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Anomalous temperature-dependent heat transport in one-dimensional momentum-conserving
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We numerically investigate the heat transport problem in a one-dimensional momentum-conserving lattice
with a soft-type (ST) anharmonic interparticle interaction. It is found that with the increase of the system’s
temperature, while the introduction of ST anharmonicity softens phonons and decreases their velocities, this type
of nonlinearity like its hard type (HT) counterpart, can still not be able to fully damp the longest wavelength
phonons. Therefore, a usual anomalous temperature dependence of heat transport with certain scaling properties
similarly to those shown in the Fermi-Pasta-Ulam-β-like systems with HT interactions can be seen. Our detailed
examination from simulations verifies this temperature-dependent behavior well.
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I. INTRODUCTION

As one of the fundamental topics closely related to
the concepts of nonlinearity and irreversibility in statistical
mechanics [1], heat transport in one-dimensional (1D) systems
has attracted considerable interest in recent years [2–5]. In
this context, one of the central issues is the validity or
breakdown of Fourier’s law, a celebrated empirical law for
describing heat conduction stating that the heat flux J is
proportional to the temperature gradient ∇T : J = −κ∇T ,
with κ the heat conductivity assumed to be a size-independent
constant. Generally, now it has been well accepted that for
1D anharmonic systems with conserved momentum, Fourier’s
law is not valid, namely, κ is not a constant but diverges
with the system size L in a power law κ ∼ Lα [2,3,6–
12]. The exponent α (0 � α � 1) is believed to following
some universality classes [2,3,8–10,12–17]. Such universality
classes have been supported by some theories [9,10,13–17]
and numerical simulations [8,12,18,19] and debated by some
other studies [20–26]. While it should be noted that if some
other factors, such as the asymmetric interactions [27–31], the
systems close to the integrable limit [32], the pressure [33,34],
and the multiwell interparticle potential [35–41], are taken into
account, whether the Fourier’s law is still valid or not, and what
the underlying mechanics are behind them, the verification
remains in progress.

It is thus desirable to check the heat transport law including
more complicated factors to seek general conclusions. In the
present work we therefore consider a momentum-conserving
system with the soft-type (ST) interparticle interaction, which
we stress that is a factor that has not yet been fully taken
into account [compared with the hard-type (HT) interactions].
Our main finding is that, similarly to the Fermi-Pasta-Ulam-
β (FPU-β) systems with HT anharmonicity, a non-Fourier
anomalous heat transport will be observed under all temper-
atures. Via detailed simulations we also explore the possible
microscopic mechanisms. We show that with the increase of
the system’s temperature, the ST interaction induces a special
type of nonlinearity, which softens phonons and reduces their
velocities, while these unusual effects are still unable to
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qualitatively change the heat transport and its scaling property.
A careful analysis of system’s momentum spread and phonons
spectrum indicates an incomplete damping process of phonons
very similar to those exhibited in the FPU-β systems with
HT anharmonicity. We conjecture that this may be the main
mechanism for such a kind of anomalous temperature variation
of heat transport observed here.

The remainder of this paper is organized as follows: In
Sec. II we shall introduce the model with ST anharmonic
interaction and compare it with the potentials of harmonic
and FPU-β systems (with HT interactions). Section III will
describe the simulation method. We shall use the equilibrium
correlation simulation method [42,43] to derive the heat
spreading information, from which our main results of heat
transport and its scaling property are presented in Sec. IV.
Section V is devoted to understanding the underlying mecha-
nisms. For such a purpose we shall investigate the system’s
momentum spread and examine the phonons spectrum to
explore phonons’ damping information. Finally, a summary
will be presented in the last section.

II. MODEL

The model we consider is a 1D many-particle (L particles)
momentum-conserving lattice with Hamiltonian

H =
L∑

k=1

p2
k/2 + V (rk+1 − rk). (1)

In this Hamiltonian pk is the kth particle’s momentum and
rk is its displacement from an equilibrium position. The
interparticle potential takes a type of soft anharmonicity
[44–46]

V (ξ ) = |ξ | − ln(1 + |ξ |). (2)

For such a system, we set the averaged distance between
particles and the lattice constant to be unity; thus the number
of particles is identical to the system size L.

In Fig. 1(a) we plot this ST anharmonic potential and com-
pare it with the harmonic [V (ξ ) = ξ 2/2] and FPU-β [V (ξ ) =
ξ 2/2 + ξ 4/4] potentials. Figure 1(b) further presents their
associated forces defined by F (ξ ) = −∂V (ξ )/∂ξ . As can be
seen, unlike the FPU-β system with HT anharmonicity, the ST
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FIG. 1. The ST anharmonic interparticle potential [Eq. (2), solid]
(a) and its associated force (b). For comparison we also plot the cases
of the harmonic (dashed) and FPU-β (dotted) systems.

interaction has a restoring force always less than the harmonic
force. This is why we call it ST anharmonicity, a special
feature of the system. It induces an unusual energy-dependent
frequency [44], which has been suggested to strongly mod-
ify the distribution, intensity, and mobility of the thermal
fluctuations, resulting in a quite different transition dynamics
of the underlying activated process [46]. In the research field
of discrete breathers (DBs), such ST anharmonicity can also
support a different amplitude-dependent property of DBs’
frequency, opposite to that induced by HT anharmoncity [47].
Motivated by this microscopic evidence, we here aim to
explore how such ST anharmonicity would play roles in heat
transport.

III. METHOD

As mentioned, to identify the heat transport property and its
scaling behavior, we use the equilibrium correlation simulation
method [42,43]. For the special ST anharmonicity, it could be
expected that the time scale ensuring the system relaxed to
the nonequilibrium stationary state would be much longer than
the usual considered FPU-β systems with HT anharmonicity.
This would be why the traditional simulation methods, such as
the direct nonequilibrium molecular dynamics simulations [7]
and the approach based on the Green-Kubo formula to explore
the heat flux correlation [9], have not yet been adopted to
study such a system, and thus the heat transport law here is
still unclear.

Compared with the traditional methods [7,9], the equilib-
rium correlation method [42,43] employs the following nor-
malized spatiotemporal correlation function of system’s heat
energy fluctuations to explore the heat spreading information:

ρQ(m,t) = 〈�Qj (t)�Qi(0)〉
〈�Qi(0)�Qi(0)〉 , (3)

where m = j − i; 〈·〉 represents the spatiotemporal average;
i and j denote the labels of bins; this is because in hydrody-
namics theory, the heat energy density should be defined as a
function of space rather than the lattice site. Viewing this fact,
we set the number of particles in the ith bin to be Ni = L/b,

where b is the total number of the bins. Under this setup, in
each bin one can compute the energy Ei(t), particle Mi(t),
and pressure Fi(t) densities by summing the corresponding
single particles’ densities E(k,t), M(k,t), and F (k,t) at the
site k and time t within the bin. The heat energy density in the
ith bin then is Qi(t) ≡ Ei(t) − (〈E〉+〈F 〉)Mi (t)

〈M〉 [48,49], and its
fluctuation �Qi(t) ≡ Qi(t) − 〈Qi〉 can be straightforwardly
obtained. From this definition we know that heat energy
in one bin is closely related to the associated energy and
particle densities under an internal averaged pressure 〈F 〉 (≡ 0,
since the potential here is symmetric and the averaged distance
between particles is identical to the lattice constant).

In order to provide additional information for the under-
lying physics, we also study the momentum spread via the
momentum correlation function

ρp(m,t) = 〈�pj (t)�pi(0)〉
〈�pi(0)�pi(0)〉 . (4)

Similarly to the definition of ρQ(m,t), here �pi(t) ≡ pi(t) −
〈pi〉 denotes the momentum fluctuation in the ith bin.

To calculate both correlation functions, the system is first
thermalized to the focused temperature by using the stochastic
Langevin heat baths [2,3] for a long enough time (>107

time units of the model). This should be done from properly
assigned initial random states. Then the system is evolved in
isolation by using the Runge-Kutta algorithm on seventh to
eighth order with a time step h for deriving the correlation
information. We use an ensemble size about 8 × 109.

We consider a wide range of temperatures from T =
0.00075 to T = 1. For each temperature, we set L = 2001,
which will allow the fluctuation of heat located at the center
to spread along the system for a long time at least up
to t = 600 − 900. Under this setup, we apply the periodic
boundary conditions and fix the bin’s number b ≡ 1000 (the
choice of b has been verified not to affect the final results).

The difficulty in simulating the correlation functions for the
ST anharmonic systems lies in the case of high temperatures.
This is because due to the effect of phonons softening (shown
below), a higher T will take us more time for simulations
to ensure the system relaxed to the stationary state and will
require a higher precision of integration with a much smaller
time step h. Such calculations will cost many computing
resources. Therefore, the highest temperature considered is
T = 1 and for different temperatures different time steps h

are used, i.e., for low temperatures, h = 0.05 is always
adopted, while for the temperatures higher than T = 0.5, we
set h = 0.02, which has been verified to be efficient for the
system to evolve under satisfactory precision.

IV. HEAT SPREAD AND ITS SCALING

Figure 2 presents the profiles of ρQ(m,t) for three typical
times. Here the results of time up to t = 600 are used as
examples. We do not present the longer time’s results here
because we have found the fact that this will cause the
side peaks hard to detect in the high-temperature regimes [see
Fig. 2(d)]. In addition, to show the temperature-dependent
behavior, the results of four temperatures T , from low to high,
are employed. As can be seen, with the increase of T , the
profiles of ρQ(m,t) are changed from a U-shaped [50] to a
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FIG. 2. Profiles of ρQ(m,t) for three long times t = 200 (dotted),
t = 400 (dashed), and t = 600 (solid) under temperatures T = 0.001
(a), T = 0.0075 (b), T = 0.075 (c), and T = 0.75 (d), respectively.

Lévy walk [15,16] density, especially where the central parts
of the profiles become more and more localized. The U-shaped
density shown here is slightly different from the usual density
in a harmonic chain [50]; i.e., the front parts exhibit some
oscillations, which may be induced by the unusual nonlinearity
of the ST anharmonicity under low temperatures. The Lévy
walk profiles under high temperatures can be phenomenolog-
ically understood from the single particle’s Lévy walk model
in the superdiffusive regime after considering the velocity
fluctuations [51].

In view of the coincidence with the Lévy walk profiles, one
then can perform a scaling analysis to ρQ(m,t) by using the
following scaling formula [15,16]:

t1/γ ρQ(m,t) � ρQ

(
m

t1/γ
,t

)
. (5)

Note that this scaling law applies to the central parts only if the
underlying diffusion process is superdiffusive (1 < γ < 2),
while for the ballistic (γ = 1) and normal diffusive (γ = 2)
transport, it is valid for all of the ranges of density [15,16].
For the formula applying to high dimensions, one can refer
to recent work on two-dimensional Lévy walks [52]. The
rescaled profiles under formula (5) are shown in Fig. 3.
This scaling property then enables us to identify a space-
time scaling exponent γ for precisely characterizing the heat
spreading behavior. Since γ = 1 and 1 < γ < 2 correspond
to the ballistic and superdiffusive heat transport, respectively,
now we can understand that the U shape shown at low
temperatures [γ = 0.98 close to 1, see Fig. 3(a)] indicates the
ballistic heat transport, while the Lévy walk density under high
temperatures implies the superdiffusive behavior [Fig. 3(d),
γ = 1.66 > 1]. For the ballistic regime the whole density can
be perfectly scaled by formula (5), for both the central and
front parts, while in the superdiffusive regime, only the central
parts are available, which might correspond to the bilinear
scaling property of Lévy walks model in the superdiffusive
regime [53,54].

To further demonstrate such bilinear scaling property, fol-
lowing Refs. [53,54], we use ρQ(m,t) to calculate the q (q > 0)
order momentum, i.e., 〈|m(t)|q〉 = ∫ ∞

−∞ |m(t)|qρQ(m,t) dm,

FIG. 3. Rescaled ρQ(m,t), the focused temperatures here are the
same as those in Fig. 2.

which for a strong anomalous diffusion process has been
conjectured to satisfy 〈|m(t)|q〉 ∼ tqν(q) with ν(q) not a con-
stant [55]. For the specific Lévy walk model with 1 < γ < 2
(γ here is the power law exponent from the waiting time
distribution φ(τ ) ∼ τ−1−γ of the model; see Refs. [53,54]
for details), it has been predicted that for the low order q,
〈|m(t)|q〉 ∼ tq/γ , while for high order q, qν(q) = q + 1 − γ

[53,54]. As an example, the result of qν(q) versus q for the
heat spread under T = 0.75 is plotted in Fig. 4, from which
a bilinear scaling property can indeed be identified. Here the
fitting value for the low order q is ν(q) � 0.63, coincident
with the prediction of 1/γ � 0.60 [γ = 1.66 from Fig. 3(d)]
according to the Lévy walk theory. Such a coincidence
indicates that the dynamical scaling exponent γ considered
here might correspond to the power law exponent of the waiting
time distribution in the Lévy walk model.

Employing this scaling exponent γ to understand anoma-
lous heat transport is of great interest. It has been conjectured
that from the result of γ one might infer the time scaling
behavior of the mean-squared deviation of this heat diffusion
process and thus connected to the system-size–dependent
divergence exponent α [56–58]. Due to this common interest,

FIG. 4. Exponents qν(q) vs q for indicating the bilinear scaling
behavior. Here we take the case of T = 0.75 as an example.
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FIG. 5. γ vs T ; the horizontal dashed lines, from bottom to top,
denote γ = 1, γ = 3/2, and γ = 5/3, respectively.

Fig. 5 further depicts the result of γ versus T . Therein four
data points are extracted from Fig. 3, while others are obtained
from the same scaling analysis. This result indicates that with
the increase of T , γ first remains constant at about γ � 1, then
follows a temperature-dependent behavior in the intermediate
range of T , and finally seems to saturate at γ = 5/3 for high
temperatures. Interestingly, such a temperature variation of γ

is similar to that shown in the FPU-β chains [40], where the
nonlinearity dependence of γ values’ crossover between dif-
ferent universality classes have been reported. As comparison
to the related theories, we note that a recent understanding from
hydrodynamics theory [14] suggested two universality classes
of γ , γ = 3/2 and γ = 5/3, for the systems with symmetric
and asymmetric interactions under zero and nonzero internal
averaged pressure 〈F 〉, respectively; however, for the special
ST anharmonic system with symmetric potential and 〈F 〉 = 0
considered here, it seems that the prediction of γ = 3/2 is
not always valid. In fact, such a nonuniversal scaling law has
also been supported by some other theories [17,23–25] and
numerical results [26].

V. UNDERLYING MECHANISM

Why does such anomalous temperature-dependent heat
transport happen? Are there any new properties after including
the ST anharmonic interaction? To provide insights into these
issues, below we shall follow Ref. [41] to study both the
momentum spread and the properties of phonons damping
the system.

A. Momentum spread

The momentum spread contains useful information in
understanding the heat transport of momentum-conserving
systems. From the perspective of hydrodynamics theory, it
may represent the diffusion of sound modes [43]. A recent
work has attributed the observed normal heat transport in the
coupled rotator systems to the diffusive behavior of momentum
spread [60]. This nonballistic spread of momentum has also
been found in a system with a double-well interparticle
interaction under certain temperature ranges, where the normal
heat transport can be observed [41]. For some integrable
systems following ballistic heat transport, based on a new

FIG. 6. Momentum spread ρp(m,t) for three long time t = 200
(dotted), t = 400 (dashed), and t = 600 (solid) under temperatures
T = 0.001 (a), T = 0.0075 (b), T = 0.075 (c), and T = 0.75 (d),
respectively.

concept of phonon random walks, the ballistic momentum
spread is proved to be a quantum like wave function’s real
part [50]. Therefore, ballistic (nonballistic) momentum spread
always seems the case for anomalous (normal) heat transport.

Figure 6 depicts the results of momentum spread ρp(m,t).
Here, three long times and four typical temperatures the
same as those in heat spread are considered. As can be seen,
the results of the momentum spread also indicate interesting
temperature-dependent evidences, i.e., while at low tempera-
tures there are some oscillations in the profiles of ρp(m,t) [see
Fig. 6(a)]; with the increase of T , such oscillations become
less and less [see Fig. 6(b)], and eventually disappear [see
Fig. 6(c)]; after that if one increases T further, the front peaks
begin to disperse [see Fig. 6(d)]. Thus, this unusual change of
ρp(m,t) with temperatures but still following ballistic transport
may correspond to the anomalous temperature dependence of
heat spread.

For the front peaks shown in ρp(m,t), it has been suggested
that its moving velocity just corresponds to the sound velocity
c [59]. A recent theory [14] proposed a general formula

c =
√

1
2T 2 + 〈V + 〈F 〉ξ ; V + 〈F 〉ξ 〉

1
T

(〈ξ ; ξ 〉〈V ; V 〉 − 〈ξ ; V 〉2) + 1
2T 〈ξ ; ξ 〉 (6)

to predict this sound velocity for the systems with any inter-
particle interaction. In formula (6), V (ξ ) is the interparticle
potential, 〈A; B〉 denotes the covariance 〈AB〉 − 〈A〉〈B〉 for
any two quantities A and B, and 〈F 〉 is the averaged pressure
(〈F 〉 ≡ 0 for symmetric potentials). It is thus worthwhile to
check whether formula (6) is still valid here. For such a pur-
pose, we numerically measure the velocities of the front peaks
for each temperature as shown in ρp(m,t) and compare the
result with the prediction of formula (6). To gain the theoretical
predictions, we insert the ST anharmonic potential [Eq. (2)]
into the above formula and calculate the ensemble average of
each quantity 〈A〉 by

∫ ∞
−∞ Ae−V (ξ )/T dξ/

∫ ∞
−∞ e−V (ξ )/T dξ .

Figure 7 presents the result of sound velocity with temper-
atures. As can be seen, the numerical measurements match the
predictions quite well, suggesting that, indeed, formula (6) can
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FIG. 7. The sound velocity c vs T , where the dashed line denotes
the predictions of formula (6).

also be validated to the systems with ST anharmonicity. More
importantly, both results indicate the tendency of decrease of
sound velocity with temperatures, which is clearly opposite to
the results as shown in the FPU-β chains [59]. Thus, this may
be a generic feature for systems with ST anharmonicity.

B. Phonons spectrum

Clearly, the decrease of sound velocity cannot be employed
to fully understand such temperature variation of heat spread.
We next turn to the system’s phonon spectrum P (ω), from
which we wish to gain further insights. A quite recent
work [41] has suggested that, in addition to the nonballistic
behavior of momentum spread, a complete damping of
phonons together with phonon softening seem crucial to the
observed normal heat transport (α = 0, satisfying Fourier’s
law). Therefore, it would be necessary to explore how both
phonon damping and softening would play roles here.

The phonons spectrum P (ω) are calculated by applying a
frequency ω analysis of the particles’ velocity v(t) (see the
appendix of the review [61]):

P (ω) = lim
τ→∞

1

τ

∫ τ

0
v(t) exp(−iωt) dt. (7)

To be related to heat spread, this frequency analysis should
be done at the corresponding equilibrium states under the
same temperatures. For facilitating the computation, here we
choose a chain of L = 200 particles, then thermalize the chain
to the focused temperature by Langevin heat baths [2,3], and
finally remove the heat baths and perform a frequency analysis
to v(t) following Eq. (7). This should be repeated several times
by starting from certain properly assigned initial random states.

Figures 8 and 9 depict the results of the phonon spectrum
P (ω) for different temperatures. Two key points can be
revealed from the figures. First, with the increase of T , unlike
the systems with HT anharmonicity (hardening phonons),
instead, phonons here tend to become “softer” since P (ω)
walks towards the direction of low frequency. This can be
captured from the locations of the peaks in the high-frequency
parts (see Fig. 8). To clearly characterize such phonons’
softening process, one can measure the averaged frequency

FIG. 8. Phonon spectrum P (ω) for different temperatures:
(a) T = 0.001, (b) T = 0.0075, (c) T = 0.075, (d) T = 0.75,
respectively.

ω̄ of phonons by defining ω̄ = ∫ ∞
0 P (ω)ω dω/

∫ ∞
0 P (ω) dω.

As a complement we plot ω̄ versus T in Fig. 10, from which a
monotonous decrease of ω̄ different from the nonmonotonous
case as shown in Ref. [41] can be clearly seen. This seems to
suggest that only a monotonous phonon softening process is
inadequate to induce the normal heat transport. To realize
normal transport behavior, very high temperatures or other
factors would be necessary to take into account, which needs
further efforts of investigations.

Let us finally turn to the results of phonon damping. If they
are still called phonons, in their power spectrum at associ-
ated frequencies, there should be some oscillations. Indeed,
Ref. [41] has suggested that a complete absence of oscillations
implies the normal heat transport. With this in mind, one then
can employ Fig. 9 to explore the phonon damping process. For
such a purpose we use the critical frequency of ωD below which
phonons are damped very weakly to characterize this phonons
damping process. As shown in Fig. 9, with the increase of
T , the damping first originates from the high-frequency parts
[see Figs. 9(a) and 9(b)] and then quickly towards the low

FIG. 9. A log-log plot of Fig. 8, where the dotted lines denote the
frequencies ωD below which phonons are damped very weakly.
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FIG. 10. The averaged frequency ω̄ of phonons shown in P (ω)
vs T .

ones [see Fig. 9(c)]. However, such a quick damping process
cannot last forever if one further increases the temperature
[see Fig. 9(d)]; eventually, a phonons spectrum very similar
to that shown in the FPU-β systems with HT anharmonicity
under high nonlinearity [40] can be seen. Based on this
numerical evidence, it would be worthwhile to recognize that
this incomplete damping process may correspond to the Lévy
walk densities observed in ρQ(m,t) under high temperatures.
It also indicates that both the ST and HT anharmonicity can
only lead to an incomplete damping process of phonons; thus,
generally, a universal anomalous heat transport with certain
temperature-dependent scaling properties could be observed
in general nonlinear systems with ST or HT anharmonicity
only.

VI. SUMMARY

In summary, we have studied the temperature dependent
heat transport behavior in a 1D momentum-conserving system
whose interparticle interaction is ST anharmoncity. We have
found that by increasing the temperature, including the ST
anharmonicity, we can induce some opposite effects to its
counterpart FPU-β systems where the interparticle interactions
are HT, such as that monotonously softening the phonons
and decreasing the sound velocity. However, such unusual
properties are still inadequate to lead to the normal heat
transport. An analysis of phonons spectrum indicates an
incomplete damping process of the low-frequency phonons.
This property of spectrum is similar to that shown in the FPU-β
systems with HT anharmonicity. Our results thus suggest
that both ST and HT anharmonicity will eventually lead to
a general superdiffusive heat transport behavior, therefore
further supporting the conjecture that even strong nonlinearity
(here only the deterministic dynamics are considered, which
may lead to chaos), either from HT anharmoncity or from ST
anharmoncity, is neither a sufficient nor a necessary condition
for the validity of Fourier’s law [6,7].
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