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Mechanism for Hall conductance of two-band systems against decoherence
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The Kubo formula expresses a linear response of the quantum system to weak classical fields. Previous studies
showed that the environment degrades the quantum Hall conductance. By studying the dynamics of dissipative
two-band systems, in this paper we find that the formation of system-environment bound states is responsible
for the Hall conductance immune to the effect of the environment. The bound states can form only when the
system-environment couplings are below a threshold. Our results may be of both theoretical and experimental
interest in exploring dissipative topological insulators in realistic situations, and may open new perspectives for
designing active quantum Hall devices working in realistic environments.
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I. INTRODUCTION

The quantum Hall effect is manifested by a remarkably
precise quantization of the transverse conductance in two-
dimensional (2D) electron systems in the presence of a strong
perpendicular magnetic field. Its discovery [1,2] has had
profound implications for the understanding of matter, and
it may find potential applications in quantum information
processing [3]. Topological insulators (TIs) [4–7] possess
a bulk electronic band gap like an ordinary insulator but
protected conducting topological states (edge states) on their
surface, which were theoretically predicted to exist and have
been experimentally discovered in recent years [8–11]. They
have recently attracted considerable attention due to their
interesting features and possible applications in quantum
computation [12–16]. The connection of the Hall conductance
and the topological invariant was first established by Thouless
et al. [17,18] for closed systems, i.e., the Hall conductance can
be represented in terms of the topological invariant (or Chern
number) in the linear response theory.

Recently, the studies have been extended to the topological
insulator subjected to environments based on the Kubo theory
[19]. Topics in this direction include density-matrix Chern
insulators caused by thermal noise [20,21], Hall conductance
subjected to decoherence [22,23], linear response theory based
on the master equation [24–31], the Linbland superoperator
[32] and the hierarchical equation of motion [33,34], topo-
logical order by dissipation [35–37], the response of quantum
systems to single-mode quantized driving [38], optical Hall
conductivity [39–42], the Hall response in a quantum quench
[43,44], and topological-phase-induced photocurrent [45,46].
While topological materials subjected to environments have
become the subject of these studies, the memory effect of the
environment on TIs remains unexplored.

From the viewpoint of memory effects, the environment can
be divided into two categories: memoryless and memory. The
first leads to Markovian dynamics while the second leads to the
non-Markovian one. For the quantum system, the absence of
dependence of the quantum system on its past time evolution
implies a Markovian dynamics, resulting from couplings of
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the system to a memoryless environment. Nontrivial temporal
correlations among different states of the system throughout
the dynamics give rise to a non-Markovian quantum process
exhibiting memory effects. The presence of memory in the dy-
namics can help to protect coherence and quantum correlations
in open systems at a long time scale. Therefore, understanding
the nature of memory effects from various perspectives has
become a significant problem for the open quantum system
community. These works motivate us to study topological
insulators subjected to non-Markovian environments.

For this purpose, we derive a non-Markovian master
equation with a general entangled initial state, which goes
beyond the master equation based on the uncorrelated initial
state in the literature [47–49], then we study the effects of
non-Markovianity on the Hall conductance of a two-band
system (TBS). Moreover, we give an answer to the question
of how the quantum systems respond to an external field in
the non-Markovian environment. We find a threshold for the
environment effect on the Hall conductance, which originates
from the formation of the system-environment bound states
[50–52]. With a two-band system (TBS) coupled dissipatively
to a non-Markovian environment, we show that the formation
of the bound states significantly changes the dynamics of the
TBS, and plays an important role in the Hall conductance.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a general model to describe the two-band
system (TBS) coupled to an environment. A general non-
Markovian master equation of the TBS is derived with initial
system-environment correlation. In Sec. III, we apply the
results to quantum materials and derive the Hall conductance
for a topological insulator described by the two-band model
in a non-Markovian environment, and discuss the threshold
in the influence of the non-Markovian environment on Hall
conductance. In Sec. IV, we study the influence of the
initial system-environment entanglement on Hall conductance.
Section V is devoted to discussion and conclusion.

II. MODEL AND DYNAMICS

A. Model Hamiltonian

In order to study the Hall effect in quantum open system,
we first introduce a two-band model to describe quantum Hall
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insulators,

ĤS(k) = �d(k)�σ + ε(k)I, (1)

where I is the 2 × 2 identity matrix, �σ = (σx,σy,σz) are
Pauli matrices, and ε(k) and �d(k) depend on the materials
under study and determine its band structure. The two bands
may describe different physical degrees of freedom. When
the bands are formed by spin-1/2 electrons, �d(k) stands
for the spin-orbit coupling. When they describe the orbital
degrees of freedoms, �d(k) represents the hybridization between
bands. The discussion below is completely independent of the
physical interpretation of the Hamiltonian Eq. (1), and the con-
clusion holds for all systems described by the two-band model.

The eigenenergies of the two-band Hamiltonian (1) are
E1(k) = ε(k) + d(k) and E2(k) = ε(k) − d(k), with d(k) =√

d2
x (k) + d2

y (k) + d2
z (k). In the Hilbert space spanned by the

eigenstates of σz, satisfying σz|+〉 = |+〉 and σz|−〉 = −|−〉,
the eigenstates of Hamiltonian (1) take

|ψ1(k)〉 =
(

cos θ(k)
2 e−iφ(k)

sin θ(k)
2

)
,

|ψ2(k)〉 =
(

sin θ(k)
2 e−iφ(k)

− cos θ(k)
2

)
,

(2)

where cos θ (k) = dz(k)/d(k), tan ϕ(k) = dy(k)/dx(k). To cal-
culate the Hall current, i.e., the response of the TBS to
the external electric field, we assume the field is along the
x direction. Considering the noise in the field, we may
decompose the field into a classical part Ex(t) and a quantum
fluctuation part Êq(t). Namely,

Ê(t) = Ex(t) + Êq(t), (3)

with

Ex(t) = Ex cos ωt, (4)

Êq(t) =
∑

j

Ej (â†
j + âj ), (5)

where Ex and Ej are classical (with frequency ω) and quantum
(with frequency ωj ) electric field, respectively. âj (â†

j ) is the
annihilation (creation) operator for the quantum fluctuations.
In the following discussion, we would treat the quantum
fluctuation as an environment. In a space spanned by the
eigenstates of ĤS(k), the coupling between the classical
electric field Ex and the TBS can be described by the following
Hamiltonian,

Ĥc(k) = gx(k)σ̃ k
+e−iωt + g∗

x (k)σ̃ k
−eiωt + e1(k)

2
σ̃ k

z , (6)

where gx(k) = 1
2ExG(k) with

G(k) = −ie〈ψ1(k)| ∂

∂kx

|ψ2(k)〉,
e1(k) = 2d(k),

σ̃ k
z = |ψ1(k)〉〈ψ1(k)| − |ψ2(k)〉〈ψ2(k)|,

σ̃ k
+ = |ψ1(k)〉〈ψ2(k)|, and σ̃ k

− = |ψ2(k)〉〈ψ1(k)|. Similarly, the
Hamiltonian for the couplings between the quantized electric

field Êq(t) and the TBS reads

Ĥq(k) =
∑

j

gj (k)âj σ̃
k
+ + g∗

j (k)σ̃ k
−â

†
j +

∑
j

h̄ωj â
+
j âj , (7)

with gj (k) = EjG(k). In a rotating frame defined by U (k) =
e−iωσ̃ k

z t/2, the total Hamiltonian can be written as

Ĥ (k) =�0(k)

2
σ̃ k

z +
∑

j

h̄�j â
+
j âj + gx(k)σ̃ k

+ + g∗
x (k)

× σ̃ k
− +

∑
j

[gj (k)âj σ̃
k
+ + g∗

j (k)σ̃ k
−â+

j ],
(8)

where �0(k) = e1(k) − ω, and �j = ωj − ω. In this paper, we
only consider the dc conductance, therefore we set ω → 0. Un-
der the weak coupling limit and in the Hilbert space spanned by
the eigenstates of Hamiltonian �0(k)

2 σ̃ k
z + gx(k)σ̃ k

+ + g∗
x (k)σ̃ k

−,
the Hamiltonian in Eq. (8) reduces to

Ĥ (k) = �(k)

2
τ k
z +

∑
j

h̄ωj â
+
j âj +

∑
j

h̄Vj (k)τ k
+âj

+V ∗
j (k)τ k

−â+
j ), (9)

where

Vj (k) = −gj (k)

h̄
cos2 μ(k)

2
e−iν(k),

E1,2(k) = ±
√∣∣∣∣�0(k)

2

∣∣∣∣
2

+ |gx(k)|2,

�(k) = 2E1(k),

|E1(k)〉 = cos
μ(k)

2
eiν(k)|ψ1(k)〉 + sin

μ(k)

2
|ψ2(k)〉,

|E2(k)〉 = sin
μ(k)

2
eiν(k)|ψ1(k)〉 − cos

μ(k)

2
|ψ2(k)〉,

τ k
z = |E1(k)〉〈E1(k)| − |E2(k)〉〈E2(k)|,

τ k
+ = |E1(k)〉〈E2(k)|, τ k

− = |E2(k)〉〈E1(k)|,
cos μ(k) = �0(k)/

√
�2

0(k) + 4|gx(k)|2 , and tan ν(k) =
Im[gx(k)]/Re[gx(k)].

B. Non-Markovian dynamics with entangled initial states

We first derive a non-Markovian master equation to describe
the dynamics of the TBS. In contrast with a direct product
of the system and the environment state as the initial state,
here we choose a system-environment entangled state as the
initial state. This choice would contribute to non-Markovian
dynamics for the open system,

|ψk(0)〉 = Zk(0)|E1(k),{0j }〉 +
∑

j

βk
j (0)|E2(k),1j 〉, (10)

which contains entanglement between the TBS and the
environment (i.e., |Zk(0)| < 1 and βk

j (0) �= 0). With this initial
state (10), the state |ψk(t)〉 at time t can be written as

|ψk(t)〉 = Zk(t)|E1(k),{0j }〉 +
∑

j

βk
j (t)|E2(k),1j 〉, (11)

with normalized condition, |Zk(t)|2 + ∑
j |βk

j (t)|2 = 1.
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Substituting |ψk(t)〉 into the Schrödinger equation, we
obtain an integro-differential equation,

Żk(t) + iωk
cZk(t) +

∫ t

0
Zk(τ )fk(t − τ )dτ = Fk(t), (12)

where ωk
c = E1(k)/h̄. The initial value of Zk(t) is denoted

by Zk(0). The effects related to the initial population of the
environment are included in

Fk(t) = −i
∑

j

βk
j (0)Vj (k)e−i�k

j t . (13)

Here fk(t) = ∑
j |Vj (k)|2e−i�k

j t , �k
j = ωj − ωk

c . The non-
Markovian dynamics of the TBS is governed by the master
equation by tracing over degrees of freedom of the environment
in Eq. (11),

ρ̇k = − iSk(t)[τ k
+τ k

−, ρk]

+ [
2�k(t) + �k

1(t)
](

τ k
−ρkτ

k
+ − 1

2τ k
+τ k

−ρk − 1
2ρkτ

k
+τ k

−
)

+ �k
1(t)

(
τ k
+ρkτ

k
− − 1

2τ k
−τ k

+ρk − 1
2ρkτ

k
−τ k

+
)
, (14)

where the time-dependent coefficients are given by

Sk(t) = − Im[U̇k(t)/Uk(t)],

�k(t) = − Re[U̇k(t)/Uk(t)],
(15)

and

�k
1(t) = |Zk(t)|2 d

dt
|Uk(t)|2 − |Uk(t)|2 d

dt
|Zk(t)|2

|Uk(t)|2[2|Zk(t)|2 − 1]
. (16)

Here Uk(t) satisfies

U̇k(t) + iωk
cUk(t) +

∫ t

0
Uk(τ )fk(t − τ )dτ = 0, (17)

with initial value Uk(0) = 1. In the integro-differential equa-
tion (17),Uk(t) plays a role of propagating function for the TBS
[53]. Physically,Uk(t), which is βk

j (t) independent and induced
by quantum fluctuations (or environment), contains the effect
of dissipation, while �k

1(t) depends on the initial population of
the environment induced by a thermal-like effect and plays a
role of fluctuation in the dynamics. Equation (14) can serve as a
nonequilibrium version of the fluctuation-dissipation relation,
which ensures the positivity of ρk(t) in the time evolution.
In addition, Zk(t) is, in fact, an operator coefficient and its
solution can be obtained analytically from Eq. (12),

Zk(t) = Zk(0)Uk(t) +
∫ t

0
Uk(τ )Fk(t − τ )dτ . (18)

We need to point out that the coefficient �k
1(t) tends to zero

when the initial state is the upper sate of the TBS, i.e., Zk(0) =
1. The non-Markovian master equation given in Eq. (14) is
one of the main results of the paper, which would be used to
calculate the response function in the next section.

It is worth addressing that the non-Markovian master
equation has been derived in Refs. [47–49], where the authors
used the hypothesis that at the initial time the open system and
the environment are uncorrelated [Zk(0) = 1 and βk

j (0) = 0],
i.e., ρk

T (0) = ρk
S ⊗ ρR with ρk

S = |E1(k)〉〈E1(k)| and ρR =
|{0j }〉〈{0j }|, which leads to �k

1(t) = 0. In practice, however,
the system and its environment might be correlated at the

beginning, especially when the system and the environment
are strongly coupled [54].

We take the state (10) that describes entanglement between
TBS and the environment as the initial state [i.e., |Zk(0)| < 1
and βk

j (0) �= 0] and derive the non-Markovian master equation
(14), namely,

ρk
T (0) = |ψk(0)〉〈ψk(0)| �= ρk

S ⊗ ρR, (19)

with

ρk
S = TrRρk

T (0) = |Zk(0)|2|E1(k)〉〈E1(k)|
+ [1 − |Zk(0)|2]|E2(k)〉〈E2(k)|, (20)

ρR = TrSρ
k
T (0) = |Zk(0)|2|{0j }〉〈{0j }|

+
∑
jj ′

βk
j (0)βk∗

j ′ (0)|1j 〉〈1j ′ |, (21)

with |ψk(0)〉 given by Eq. (10).
With the entangled initial state (10) that satisfies ρk

T (0) �=
ρk

S ⊗ ρR , we find that the master equation (14) with the time-
dependent coefficients in Eqs. (15) and (16) describes a non-
Markovian dynamics of TBS. It is easy to find that the quantum
entanglement in the initial states can change the fluctuation
coefficient �k

1(t) but not the damping (dissipation) rate �k(t). It
is worth addressing that in the framework of the weak coupling
limit, our derivation of the master equation (14) goes beyond
the master based on the uncorrelated initial state [47–49].

III. HALL CONDUCTANCE IN THE TBS SUBJECTED
TO NON-MARKOVIAN ENVIRONMENT

A. Hall conductance for TBS initialized in the entangled state

In this section, we will formulate the Hall conductance for
the open system which might characterize the loss of topo-
logical degree when the TBS is coupled to a non-Markovian
environment. The Hall conductance can be calculated by

�xy = 1

Ex

∫
BZ

d2kTr
[
ĵ k
y ρss

k

]
, (22)

where the current ĵ k
y in the y direction is generated by a small

electric field Ex in the x direction (the 2D system is defined in
the xy plane), and ρss

k denotes the steady state of the master
equation (14).

In the following, we rescale the conductance in units of
e2/h. With the current, ĵ k

y = (−e) ∂ĤS (k)
∂ky

, we can obtain the
Hall conductance for the open system,

〈ĵy〉 = Tr
[
ĵyρ

ss
k

] = ∣∣Zss
k

∣∣2〈E1(k)|ĵ k
y |E1(k)〉

+ (
1 − ∣∣Zss

k

∣∣2)〈E2(k)|ĵ k
y |E2(k)〉

≈ (
2
∣∣Zss

k

∣∣2 − 1
)

sin μ(k)Re
[
e−iν(k)〈ψ1(k)|ĵ k

y |ψ2(k)〉],
(23)

where Zss
k is the steady solution of Eq. (18). In the calculation

of 〈E1,2(k)|ĵ k
y |E1,2(k)〉, |E1,2(k)〉 is represented in the basis |±〉

[substituting Eq. (2) into |E1,2(k)〉], satisfying σz|±〉 = ±|±〉.
After straightforward algebras, and expanding �xy up to the
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first order in Ex , we have

�xy = e2

h

∫
BZ

idkxdky

2π
N ss

k

[〈
∂ψ2(k)

∂kx

∣∣∣∣∂ψ2(k)

∂ky

〉
− H.c.

]
,

(24)

where N ss
k = 1 − 2|Zss

k |2, and H.c. denotes Hermitian con-
jugate. Noticing that the Berry curvature of the lower bare
band |ψ2(k)〉 is defined by ηxy(k) = i[〈 ∂ψ2(k)

∂kx
| ∂ψ2(k)

∂ky
〉 − H.c.],

we find that �xy is simplified as an integral of the Berry
curvature weighted by the factor N ss

k . This suggests that the
response of the TBS to the external field in the non-Markovian
environment may witness the quantum transition points of the
system. This is exactly the case as we will show below.

When the two-band system decouples with the non-
Markovian environment, gj (k) = 0, we have Zk = 0. In this
case, sin μ(k) � gx (k)

d(k) , and �xy reduces to the well-known
result [55],

�c = e2

h̄

∫
BZ

dkxdky

(2π )2 ηxy(k). (25)

We should notice that �c is exactly the conventional Hall
conductance, while �xy can be understood as the Hall
conductance induced by the non-Markovian environment.

B. Exact dynamics for two-band system coupled
to a special environment

In this section, via considering explicitly a TBS coupled
dissipatively to a bosonic environment, we show that the for-
mation of the bound states significantly changes the dynamics
of the TBS, and thus plays a critical role in the non-Markovian
dynamics. As a result, a threshold appears below that the
environment has no effect on the Hall conductance. This
implies that the non-Markovian dynamics can be controlled
through engineering the bound state and manipulating the
environmental spectrum.

Considering the decoherence suppression induced by the
bound state has been observed in the photonic crystal [56–58],
in the following discussion, we will take a photonic-crystal-
like environment to study the influence of the non-Markovian
effect on the Hall conductance.

To get a qualitative understanding of the physics behind
the threshold in the non-Markovian effect, we first solve
Eq. (17) by Laplace transform X(s) = ∫ ∞

0 X(t)e−st dt [59–62]
that yields

Uk(s) = 1

s + iωk
c + fk(s)

, (26)

fk(s) =
∑

j

|Vj (k)|2 1

s + i�k
j

. (27)

Here gj (k) takes [63]

gj (k) = 2d(k)G(k)
√

h̄/(2ε0ωjV )�ej · �u, (28)

where V is the quantization volume, �ej are the transverse unit
vectors for the environmental modes, and ε0 is the vacuum
dielectric constant. �u denotes the unit vector of the two-band
dipole moment of the transition. For the photonic-crystal-like

environment, the dispersion relation takes [64]

ωj = ωe + A
∣∣ �m − �mj

0

∣∣2
, (29)

where ωe is the cutoff frequency of the band edge. �mj

0
are the finite collections of symmetry related points, which
are associated with the band edge. A is the model-
dependent constant. The corresponding state density is ρ(ω) ∝√

(ω − ωe)θ (k)(ω − ωe) [51,65].
Using the dispersion relation (29), and converting the

mode sum over transverse plane waves into an integral and
performing the integral (see Appendix A), we have

fk(s) = −iB�(k)
√

ωe +
√

−is − ωk
1e

, (30)

where ωk
1e = ωk

c − ωe, �(k) = d2(k)cos4 μ(k)
2 |〈ψ1(k)| ∂ψ2(k)

∂kx
〉|2,

and

B = e2
∑
j1

sin2(θj1 )/(2πh̄ε0A
3/2).

Clearly, parameter B characterizes the strength of system-
environment coupling.

The amplitudes Uk(t) can then be obtained by inverse
Laplace transform,

Uk(t) = 1

2πi

∫ σ+i∞

σ−i∞
Uk(s)estds, (31)

leading to (see Appendix B)

Uk(t) =
∑

n

ex
(1)
n t

G′
k

(
x

(1)
n

) +
∑

n

ex
(2)
n t

F ′
k

(
x

(2)
n

) −
∫ ∞

0
dy

× B�(k)π−1√yie−yt+iωk
1et

B2�2(k) − 2B
√

ωezk(y)�(k) + (ωe − iy)z2
k(y)

,

(32)

where zk(y) = ωk
c + ωk

1e + iy, and

Gk(s) = s + iωk
c − iB�(k)

√
ωe +

√
−is − ωk

1e

, (33)

Fk(s) = s + iωk
c − iB�(k)

√
ωe − i

√
is + ωk

1e

, (34)

where x(1)
n are the roots of equation Gk(s) = 0 in region

[Re(s) > 0 or Im(s) > ωk
1e], and x(2)

n are the roots of equation
Fk(s) = 0 in region [Re(s) < 0 and Im(s) < ω1e]. G′

k(s) and
F ′

k(s) are first derivatives of Gk(s) and Fk(s) with respect
to s, respectively. The first term in Eq. (32) corresponds to
localized modes with s = −iEn(k) [En(k) are real numbers,
which correspond to the energy spectrum of the whole system].
The localized modes exist if and only if the environmental
spectral density has band gaps located at the pure imaginary
zeros with Gk(−iEn(k)) = 0. These localized modes do not
decay, which give dissipationless non-Markovian dynamics.
The nonlocalized mode contains two parts: One is the second
term in Eq. (32), which is the oscillating damping process
due to the complex roots in Fk(s) = 0 in the regime of
[Re(s) < 0 and Im(s) < ωk

1e]. The other is the integral part,
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FIG. 1. (a) The Hall conductance �xy (in units of e2/h) for
open system as a function of B with different ta (in units of
meV/h̄). The inset shows the critical point Bc, where the line L1

denotes the regime of the formed bound state. The obtained |Uk(t)|2
(b) and the corresponding decay rate �k(t) (c) with and without bound
state. The bound state is formed when B > Bc = 0.283 [in units
of (Hz1/2h̄2m2)−1]. The other parameters take ωe = 0.18 meV/h̄,
kx = 1.569 nm−1, Ex = 0.1 meV/nm, η = 0.1 meV, m0 = p = 1,
q = 4.

i.e., the nonexponential parts will oscillate rapidly in time.
This rapidly oscillating damping, which originates from the
terms containing eiωk

1et in Eq. (32). Therefore the nonlocalized
mode parts in Eq. (32) are the contribution of the allowed
bands, which usually generate exponential decays. This is the
other significance of the non-Markovian dynamics.

C. Threshold in the effect of non-Markovian environment
on Hall conductance

Consider electrons in a two-dimensional lattice [66,67]
described by the tight-binding model. The Hamiltonian of this
system can be written as

Ĥs =
∑

k

ĉ
†
kĤs(k)ĉk ≡

∑
k

ĉ
†
k[ �d(k) · �σ ]ĉk, (35)

where ĉk (ĉ†k) is the fermion annihilation (creation)
operator with lattice momentum k, and �d(k) =
(η cos(kyl),η sin(kyl),2ta cos(kx + 2π

p

q
m0)), where energy

is taken in units of meV. For fixed m0 = 1, p = 1, q = 4,
l = 1, the lower band of Ĥk has Chern number C = ta√

4t2
a +η2

.

Especially, C = 1
2 sgn(ta) when η → 0, which gives the phase

transition point for the closed system.
For numerical calculation, we will choose the units of

B as (Hz1/2h̄2m2)−1 in the following. At steady state, the
Hall conductance for the open quantum system is plotted
in Fig. 1(a), and a threshold of Bc = 0.2837 can be clearly
observed. When B < Bc, the Hall conductance stays at
|0.5|e2/h. Thus the environment has no effect on the Hall
conductance. However, when B > Bc, a sharp decrease can be
found in the Hall conductance.

This observation suggests that there exists a threshold in
the effect of the environment on the Hall conductance, and

this threshold may connect closely to the boundary between
Markovian and non-Markovian dynamics. The existence of the
threshold Bc inspires us to further pursue the physical reason
for this phenomenon.

We show that the non-Markovian dynamics of an open
system connects closely with the energy-spectrum signatures
of the whole system (system plus environment). Therefore
the investigation of the energy spectrum may provide us
with a meaningful message to understand its dynamics. Since
N̂k = τ k

+τ k
− + ∑

j â
†
j âj is conserved, the Hilbert space splits

into independent subspaces with definite N̂k . For our zero-
temperature non-Markovian environment, only the subspaces
with N̂k = 0 and 1 are involved in the dynamics. Besides
the trivial eigenstate |φ0(k)〉 = |E2(k),{0j }〉 with E2(k) for the
Nk = 0 subspace, we can obtain the eigenstate of the Nk =
1 subspace as |φ1(k)〉 = hk

0|E1(k),{0j }〉 + ∑
j hk

j |E2(k),1j 〉
with ∣∣hk

0

∣∣2 = 1

1 + ∑
j

h̄2|Vj (k)|2(
�(k)

2 −h̄ωj +E(k)
)2

,

and E(k) decided by

�(k)

2
+

∑
j

h̄2|Vj (k)|2
�(k)

2 − h̄ωj + E(k)
= E(k), (36)

or

Y [E(k)] = ωk
c − B�(k)

√
ωe +

√
−E(k) − ωk

1e

= E(k), (37)

where the analytical expression for energy spectrum E(k) is
given by Eq. (C3). Since Y [E(k)] decreases monotonically
with the increase of E(k) in E(k) < 0 and Y [E(k)]|E(k)→−∞ =
ωk

c , Eq. (37) has an isolated root in the band gap [see Fig. 1(a)]
whenever

Y
(−ωk

1e

)
� −ωk

1e ⇒
[
2ωk

c − ωe

]√
ωe

�(k)
= Bc, (38)

with �(k) given by Eq. (30). We call the eigenstate corre-
sponding to this isolated eigenvalue EBS the bound state. It
is remarkable to find from Fig. 1(a) that the critical point for
forming the bound state matches well with the threshold found
in the Hall conductance [the threshold of Hall conductance
equals the minimum value (kx = 0) of the Bc(kx) in the
two-band system; see the point p of the inset in Fig. 1(a)].
We thus conjecture that the formation of the bound state of the
total system is responsible for the quantum Hall conductance
immune to environments.

The important role played by the bound state [68] in the
quantum Hall conductance can be understood in the following
manner. Taking the initial state |ψk(0)〉 = |E1(k),{0k}〉, the
time-evolution of the whole state can be written as

|ψk(t)〉 = pk
0e

−iEBS(k)t |φ1,BS(k)〉 +
∑
λ∈C

pk
λe

−iEλ(k)t |φ1,λ(k)〉,

(39)

where |φ1,BS(k)〉 is the (isolated)bound state with the
eigenenergy EBS(k), |φ1,λ(k)〉 denotes the eigenstates in the
continuous energy band with eigenenergies Eλ(k), pk

0 =
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FIG. 2. The plot given by numerically solving the Hall conduc-
tance (24) as a function of Bc and ωe (in units of meV/h̄). The other
parameters taken are Ex = 0.1 meV/nm, η = 0.1 meV, m0 = p = 1,
kx = 1.569 nm−1, q = 4. ta = 0.5 meV/h̄ for (a), ta = −0.5 meV/h̄

for (b). (c) Contour line of the critical point Bc.

〈φ1,BS(k)|ψk(0)〉 = hk
0, and pk

λ = 〈φ1,λ(k)|ψk(0)〉. Due to the
out-of-phase interference contributed by the continuous ener-
gies Eλ(k), all the upper-state population in the components
of the summation in Eq. (39) tends to zero and only the one in
the bound-state component recovers in the steady state

Tr
[
τ k
+τ k

−ρss
k

] = ∣∣U ss
k

∣∣2 = ∣∣hk
0

∣∣4
, (40)

where the first identity originates from Eq. (14). If the bound
state is absent, then |U ss

k |2 tends to zero asymptotically.
Figures 1(b) and 1(c) plot the upper-state population |Uk(t)|2
and the decay rate �k(t), respectively. We can see that �k(t)
in the absence of the bound state and B < Bc tends to a
positive constant after a short time. The complete positivity of
�k(t) causes |U ss

k |2 to decay to zero monotonically. Here the
non-Markovian environment has no backaction on the system
and thus Hall conductance remains 0.5e2/h as in the closed
system. When the bound state is formed in the condition B >

Bc, the competition between the non-Markovian environment
backaction and the dissipation effects on the TBS causes
�k(t) to transiently take negative value and to asymptotically
approach zero [see Fig. 1(c)]. Consequently, after some short-
time oscillations, |Uk(t)|2 approaches a finite value matching
well with the result in Eq. (40). This is contrary to the
expectation that a larger coupling strength always induces a
stronger decoherence. The transient increase of |Uk(t)|2 causes
the increase of the distinguishability and the decrease of the
Hall conductance.

The mechanism discussed here in the quantum Hall
conductance is expected to be valid for a wide range of
parameters. Figure 2 shows Hall conductance with the change
of the system-environment coupling strength B and the cutoff
frequency ωe of the band edge. The results confirm that the
threshold point of the influence of the non-Markovian environ-
ment on Hall conductance matches well with the threshold of

the bound state. Our mechanism is applicable to a dissipative
system subjected to the general environment, whose dynamics
is governed by the same bound-state mechanism as our TBS.

IV. INFLUENCE OF THE INITIAL
SYSTEM-ENVIRONMENT ENTANGLEMENT

ON THE HALL CONDUCTANCE

In the previous section, we have found a threshold in the
Hall conductance of the TBS subjected to a non-Markovian
environment, which is a new significant effect of environment
on TIs. In this section, we study the influence of the initial
system-environment entanglement to the Hall conductance.
We will show that the effect of initial entanglement can be
fully incorporated into the noise coefficient �k

1(t) given in
the last sections. And the dissipation coefficients �k

1(t) have
an effect similar to the temperature in a Markovian master
equation with a separate initial state.

We start with the analytical expression of steady state for
the non-Markovian master equation (14),

Zk(t)|t→∞ = e−iE(k)t/h̄

G′
k[−iE(k)/h̄]

[
Zk(0) +

∑
j βk

j (0)Vj (k)

E(k)/h̄ − �k
j

]
.

(41)

To study the effect aforementioned, we choose the non-
Markovian environment state in Eq. (10) with βk

j (0) =
EVj (k)/ωj and E being the distribution intensity in the non-
Markovian environment. This choice is reasonable because
the denominator ωj of βk

j (0) is greater than ωe [not zero; see
Eq. (29)]. With this setting and the use of (28), we have

Zk(t)|t→∞ = e−iE(k)t/h̄

G′
k[−iE(k)/h̄]

[√
1 − E2B�(k)

8ω
3/2
e

+
E2B�(k)

[
Ek

1e − ωe + 2
√∣∣Ek

1e

∣∣ωe

]
2
√

ωe

(
Ek

1e + ωe

)2

⎤
⎦, (42)

where Ek
1e = E(k)/h̄ + ωk

1e.
To study the influence of the initial system-environment

entanglement on Hall conductance of TBS, we calculate �xy

as a function of E with various system-environment coupling
strength B. The numerical results are shown in Fig. 3. A
cutoff frequency of the band edge ωe = 0.2 meV/h̄ was
chosen for the plot. Note from condition (38) that the bound
state is formed when B > 0.2837; we find that when the
bound state is absent, i.e., B < 0.2837, the Hall conductance
remains unchanged (see solid line at B = 0.2 in Fig. 3).
However, when the bound state is formed, i.e., B > 0.2837,
the Hall conductance decreases as the coupling strength B

increases, which confirms the prediction based on the bound-
state analysis. The difference between �xy with different B

decreases also as B increases. This can be interpreted as the
change of the critical point in the non-Markovian environment,
which is determined by the formation of the bound state. In
addition, from Fig. 3, we can see that there exists a minimum
in Hall conductance at E = 0. This is because for finite value
of E , the initial state

∑
j βk

j (0)|E2(k),1j 〉 contributes to the
ground state |E2(k)〉 of the TBS so that the Hall conductance

042129-6
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FIG. 3. Influence of the initial system-environment entanglement
to Hall conductance with different B. The other parameters take
ωe = 0.2 meV/h̄, Ex = 0.05 meV/nm, η = 0.1 meV, m0 = p = 1,
q = 4, ta = 0.1 meV/h̄.

increases with the increase of E . This environment-induced
reactance describes the energy exchange between the system
and the environment, reminiscent of the effect of the initial
system-environment entanglement.

V. DISCUSSION AND CONCLUSION

The two-band Hamiltonian used in this paper can describe
topological insulators, which can be realized in semiconductor
quantum wells [69], alkali-metal cold atom chip [70], and
Bose-Einstein condensates [71]. The present model might be
realized in a similar way as in [72] with 2D spin-orbit coupling
in ultracold 40-K Fermi gases using three lasers, each of them
dressing one atomic hyperfine spin state. The non-Markovian
system can be simulated by the use of Büttiker’s virtual
probes [73,74], and the threshold of the influence of the non-
Markovian environment on the Hall conductance could be ob-
served by the six-terminal device as employed in Refs. [8,75].

In summary, we have derived a non-Markovian master
equation for a two-band sytem with an initially system-
environment entanglement. Based on this master equation,
we have studied the response of the two-band system to an
external field in a non-Markovian environment. We found that
the formation of system-environment bound states helps the
Hall conductance against the effect of the environment. The
formation of the bound state requires the system-environment
couplings to be below a threshold. We calculated the threshold
and discussed the effect of the initial entanglement on the
Hall conductance. Our results of the physical condition on
such threshold of Hall conductance might have applications in
quantum optics and condensed matter physics.
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APPENDIX A: THE CALCULATION OF fk(s)

With Eq. (28), we can calculate fk(s) in Eq. (27) as follows:

fk(s) =
∑

j

|Vj (k)|2
s + i�k

j

= [2d(k)G(k)]2

2ε0 h̄V

∑
j

(�ej · �ud )(�ej · �ud )

�k
j

[
s + i�k

j

]
= [2d(k)G(k)]2

2ε0 h̄V

∑
j

1 − ( �m · �ud )2
/j 2

�k
j

[
s + i�k

j

]
= [2d(k)G(k)]2

16π3ε0 h̄

∫
[1 − ( �m · �ud )2

/k2]d3 �m
�k

j

[
s + i�k

j

] , (A1)

where we have replaced the sum by an integral via
∑

j →
V

(2π)3

∫
d3 �m and (�ej · �ud )(�ej · �ud ) = 1 − ( �m · �ud )( �m · �ud )/m2.

Near the band edge, the dispersion relation may be expressed
approximately by ωj = ωe + A| �m − �mj

0|2. The angle between
the dipole vector of the atom and the j th �mj

0 is θj . The angle
between the dipole and �m near �mj

0 is replaced approximately
by θj . We calculate fk(s) as follows:

fk(s) = [2d(k)G(k)]2

16π3ε0 h̄

∫
[1 − ( �m · �ud )2

/m2]d3 �m
�k

j

[
s + i�k

j

]

= [2d(k)G(k)]2

16π3ε0 h̄

⎛
⎝∑

j1

sin2θj1

⎞
⎠

×
∫

d3m[
Am2 − ωk

1e

][
s + i

(
Am2 − ωk

1e

)]

= [d(k)G(k)]2

π2ε0 h̄

⎛
⎝∑

j1

sin2θj1

⎞
⎠

×
∫ ∞

0

m2dm[
Am2 − ωk

1e

][
s + i

(
Am2 − ωk

1e

)] . (A2)

Consequently, integrating the last line in the above equation,
we obtain Eq. (30).

APPENDIX B: THE CALCULATION OF THE FUNCTION
Uk(t) IN EQ. (32)

The amplitudeUk(t) can be obtained by means of the inverse
Laplace transform,

Uk(t) = 1

2πi

∫ σ+i∞

σ−i∞
Uk(s)estds

= 1

2πi

∫ σ+i∞

σ−i∞
dsest 1

s + iωk
c − iB�(k)√

ωe+
√

−is−ωk
1e

. (B1)
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FIG. 4. The integration contours for Eq. (B2).

With the integration contours as shown in Fig. 4(a), we have

Uk(t) =
∑

n

ex
(1)
n t

G′
k

(
x

(1)
n

) − 1

2πi

⎡
⎣∫ −iωe+0

−iωe−∞
+

∫ −i∞+0

−iωe+0
dsest

× 1

s + iωk
c − iB�(k)√

ωe+
√

−is−ωk
1e

⎤
⎦, (B2)

where the function Gk(s) is given by Eq. (33), and x(1)
n is the

root of Gk(s) = 0 in the region [Re(s) > 0 or Im(s) > ωk
1e],

the real number σ and the real number s = σ lie to the right of
all the singularities x(1)

n . The last term can be calculated with
the integration contours as shown in Fig. 4(b):

1

2πi

∫ −i∞+0

−iωe+0
dsest 1

s + iωk
c + fk(s)

= 1

2πi

∫ −i∞

−iωe

dsest 1

s + iωk
c + βk(s)

= −
∑

n

ex
(2)
n t

F ′
k

(
x

(2)
n

) − 1

2πi

[∫ −iωe+0

−iωe−∞
dsest 1

s + iωk
c + βk(s)

]
,

(B3)

where Fk(s) is given by Eq. (34), and βk(s) = − iB�(k)√
ωe−i

√
is+ωk

1e

,

and x(2)
n is the root of Fk(s) = 0 in the region [Re(s) < 0 and

Im(s) < ωk
1e].

From Eqs. (B1)–(B3), we can obtain the Green function
(32) by setting s = −y + iωk

1e.

APPENDIX C: THE ANALYTICAL EXPRESS
FOR ENERGY SPECTRUM

The quantity pk satisfies a cubic equation,

p3
k + bp2

k + ckpk + dk = 0, (C1)

with b = −2
√

ωe, ck = ωk
1e + ωk

c + ωe, dk = −B�(k). Its
solutions can be found in any handbook of mathematics.
If |Bk

1 |2 − 4Ak
1C

k
1 < 0 with Ak

1 = b2 − 3ck , Bk
1 = bck − 9dk ,

Ck
1 = c2

k − 3bdk . There are three different real roots,

pk
1 =

−b − 2
√

Ak
1 cos θ1(k)

3
,

pk
2 =

−b +
√

Ak
1[cos θ1(k) − √

3 sin θ1(k)]

3
,

pk
3 =

−b +
√

Ak
1[cos θ1(k) + √

3 sin θ1(k)]

3
,

(C2)

where θ1(k) = 1
3 arccos ( 2Ak

1b−3Bk
1

2
√

|Ak
1|

3
). Finally, based on Eq. (C2),

we can obtain the eigenspectrum,

E(k) = −[|pk|2 + ωk
1e − 2pk√ωe + ωe

]
, (C3)

where pk = pk
1, pk

2, pk
3.
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