the
values of the first and second energy levels respectively, such
that initially E1 = E2 = 0.

First, in thermal isolation, we change the Hamiltonian
such that E2 = Eq where Eq satisfies q = 1

1+e−βEq
. This

produces a Hamiltonian where (q,1 − q) is the associated
Gibbs state. Since the second level was initially populated with
probability (1 − q), changing the Hamiltonian has a work cost
(respectively, gain if q < 1

2 ) of W1 = (1 − q)Eq .
Next, we connect the system to a thermal bath. This has no

effect on the occupation probabilities or Hamiltonian (and thus
no associated work or heat cost). We slowly change the second
energy level to a value E2 = Ep that satisfies p = 1

1+e−βEp
.

When this is done quasistatically, and noting that dE1 = 0 at
all times, we find the total work exchange in this stage of the
protocol is

W2 =
∫ Ep

Eq

P2 dE2 =
∫ Ep

Eq

e−βE2

1 + e−βE2
dE2

= 1

β
(ln p − ln q), (A91)

where we made the substitution u = 1 + e−βE2 to solve the
integral.

For the third and final stage of the protocol, we disconnect
the system [now in state (p,1 − p)] from the thermal bath,
and lower the second energy level back down to E2 = 0. This
induces a work exchange of W3 = −(1 − p)Ep. Summing
the contributions from the three parts of the protocol W =
W1 + W2 + W3, the total work exchange is

W = (1 − q)Eq − (1 − p)Ep + 1

β
(ln p − ln q). (A92)

However, since Eq = 1
β

[ln q − ln (1 − q)] (and likewise for p

and Ep), we may rewrite the work cost

W = 1

β
[p ln p + ln (1 − p) − q ln q − (1 − q) ln (1 − q)],

= kBT [h(q) − h(p)], (A93)

proving the claim. �
It follows from conservation of energy (or can be shown

directly using a calculation similar to the lemma above) that
the heat transferred into the heat bath during this transaction
must be equal to the work invested, since the average internal
energy has not changed between the initial and final states.

Unlike the other lemmata in this article, here we have not
assumed that Landauer’s principle holds—the difference in
entropies has appeared emergently from the protocol within
the framework. However, we also have not explicitly proved
Landauer’s principle, since this would require a minimization
over all possible protocols. Rather, what is shown is the
existence of a mechanism within the trajectory framework that
performs the above transformation in a manner that saturates
Landauer’s bound. If we consider the special case of q = 1

2
and p = 1, then the above lemma yields the famous bit-reset

cost of kBT ln 2. Likewise by setting q = 1 and p = 1
2 , we

have the Szilard engine output −kBT ln 2.
Pattern manipulation within the trajectory formalism. With

this in mind, we may now provide a model for the generator
of the perturbed coin pattern. Let us analyze the simplest
possible example, where the pattern generator that writes
one step at a time and has an internal memory configuration
corresponding to the two causal states sH and sT (i.e., behaves
according to Fig. 4). We shall make an extra “ancilla” bit of
memory available to the generator, but must take care that it
has explicitly been reset by the end of the procedure. As in
Fig. 1, we make baths at temperatures TG and TE available
to the generator and extractor, respectively, and assume that
the energy investment required to make the worklike energy
exchanges comes from some mutually available work reservoir
(battery). This process may be viewed as an elaboration of
the concepts mentioned in briefly in Figs. 2 and 3, but for the
specialized case of a particular pattern, running with particular
memory, at a particular stride.

Let the system on the tape be a two-level system, initially
configured according to a predefined default distribution
Xdflt = (q,1 − q). The first stage of the protocol will be to
set the system from Xdflt to an intermediate state (p,1 − p),
where the value of p is the “swap probability” determined by
the perturbed coin process (i.e. has exactly the same meaning
as in Fig. 4). We immediately see that the work cost of this
(interacting with a bath at inverse temperature βG) is what we
have just calculated in Lemma 12: 1

βG
[H (Xdflt) − h(p)]. This

cost corresponds to W 1
gen(S) of Eq. (1).

Now, let us consider the system and the memory together.
The memory has some state St = sh or sT . A controlled-not
(CNOT) operation may be applied to the state of the system on
the tape, such that if the memory was in state St = sh, nothing
happens [X remains configured as (p,1 − p)], but if St = sT

the occupation probabilities are flipped putting the tape system
into the state (1 − p,p). It is well-established that such purely
reversible operations can be implemented at no net cost [9]
(one can think of it much like a relabelling of energy levels).
After this operation, the system on the tape will have been
encoded with statistics Xt+1 appropriate to the pattern.

Next, we must update the memory, to ensure that upcoming
tape systems can also be set into the correct statistics (including
appropriate correlations with Xt+1). To do this, we take the
“ancilla” bit [initially in pure state (1,0)], and apply another
reversible CNOT operation on it, controlled by the state of
the patterned tape Xt+1. Next, we (reversibly) swap the state
of the ancilla bit with our main memory bit. Since these two
procedures are both reversible, they do not contribute to any
work or heat costs.

Let us summarize the random variables describing the
state of all three systems at this point in time: the main
memory is configured according to St+1, the ancilla to St

and the tape to Xt+1. To finish the generation procedure
in a manner that accounts for all potentially useful thermal
resources, we must reset the ancilla from St back to its
initial pure state. In the simple Markovian example of
the perturbed coin pattern, St+1 = Xt+1, and all the useful
information the tape contains regarding how to reset the
ancilla is already encoded in the main memory [entropically:
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H (St | St+1Xt+1) = H (St | St+1)]. This means we can at this
point emit the patterned tape from the generating device, and
consider the cost of resetting the ancilla from St to (1,0) only
using knowledge in the main memory (St+1).

Clearly, except when p = 1
2 , there is some correlation

between St and St+1. Thus, the first stage of our memory
reset is to decorrelate the two systems, by applying another
reversible CNOT gate on the ancilla, controlled by the state
of the main memory. This will set the ancilla into the state
(1 − p,p) independent of the current value of the memory
(this works because of the symmetry of the perturbed coin
pattern; there was a probability (1 − p) that St+1 and St are
the same, and a probability p that they were different).

Now, we may use the protocol in Lemma 12 to take the
ancilla from state (1 − p,p) back to the pure state (1,0) at
a work cost of kBTGh(p) (i.e., using a thermal bath at the
same temperature TG as before). This particular work cost is
an example of W 1

diss(S) [see Eq. (3)], as has been discussed
extensively throughout the article and appendices.

Thus, the memory is now perfectly correlated with the
patterned tape emitted, and ready to accept the next system on
the tape and continue generating the pattern. The generation
stage is hence complete, requiring a total work cost of

1
βG

[H (Xdflt) − h(p) + h(p)] = kBTGH (Xdflt).
Now consider the behavior of the extractor, which we

assume also has access to a heat bath at (possibly) different
temperature TE . Initially, the system on the incoming tape is
Xt+1 is, and the internal memory is in state St . The first stage
is to reversibly swap the state of the tape system with the
memory state. Since the perturbed coin process is Markovian
and Xt+1 = St+1, this alone will ensure that the memory is in
the correct state to anticipate future the extraction of upcoming
parts of the pattern. Now, we can apply a (reversible) CNOT
on the system on the tape (currently in state St ) controlled
by the system in memory St+1, noting that as above there
was a probability 1 − p that the systems are the same and of
p that they are different. The system on the tape is now in
the state (1 − p,p), and is uncorrelated from the state in the
extractor’s memory. Thus far, no exchange of heat or work has
been required.

For the final stage of extraction, however, we must again
employ the protocol in Lemma 12, and in conjunction with
heat bath at temperature TE quasistatically reset the state on
the tape from (1 − p,p) to Xdflt. This protocol required a work
exchange of kBTE[h(p) − H (Xdflt)], corresponding to −W 1

out
from Eq. (5), and concludes the extraction.

In summary, if we now consider a cycle of generation
followed by extraction (as above) and set TG = TE , then the
total of all work exchange terms is a net dissipation over the
entire cycle is given by kBT h(p)—the value of W1

diss(S) as
predicted in Eq. (6). We have thus established constructive

protocol in the trajectory formalism for manipulating the
pattern at a work cost that saturates the bounds given in the
top row of table Table I.

Alternatively, if we choose p < q < 1
2 [where p is the

parameter from the perturbed coin process, and Xdflt =
(q,1 − q)] and choose TE > TG, the above cycle can now
function as a heat engine, as drawn in Fig. 1. The efficiency of
this engine is directly calculated

η = kBTE[H (Xdflt) − h(p)] − kBTGH (Xdflt)

kBTE[H (Xdflt) − h(p)]

= 1 − TG

TE

− TG h(p)

TE[H (Xdflt) − h(p)]
, (A94)

and exactly matches the bound in Eq. (8) previously derived
using information theory. For case of the perturbed coin, we
thus conclude that only the simplest pattern (where p = 0
such that all states are the same, or p = 1 such that all states
perfectly alternate) will achieve the Carnot efficiency.

An emergent proof (one that does not already accept
the second law as true) that the protocols detailed in this
example are optimal would well beyond the scope of this
illustrative example,6 as it requires a tricky optimization over
all possible operations that could be done on the joint tape-
memory system (including allowing for an arbitrary amount
of ancillary memory, etc.). On the other hand, this is where the
power of the information-theoretic results derived in our article
can be demonstrated: we may assert with confidence that the
above protocol is optimal, since it saturates our bounds. If
there were a protocol using prescient memory that is more
work-efficient than this (in the trajectory formalism, or indeed
any other framework), then Landauer’s principle could not
hold, and this would have drastic impact on our understanding
of the second law—at least as to how it applies to the particular
physical framework employed. Thus, if we have faith in the
second law and how it has been applied within the physical
mechanism, then we can be content to halt our search for a
better mechanism here.

6If one takes a prescriptive “bottom-up” approach (e.g., Ref. [13])
rather than a proscriptive “top-down” approach (e.g., this article) to
pattern thermodynamics, one can specify a particular process and
consider what it does, rather than consider a particular task (here, a
pattern manipulation defined only by its inputs and outputs) and work
out how best to do it. The prescriptive approach typically avoids the
question of optimality, as it tends to provide upper bounds (“there is a
process at least this efficient”) rather than lower bounds (“no process
can be more efficient than this”).
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