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How the site degree influences quantum probability on inhomogeneous substrates
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We investigate the effect of the node degree and energy E on the electronic wave function for regular and
irregular structures, namely, regular lattices, disordered percolation clusters, and complex networks. We evaluate
the dependency of the quantum probability for each site on its degree. For a class of biregular structures formed
by two disjoint subsets of sites sharing the same degree, the probability Pk(E) of finding the electron on any
site with k neighbors is independent of E �= 0, a consequence of an exact analytical result that we prove for
any bipartite lattice. For more general nonbipartite structures, Pk(E) may depend on E as illustrated by an exact
evaluation of a one-dimensional semiregular lattice: Pk(E) is large for small values of E when k is also small,
and its maximum values shift towards large values of |E| with increasing k. Numerical evaluations of Pk(E) for
two different types of percolation clusters and the Apollonian network suggest that this observed feature might
be generally valid.
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I. INTRODUCTION

Electronic conduction is one of the most important prop-
erties of a solid. It depends essentially on the localized or
delocalized character of the electronic wave function, which is
related to the intrinsic properties of the atoms in the material
and its crystalline structure. As is well known, the presence of
disorder changes the extended character of the electronic states
in periodic lattices, as established by Bloch’s theorem [1].
The introduction of disorder (substitutional, vacancies, etc.) is
the main mechanism controlling the Anderson transition [2].
Since disorder may emerge in many ways, different disorder
types introduced on regular lattices produce different kinds of
localized states [3].

In the case of substitutional disorder, a large number of
results obtained on different systems indicates that the wave
function has a strong tendency to be localized on the sites
occupied by defects having a number of connections that
significantly differs from the lattice average coordination
[4–6]. The way this general property is manifested still
depends largely on the detailed substitutions, as well as on
the energy of the eigenstates. Thus, many issues remain open
in understanding how the lattice structure [7], disorder [8],
and eigenstate energy favor the wave function localization on
particular sets of sites, and on the possibility of controlling the
wave function localization [9–11],

Usually, the investigation of the effect of disorder on
localization of a given system is targeted at the construc-
tion of the phase diagram in terms of the energy and a
disorder control parameter, where the transition from the
extended to the localized states can be clearly identified.
Several global properties characterizing extended and local-
ized states can also be obtained as a function of the quoted
parameters.

In this paper, we focus our investigation on the relation
between the degree of a given site in an inhomogeneous
structure and the amplitude of the wave function in its
neighborhood. We go beyond the knowledge that eigenstates
with small values of E are likely to have large amplitudes for
small values of k (particularly in the case of dangling bonds),
and make a comprehensive investigation of the properties
of Pk(E), the probability of finding the electron in a given
node (or site) of degree k, as a function of the energy E. We
first consider the simple biregular lattices for which an exact
theorem can be proven, indicating that Pk(E) does not depend
on E. Next, we consider a semiregular chain with nodes with
degree 1 and 4 [12], for which the analytic evaluation of Pk(E)
uncovers a specific kind of dependency on E of small and
large values of k. Particularly, we illustrate how its maxima
move from the sites of small to large k when the value of |E|
increases. Further, we obtain numerical results for two kinds
of inhomogeneous systems: (i) percolation clusters obtained
according to the rules of usual bond percolation [13,14] and
Gaussian percolation [15] and (ii) the Apollonian network
(AN) [16]. This choice is justified by the fact that they display
distinct and complementary features, namely, (i) randomly
disordered, but with a relative small range of node degrees
(1–4), and (ii) inhomogeneous and deterministic, but with
a wide range of values of node degrees. For the Gaussian
percolation cluster, we also present a more detailed, local
analysis, by identifying how different sites with the same k

contribute to Pk(E).
Regarding the numerical investigation, we consider per-

colation clusters of two kinds on the square lattice of side L,
subject to periodic boundary conditions, with N = L × L sites
and Nb connections, p = Nb/2N indicating the probability of
a having a bond between nearest-neighbor sites. The models
differ by the algorithm used to select bonds and, for the
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same value of p, the number of sites with k neighbors,
with k ∈ [0,4], may be different. We consider values of
p close to and above the percolation threshold pc. We
consider the percolation cluster which is a fractal of fractal
dimension 91/48. According to current investigations, all wave
functions at p � pc are localized. The Apollonian network is
characterized by a scale-free distribution of node degree and,
as a consequence, the degree (number of connections) of a site
varies in a wide interval. For this network, previous studies
have indicated the presence of extended and localized states
[17]. Finally, inhomogeneous chains are used to obtain exact
results that help the discussion of more complex structures.
The results for the local probability distribution as a function
of the degree hint at further steps towards controlling wave
localization at a given site on the percolation cluster.

The rest of this paper is organized as follows: In Sec. II,
we present the electronic and two percolation models used to
model a disordered system, and introduce two measures to
characterize the electronic localization. Section III discusses
exact results for semiregular lattices, which provide a useful
comparison for the analysis that is presented for complex
networks in Sec. IV and disordered systems in Sec. V. Finally,
Sec. IV closes the paper with some final remarks on how the
obtained results can be extended to more complex geometries.

II. THE MODEL

The simplest model for electric conduction is based on
a one-particle tight-binding Hamiltonian. If we consider an
ordered system on a periodic Bravais lattice, the electron
interacts with the atom at any lattice site r with on-site energy
ε�r , but it only jumps from �r to site �r ′ with a hopping probability
V�r, �r ′ = V �r ′,�r if the two sites satisfy some conditions. Usually,

it is assumed that V�r, �r ′ = 0 unless �r and �r ′ are next neighbors
and, if this is satisfied, V�r, �r ′ is a constant independent of the pair
of interacting sites. This is justified by the fact that the hopping
term results from the overlap integral of two one-particle
wave functions localized on neighboring sites mediated by an
interaction potential. Moreover, if there is no inhomogeneity
in the on-site binding energy ε�r , as we consider hereafter,
it is conventional to set ε�r ≡ 0,∀�r . Therefore, the system
Hamiltonian is written as

H =
∑
(�r, �r ′)

V�r, �r ′ |�r〉〈 �r ′|. (1)

The eigenstates of H corresponding to eigenvalue E(�κ) are
denoted by |ψE〉, so that the solutions of the Schrödinger
equation are the wave function ψE(�r) = 〈�r|ψE〉, where �κ
denotes the wave vector so that E = E(�κ).

The Hamiltonian (A3) can also be extended to describe
disordered systems on percolating clusters, or on inhomoge-
neous substrates like the AN obtained through the recursive
application of a geometrical procedure leading to a series of
network generations labeled by g.

In all cases we consider here, the local energy parameter
ε�r is assumed to be constant and, without loss of generality,
is set to zero, which allows us to concentrate on the effect of
topological disorder. For the percolation clusters, we consider
V�r, �r ′ = V0 or 0, according to whether a bond between the

sites �r and �r ′ is present or not. For inhomogeneous substrates,
V�r, �r ′ = V0 = 1 or 0 according to whether the corresponding
sites are connected or not. For the AN, the tight-binding model
is described by a sequence of Hamiltonian operators Hg, which
account for all interactions between the sites introduced until
the generation g. Details of this kind of investigation can be
found in Refs. [17,18], where an investigation of the properties
of the eigenstates for successive generations of the Apollonian
network has been carried out. The site labeling used herein has
been introduced in Ref. [17].

Like in the classical percolation transition, the probability
p is also the control parameter for the the localized-extended
transition, which some times is referred to as quantum
percolation [19,20]. A quantum percolation threshold pq can
be defined as the smallest value of p for which there exists
an eigenvalue E of the Schrödinger equation such that |ψE〉
is an extended eigenstate in the sense that it is not possible
to find any finite region such that the sum of |ψE(�r)|2 over
all sites outside this region is smaller than any arbitrarily
chosen positive number. The critical values pq for the quantum
problems are usually larger than the corresponding percolation
transition values pc. For instance, for the square lattice, the
bond percolation transition occurs at pc = 0.5. However, great
controversy persists about the precise value of the quantum
percolation threshold [21–27].

In the usual random percolation problem, an empty con-
nection is randomly chosen to be occupied in a sequential
order. To obtain percolation clusters according to the Gaussian
model [15], one starts with a regular lattice without bonds. The
original bonds of the corresponding Bravais lattice are selected
uniformly at random and added to the lattice with probability
q, given by

q = min

{
1, exp

[
−α

(
s − s̄

s̄

)2
]}

, (2)

where s is the size of the cluster of connected sites that will be
formed if the bond is added to the system and s̄ is the average
cluster size. Differently from the usual percolation clusters, the
clusters that emerge at pc with the Gaussian rule are compact
with a fractal perimeter.

To characterize the localization of the time independent
wave function, we analyze the participation ratio (ξ ) associated
to the eigenvectors of the eigenvalues E, which has been
successfully used to characterize the localization of the wave
function for a large variety of systems. In the case of absence
of degenerate energy eigenstates, ξ is generally defined
as [17]

ξ (E) = 1∑
�r |ψE(�r)|4 , (3)

where ψE(�r) is the wave function amplitude on site �r . A
localized eigenstate is characterized by ξ (E)/N → 0 in the
limit N → ∞, but this ratio converges to a finite value if the
state is extended. In the case of energy degeneracy, e.g., with
G eigenstates of same energy E, Eq. (A5) can be replaced by

ξ (E) = 1∑
�r
(

1
G

∑G
j=1 |ψE,j (�r)|2)2 . (4)
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Along the same line, to account for any energy degeneracy,
we characterize the k-dependent probability of finding the
particle at a site of degree k̄, by

Pk̄(E) =
∑

�r

1

G

G∑
j=1

|ψE,j (�r)|2δk(�r),k̄, (5)

with the same normalization condition
∑

k Pk(E) = 1.
Our investigation is based on the systematic evaluation of

the relation between ψE(�r) and the site degree k(�r), from which
the distribution Pk(E) can be evaluated. As we will show in the
next sections, the definition in Eq. (5) provides useful insights
on the distribution probability of finding the particle on sites
with different values of k as a function of the energy.

In the case of percolation clusters, we restrict our analysis
to those clusters evaluated at p � pc as well for the usual
random occupation algorithm as for the Gaussian model
of discontinuous percolation. In the case of the Apollonian
network, we consider the situation in which all connections
defined by the construction procedure correspond to a single
value of the hopping integral.

III. SEMIREGULAR AND BIPARTITE NETWORKS

Before presenting the results of our simulations, let us
briefly discuss some aspects of wave function localization in
some simple structures, which help understanding the behavior
observed for more complex geometrical arrangements. For the
sake of clarity in the discussion of our results, let us define
the terms used in this paper, starting with the mathematical
definition of a graph or general network (see, e.g., [28–30]).
A graph G(V,E) is a set V of vertices (or nodes, or sites)
i connected pairwise by a set E of undirected edges (or
connections) (i,j ). In particular the quantum problem defined
by Hamiltonian (1) is exactly the spectrum of the adjacency
matrix of the graph [31,32]. For a precise characterization of
the spectral graph problem we address in this paper, we note
the following:

(i) A lattice is a (periodic) network that remains invariant
under a certain set of translations in space.

(ii) In a regular network, all nodes have the same degree.
(iii) In a semiregular network, all nodes can be cast into

two sets (say S1 and S2), so that all nodes in S1 (S2) have
degree k1 (k2).

(iv) Networks are bipartite when the nodes can be split into
two disjoint sets, in such a way that any site in the set S1 (S2)
is only directly connected to sites in set S2 (S1).

Note that a given structure can satisfy one or more of
the above criteria. A trivial example of a bipartite lattice is
the square lattice that can be split into two sublattices with
the above property. It is easy to observe that the bipartite
concept can be easily extended to include a larger number of
partitions (e.g., the face centered cubic lattice is quadripartite).
Independently of being or not being a lattice, it is possible
to cast the semiregular networks into two different classes
according to the following criterion: we call biregular or
semiregular of class A those semiregular networks where the
sets S1 and S2, characterized by degree k1 and k2, respectively,
also define a bipartition of the graph, i.e., the links connect only
sites belonging to S1 with sites belonging to S2. Semiregular

FIG. 1. Examples of biregular (a–c) and semiregular (d) deco-
rated linear chains.

but nonbiregular networks belong to class B. Class A satisfies
the following condition: the product of the site degree of each
set by the number of sites in this set is the same for the two
sets. On the other hand, semiregular networks in class B do not
satisfy this condition. For instance, the square lattice belongs
to class A.

An important analytical result can be derived for some
biregular lattices of class A: the probability Pk(E) of finding
an electron on each of the two sets of sites is independent of the
energy E �= 0 (see the Appendix, where we provide a very gen-
eral proof of this property). Regarding semiregular structures
of class B (nonbipartite), it is easy to find counterexamples
showing that the above stated result does not hold. As our
results show, the exact results for this very general topological
classification can be used to explain specific wave function
properties for tight-binding models built on regular Euclidian
lattices, percolation clusters, and complex networks.

For illustrative purposes, we first apply this approach to
one-dimensional decorated chains (lattices) in classes A and
B, which have been extensively used to model polymeric
chains [33,34]. This provides very simple exact results for
the dependency between ψE(�r) and Pk(E), supporting our
results for the Apollonian network and percolation clusters.
Figures 1(a)–1(c) (see Ref. [12]) present examples of lattices
of class A. Indeed, if in Fig. 1(a) the lattice has N sites, the
set S1 comprises 2N/3 sites with degree k = 2, while the
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remaining N/3 sites with k = 4 belong to S2. In Fig. 1(b), the
set S1 has 3N/5 sites, with degree k = 4, while the set S2 has
2N/5 sites with k = 6. In Fig. 1(c), S1 has 3N/5 sites with
degree k = 2, and S2 has 2N/5 sites with k = 3. Finally, the
lattice in Fig. 1(d) belongs to class B: it is semiregular and
bipartite, but the set S1 with N/3 sites with k = 4, and the set
S2 of 2N/3 sites with k = 1, do not define a bipartition of the
lattice.

All eigenvalues and corresponding wave functions (eigen-
vectors) of the tight-binding Hamiltonian (A3) for each of the
simple structures in Fig. 1 can be easily evaluated. Moreover,
the periodicity of the structures assures that all wave functions
have extended character. After briefly addressing the analytical
result that is valid for the lattices in Figs. 1(a) and 1(b)
(see the Appendix for the details of our results), let us consider
the lattice in Fig. 1(d). For each value of the energy E(κ) (here
κ denotes the one-dimensional quantum wave vector) there
exist two different expressions for the probability of finding
the particle in a site of the set S1 and S2, respectively. It is
straightforward to show that the probability Pk(E) is given by

Pk=1(E) = 2

E2 + 2
, (6)

Pk=4(E) = E2

E2 + 2
. (7)

The above expressions are valid for any of the three possible
solutions E(κ) of the Schrödinger equation derived from
the appropriate tight-binding Hamiltonian for the network.
Each of the three families of solutions, given by E(κ) = 0,
E = E(κ) = cos(κ) ±

√
cos(κ)2 + 2, accounts for one third

of all possible quantum states. The above equations indicate
that the amplitude of the wave function in a certain site depends
on its degree. For instance, when E = 0, all degenerate states
satisfy Pk=2(E = 0) = 1 and Pk=4(E = 0) = 0. For the other
two energy bands, Fig. 2 shows that, when |E| shifts from√

3 − 1 towards the band edges at |E| = √
3 + 1, Pk(E)

decreases (increases) for k = 2 (k = 4), as a function of E(κ).
We would like to note that this peculiar dependency of Pk(E)
on k and E is not limited to this simple semiregular, periodic,
one-dimensional chain. Indeed, as will be illustrated in the

FIG. 2. Probability of finding the particle on the set of sites with
different degree according to Eqs. (A6) (k = 2, squares) and (7)
(k = 4 circles) as a function of the wave function energy.

next sections, it will recursively appear in our results for
inhomogeneous substrates like the Apollonian network and
the two types of percolation clusters. Thus, it is reasonable to
admit that such a universal behavior must rely on a physical
mechanism present in all systems, as we briefly discuss in the
last section.

To characterize the localization character of the wave
function for E(κ) �= 0, we evaluate ξ (E) defined by Eq. (4). It
is straightforward to obtain the expression

ξ (E) = N (E2 + 2)2

3(E4 + 2)
, (8)

indicating that ξ (E) ∝ N for any energy. Moreover, sites with
different values of k have nonzero square modulus of the wave
function, which is also delocalized for the ordered structures
in Fig. 1(d).

The numerical findings discussed in the next sections
indicate a similar dependency of Pk(E) with respect to both k

and E for more complex systems; we would like to remark that
general proofs for the validity of the above observations for
any system with more than two types of sites are still required.
Although they are surely beyond the scope of this paper, the
above discussion sheds light on the interpretation of some of
our results in the next section.

IV. Pk(E) FOR THE APOLLONIAN NETWORK

Now let us discuss the dependency of the probability of site
occupation Pk(E) as a function of energy for a geometrical
model where the site degree can take integer values in a much
wider interval. Despite the fact that several geometrical sets
may present this property, we concentrate our investigation on
the tight-binding model on the AN. This model has been used
in many studies as an example of a deterministic geometric
structure that has many features of complex networks, such as
scale free distribution of node degree, small world property,
hierarchical structure, and so on [16]. Its origin is related to
the Apollonian packing, which emerges as the solution to
the space filling problem. The network can be constructed
in a simple recursive way, by starting at generation g = 0
with an equilateral triangle. The construction step in the gth
generation of the network consists in adding a node within each
triangle of the previous generation, and connecting it to each
of the triangle corners. For each value of g, N (g) = (3g + 5)/2
and B(g) = (3g+1 + 3)/2 express, respectively, the number of
nodes N (g) and edges B(g). Because of its simplicity and
concomitant similarity to many random complex networks,
most of its quantum energy spectrum features, eigenstate
localization properties, and quantum walk dynamics have
been described in detail in several works [17,18,35–37]. For
instance [17], it is well known that the energy levels are
discrete, and also that any eigenvalue that belongs to the energy
spectrum having a particular value of g will also be present in
the spectra of all Hg′ with g′ > g. The energy levels are highly
degenerated, and the degeneracy of a level introduced in the
spectrum at a given value of g increases with the difference
g′ − g, for g′ > g.

Because of the discrete nature of the spectrum, we cannot
expect to have a smooth dependency of Pk(E) on E. Neverthe-
less, it is possible to identify that the overall trend displayed in
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FIG. 3. Probability of finding the particle on the set of sites with
different degree as a function of the wave function energy for the
Apollonian network with g = 8. With exception of panel (h), for
which k = 257, panels (a)–(g) and (i) correspond, respectively, to
degrees k = 3 × 2m, with m = 0,1, . . . ,7.

Fig. 2 is reproduced in Fig. 3. For the sake of clarity, we show
individual plots of Pk(E) as a function of E for each possible
value of k at g = 8, when the network comprises 3283 sites.
We see that, for small wave vector k, Pk(E) is characterized
by large values at small energies |E|, while it becomes small
for the levels at large |E|. The successive panels indicate that
this pattern changes progressively for increasing values of k.
Large values of Pk(E) can be identified at larger and larger
values of |E|. If we draw continuous peaks that are upper
bounds to the allowed values of Pk(E), we notice that the
positions of these peaks are shifted to larger values of |E| as k

increases.
We recall that the number of sites with small (large) value

of k is large (small). As Pk(E) does not identify particular
sites with degree k, it is natural that the plots of Pk(E) are
denser (less dense) for small (large) values of k. Finally, it is
interesting to observe that, as g′ increases, the probability of
finding a particle at a particular site introduced in the network
at generation g < g′ is shifted to larger values of |E|.

This example shows that it is possible to exert control over
the location of the electron on sites with different degree k

by an adequate choice of the wave function energy. This
is particularly straightforward in the case of the Apollonian
network because of the discrete character of its energy
spectrum.

FIG. 4. Probability of finding the particle on sites with different
degree as a function of the wave function energy for percolation
clusters obtained by the Gaussian (a, c) and usual models (b, d) when
p = pc,G = 0.56244. The used samples correspond to L = 32 (a, b)
and L = 64 (c, d). Black squares, red (dark gray) circles, dark yellow
(gray) triangles, and cyan (light gray) diamonds indicate data points
for node degree k = 1,2,3, and 4, respectively.

V. THE SITE PROBABILITY DISTRIBUTION IN
PERCOLATION CLUSTERS

In this section we discuss the probability Pk(E) of finding
the particle on a site of degree k, for both the Gaussian and
usual random percolation models on the square lattice. Each
plot with the results of our numerical simulations consists of
four branches for k = 1,2,3,4. Differently from the previous
deterministic situations, the results for each model represent
averages over m independent samples, obtained according to
the same random procedure, and for given values of L and p.
As we show, depending on the value of these parameters, large
fluctuations can still be noticed for Pk(E).

The wave functions have been obtained by numerically
evaluating all eigenvalues and eigenvectors of the Hamiltonian
(A3). Figures 4 and 5 show the results for both usual and
Gaussian models, for N = 322 and 642 and, respectively, bond
inclusion probability p = 0.56244 and 0.8. The first value of p

was chosen to correspond to the percolation threshold pc,G of
the Gaussian model, which is larger than the critical probability
pc,U = 0.5 for the usual model. All results were obtained by
averaging Pk(E) over ten independently generated samples for
each value of p.

The comparison of the figures clearly shows that, by
decreasing the randomness in the location of bonds, which is
achieved by increasing p in the interval [0.5,1], the fluctuations
of Pk(E) with respect to E become largely damped. Next, we
observe that Pk(E) associated to each value of k depends on
p through the number of sites within each subset. The visual
comparison between the average location of points in the two
figures indicates that the number of sites in S4 has increased
when p changes from 0.564 to 0.8, while the opposite is
observed for the sets S1 and S2. The situation for S3 is more
complex: Pk=3(E) increases in the central part of the spectrum,
but remains roughly at the same height in the previous peaks
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FIG. 5. Probability of finding the particle on sites with different
degree as a function of the wave function energy for percolation
clusters obtained by the Gaussian (a, c) and usual models (b, d) when
p = pc,G = 0.8. The used samples correspond to L = 32 (a, b) and
L = 64 (c, d). Black squares, red (dark gray) circles, dark yellow
(gray) triangles, and cyan (light gray) diamonds indicate data points
for node degree k = 1,2,3, and 4, respectively.

situated at E � ±2.2. The position for the curves for L = 32
and 64 is almost identical for the Gaussian model, but some
differences still can be observed for the usual model. Here, the
most important deviation occurs with the branch for k = 2.

The different dependency of Pk(E) on E in both models,
for k = 3 and 4, in Fig. 5 clearly recalls the behavior shown in
Fig. 2: the probability for k = 4 sites is enhanced for energies
close to the end of the spectrum, and depleted for the sites with
k = 3. This effect can also be observed for the smaller value
p = 0.56244, as well as for k = 0,1, and 2: all of them decay
to zero when |E| increases much faster than the branches for
larger values of k.

It is possible to identify several distinct features having the
form of Pk(E) for the two percolation models, which can be
better visualized if we consider the differences between the
results for the two percolation models for the same values
of L and p. The results are illustrated in Fig. 6, where we
show �PG,U (k) = Pk,G(E) − Pk,U (E) as a function of E,
for L = 64. The additional subscripts G and U identify the
Gaussian and usual versions. Substantial differences appear at
p = 0.56244, which gradually decrease when p increases. To
make the differences visible, the vertical scales are gradually
reduced, so that they differ by a factor 10 when we go
from p = 0.56244 to 0.8. This is an expected dependency,
once the percolation clusters generated by the two models
attain their largest difference at pc,G. Since both models
converge to the complete lattice at p = 1, the differences in the
percolation clusters and the localization properties disappear
as p increases. However, the reduction in �PG,U (k) is followed
by several changes in the position of its k-dependent branches
as p is increased. For p = pc,G, the k = 1 and 2 branches
are positive, while the others are negative. As p increases,
the situation is reversed. The k = 1 and 2 branches become
negative, while those for k = 3 and 4 increase. At p = 0.9,
only the k = 4 branch is positive. This is a quite interesting

FIG. 6. Dependency of �PG,U (k) = Pk,G(E) − Pk,U (E) as a
function of E for decreasing probabilities p = 0.56244,0.6,0.7,0.8,

and 0.9, when L = 64. Since �PG,U (k) decreases as p increases, the
vertical axis is conveniently rescaled in each panel. For different k,
the relative positions of �PG,U (k) also change with p. Black squares,
red (dark gray) circles, dark yellow (gray) triangles, and cyan (light
gray) diamonds indicate data points for node degree k = 1,2,3, and
4, respectively.

behavior of the probability Pk(E), revealing that the behavior
of the wave function is quite sensitive to differences in the
geometric structure of the system.

Once Pk(E) results from the sum of the individual contri-
butions of all sites of a given k, complementary information
about the wave function distribution can be provided by
	k[ρE(�r)], the distribution of site occupancy probability for
each subset of sites with a given connectivity k, as a function
of ρE(�r) = |ψE(�r)|2δk(�r),k . Because several quantum states
are strongly localized and the value of ρE(�r) has a wide
variability, it is more convenient to consider the dependency
of 	k[ρE(�r)] on log10[ρE(�r)] rather than on ρE(�r), as we have
done. Figures 7 and 8 illustrate the behavior of 	k[ρE(�r)]
as a function of log10[ρE(�r)] for wave functions on Gaussian
percolation clusters, with L = 64 and selected values of p,k,

and E. To analyze these results, it is convenient to keep in mind
the general trend of Pk(E) to have larger values at the band
edges for larger values of k, irrespective of the other variables.
Thus, the distribution 	k[ρE(�r)] reflects the fact that ψE(�r)
depends on E, on p, and on the extended or localized character
of the quantum state. The value of p interferes with the fraction
of sites with different degree which, in turn, also influences
the localization properties of ψE(�r). Figure 7 shows that, for
p = 0.8, when there is no site with degree k = 0, 	k[ρE(�r)] is
peaked on values of ρ � 10−4 at the band center (E = −0.01)
as well as at intermediate E = −1.50 for all k > 0. Such a
distribution hints towards a strongly delocalized character of
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FIG. 7. Distribution of site occupancy probability 	k(ρE(�r)) as a function of log10[ρE(�r)] for systems with L = 64. Points in panels (a)–(d)
correspond, respectively, to number of sites with k = 1–4 in histograms with bin width 1, for p = 0.8. Black squares, red (dark gray) circles,
and cyan (light gray) diamonds indicate data points for E = −0.01, − 1.50, and −3.65, respectively.

ψE , with weak dependency on the degree of each site. This can
be seen by comparing this distribution to the result obtained
for a completely uniform wave function over all 4096 lattice
sites. In such case, 	k[ρE(�r)] corresponds to a single peak at

ρ = 2.44 × 10−4. This contrasts with curves for the band edge
energy E = −3.65, which are peaked at log10(ρ) ∼ −12 and
show a decreasing tail when ρ increases. Although this general
behavior is independent of k, we notice that the curve for k = 2

FIG. 8. Distribution of site occupancy probability 	k[ρE(�r)] as a function of log10[ρE(�r)] for systems with L = 64. Points in panels (a)–(d)
correspond, respectively, to number of sites with k = 1–4 in histograms with bin width 1, for E � −1.5. Black squares, red (dark gray) circles,
and cyan (light gray) diamonds indicate data points for p = 0.9, 0.8, and pc, respectively.
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FIG. 9. Color plots of log10[ρE(�r)] as a function of position for a percolation cluster at p = pc, for E = −0.2, − 1.5, and −3.065, in panels
(a)–(c). White region corresponds to sites with k = 0. Sites with k = 1–4 are indicated, respectively, by circles, vertical bars, horizontal bars,
and open squares. Sites with log10[ρE(�r)] < −6 remain white, otherwise they are shaded according to a color (gray tone) code for the following
intervals: (i) yellow (very light gray), [−6, − 4.7); (ii) cyan (light gray), [−4.7, − 3.3); (iii) green (gray), [−3.3, − 2.0); and (iv) pink (dark
gray), [−2.0, − 0.7]. Only the state close to the band edge (E = −3.065) displays strong localization, with peaks centered on k = 4 sites. The
less localized states with E = −0.2 and −1.5 are spread over sites with different values of k.

has a contribution for log10(ρ) = −3 while, for k = 3 and 4,
important contributions from log(ρ) = −2 are observed. Thus,
ψE corresponds to a strongly localized state on a small set of
sites, with the largest contributions coming from sites of large
k. Figure 8 illustrates the behavior of 	k[ρE(�r)] for one same
E, but on clusters obtained at different values of p = pc,0.8,

and 0.9. For the intermediate value E ∼ −1.50, all curves have
a peak at values ρ � 10−4, which corresponds to delocalized
states. The width of the distribution is strongly dependent on
p, but shows a much weaker dependency on k. It is very broad
at p = pc, indicating that not all sites are sufficiently visited
by the particle, but the peak at ρ � 10−4 becomes sharper
and sharper as p increases. It is also important to recall that
the variation of the height of the peaks for different p is a
consequence of the change in the fraction of sites with different
degree as p increases.

To complete the local analysis, Fig. 9 illustrates the
distribution of log10[ρE(�r)] for different values of E for a
cluster at pc. The general aspects indicated in the previous
discussion can be seen in the distribution. For the band edge

state corresponding to E = −3.065, we notice that ρE(�r) has
a peak localized on sites with k = 4, but with significant
contributions from neighboring sites with k = 1,2, and 3.

VI. CONCLUSIONS

We carried out an exhaustive study on the properties of
Pk(E) as a function of k and E. Our investigation was based
both on analytical results and the numerical evaluation of
Pk(E) for different types of regular chains, the Apollonian
network, and percolation clusters. Results for the distribution
	k[ρE(�r)] on Gaussian percolation clusters have also been
reported.

We have shown that Pk(E) provides useful information
about the energy value of the wave function that should be
selected when one aims to enhance the quantum probability on
sites with a specific degree. This knowledge may have practical
importance, for instance, in the field of quantum information,
where we know that information is generated, processed, and
stored locally on quantum nodes [38], or in Josephson photonic
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structures, where it is possible to make an analogy between
the behavior of quantum particles and wave propagation, in
which the frequency response can be controlled by tuning a
magnetic field [39].

We obtained an analytical result valid for bipartite lattices
of class A, where any site in the set S1 (S2) has not only the
same degree k1 (k2) but also the same number of neighbors
inside and outside the primitive unit cell where it is located.
Under these restrictions, the product of ki with the number of
sites with degree ki is the same for i = 1,2, and the probability
Pk(E �= 0) of finding the particle with energy E on the sites
of the sets S1 and S2 is independent of E �= 0. We notice
that the unit cell of the lattice in Fig. 1(c) does not meet
the condition stated above. Indeed, in a unit cell the set
S1 has three sites with k = 2, two of which with k1,I = 2
and k1,E = 0, while the third k1 = 2 site has k1,I = 1 and
k1,E = 1. A similar result is obtained for the sites of the set
S2. Despite the fact that the demonstration of our result does
not strictly apply to this lattice, our numerical results indicate
that Pk(E) does not depend on E. We conjecture that it may
be possible to find another proof for the main result of the
theorem that does not require the use of the structure of the unit
cell.

For all nonhomogeneous investigated sets, the dependency
of Pk(E) on k and E indicates that this function has a general
tendency to increase (decrease) with |E| for large (small)
values of k. This feature, which we showed to be exact
for some decorated linear chains, has a universal character
related to a basic aspect of the quantum interaction. The
local analysis based on 	k[ρE(�r)], which was carried out
for Gaussian percolation clusters, helped clarifying the roles
played by sites with different degrees on this general property
of Pk(E). For instance, the dominant role of k = 4 sites for
states with E close to the band edge, highlighted by the
behavior of 	k[ρE(�r)], supports the effect of hybridization of
the localized orbital in the denser regions, since the bandwidth
is proportional to the average lattice connectivity. On the other
hand, the opposite effect, namely, a larger contribution to
Pk(E) from sites with small k when the eigenstates are closer to
the band center, is not so clear. Here, 	k[ρE(�r)] shows that less
localized states are spread over many sites, quite independently
of their degree.

In conclusion, the function Pk(E) can be easily evaluated
and presents important features that are robust with respect
to changes in the lattice structure and site degree, but it is
not directly related to the extended or localized character of
the wave function. For instance, we notice that all states of
the semiregular chain in Fig. 1 are extended, which is not
true for the other structures. This is why it was not possible to
identify a connection between Pk(E) and fine structure of wave
functions like topological irregularities, or the localization
of eigenstates on k = 1 sites or dangling bond, which also
depends on its energy. The same is valid for the absence of
a connection between Pk(E) and other physical systems like
classical random walks that are related to transport processes
through diffusion [40–42]. On the other hand, the distribution
	k[ρE(�r)], which shows variations with respect to p, k, and E,
keeps some information on localization properties. However,
the quantum conductivity with a universal character does not
have a simple relation.
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APPENDIX

Here we show that, for any bipartite lattice, the quantum
probability of finding a particle in any of the two subsets of
sites into which the lattice is divided does not depend on the
energy of the quantum state. Moreover, if 1 and 2 indicate
these subsets, we obtain that P1(E) = P2(E) = 1/2.

Let us first introduce some of the spectral properties
of bipartite graphs (see, e.g., [43,44]). A bipartite graph
can be divided into two subsets V1 and V2, with N1 and
N2 vertices, respectively, so that links connect only sites
of V1 with sites of V2, where N = N1 + N2. In the basis
(|1〉V1 ,|2〉V1 ..|N1〉V1 ,|1〉V2 ,|2〉V2 ..|N2〉V2 ) a state can be written
as

|�〉 =
N1∑
i

φi |i〉V1 +
N2∑
i

ψi |i〉V2 (A1)

and the Hamiltonian is

H =
(

0̂N1,N1 Ĥ ′

Ĥ 0̂N2,N2

)
(A2)

where 0̂n,n is a matrix of size n × n the entries of which are all
zeros, while Ĥ is a rectangular matrix of size N1 × N2 where
the element Ĥi,j = 1 if the site |i〉V1 is connected to the site
|i〉V2 and Ĥi,j = 0 otherwise. The matrix Ĥ ′ of size N2 × N1

is the transpose of the matrix Ĥ . The coefficients φE
i and ψE

i

of the eigenstate |E〉 of energy E satisfy the equations

Ĥ �φE = E �ψE, Ĥ ′ �ψE = E �φE, (A3)

where we introduced the vectors �φ = (φE
1 , . . . φE

N1
) and �ψ =

(ψE
1 , . . . ψE

N2
).

The eigenstates |E〉 of H, with E �= 0, can be obtained
as follows: �φE has to be an eigenvector of the N1 × N1 matrix
Ĥ ′Ĥ with eigenvalue λ > 0. For each eigenvector �φE , we have
two solutions |E〉 corresponding to E = ±√

λ and �ψE =
±√

λ
−1

Ĥ �φE ( �ψE is an eigenvector of the N2 × N2 matrix
Ĥ Ĥ ′, λ �ψE = Ĥ Ĥ ′ �ψE).

On the other hand, the eigenvectors of H with E = 0 have
the form �φE = �φ0 and �ψE = �0N2 or �φE = �0N1 and �ψE = �ψ0

where �φ0 ( �ψ0) belongs to the kernel of Ĥ ′Ĥ (Ĥ Ĥ ′) and �0N is
the null vector of size N .

Since all the eigenvalues λ of Ĥ ′Ĥ and Ĥ Ĥ ′ are non-
negative, we obtain the full description of the spectrum. If
M is the number of the nonzero eigenvalues of Ĥ ′Ĥ (M is
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also the number of nonzero eigenvalues of Ĥ Ĥ ′), there are
2M nonzero eigenvalues of H (M with E = √

λ and M with
E = −√

λ), and then we have N1 − M null eigenvalues of the
form �φE = �φ0 and �ψE = �0N2 and N2 − M null eigenvalues of
the form �φE = �0N1 and �ψE = �ψ0.

For the eigenstate |E〉 the probability of finding the
particle in the set V1 is

P1(E) = ( �φE · �φE)

( �φE · �φE) + ( �ψE · �ψE)
, (A4)

where ( · ) denotes the scalar product. If we introduce the
expression for �ψE when E �= 0 we get

P1(E) = ( �φE · �φE)

( �φE · �φE) + (±√
λ

−1
Ĥ �φE · ±√

λ
−1

Ĥ �φE)

= ( �φE · �φE)

( �φE · �φE) + λ−1( �φE · Ĥ ′Ĥ �φE)

= ( �φE · �φE)

( �φE · �φE) + ( �φE · �φE)
= 1

2
. (A5)

Clearly we get the same probability 1/2 of finding a particle
in V2. Taking into account that the number of eigenstates with
E = 0 which belong to V1 and V2 are N1 − M and N2 − M ,
respectively, we have that at E = 0 the probabilities of finding
a particle in V1 and in V2 are P1(0) = (N1 − M)/(N − 2M)
and P2(0) = (N2 − M)/(N − 2M).

If we are considering a bipartite graph where all the vertices
in V1 have degree k1 and all the vertices in V2 have degree k2,
it is clear that, for all eigenvalues E �= 0, the probabilities
of having degree k1 and k2 are Pk1 (E) = Pk2 (E) = 1/2.
Moreover, at E = 0 since N1k1 = N2k2 and N1 + N2 = N ,
we have

Pk1 (0) = Nk2/(k1 + k2) − M

NM

, and

Pk2 (0) = Nk1/(k1 + k2) − M

NM

, (A6)

where the integer M depends on the particular biregular graph
that we are considering. We notice that, if k1 < k2, Pk1 (0) >

Pk2 (0) so that, also for biregular structures at small |E|, there
is a larger probability to find the particle in the sites with
smaller degree, as has been observed in numerical simulations,
in general. However, due to the peculiarity of the graph this is
only evident at E = 0.
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