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Statistical properties of the one-dimensional spring-block (Burridge-Knopoff) model of earthquakes obeying
the rate- and state-dependent friction law are studied by extensive computer simulations. The quantities computed
include the magnitude distribution, the rupture-length distribution, the main shock recurrence-time distribution,
the seismic-time correlations before and after the main shock, the mean slip amount, and the mean stress drop at
the main shock, etc. Events of the model can be classified into two distinct categories. One tends to be unilateral
with its epicenter located at the rim of the rupture zone of the preceding event, while the other tends to be
bilateral with enhanced “characteristic” features resembling the so-called “asperity.” For both types of events,
the distribution of the rupture length Lr exhibits an exponential behavior at larger sizes, ≈ exp[−Lr/L0] with
a characteristic “seismic correlation length” L0. The mean slip as well as the mean stress drop tends to be
rupture-length independent for larger events. The continuum limit of the model is examined, where the model is
found to exhibit pronounced characteristic features. In the continuum limit, the characteristic rupture length L0

is estimated to be ∼100 [km]. This means that, even in a hypothetical homogenous infinite fault, events cannot
be indefinitely large in the exponential sense, the upper limit being of order ∼103 kilometers. Implications to real
seismicity are discussed.
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I. INTRODUCTION

It has been realized for years that the scale-invariant power-
law behaviors are frequently observed in statistical properties
of earthquakes, i.e., the seismic properties associated with a
set of many earthquake events. These include the well-known
Gutenberg-Richter (GR) law for the magnitude distribution
of earthquakes and the Omori law for the time evolution of
the frequency of aftershocks. Such an observation motivates
the “self-organized criticality” (SOC) view of earthquakes [1],
which regards the Earth’s crust as being in the critical state that
is self-generated dynamically [2–7]. In contrast, one should
also bear in mind that real earthquakes often exhibit apparently
opposite features, i.e., the features represented by “character-
istic earthquakes” where an earthquake, or an earthquake fault
system, is regarded to possess its characteristic energy or time
scale [6,8,9].

Statistical physics study of earthquakes is often based
on simplified models of various levels of simplification
[10]. There are several advantages in employing simplified
models in the study of earthquakes. In the model study,
it is straightforward to control various material parameters
as input parameters, whereas a systematic field study of
the material-parameter dependence of real earthquakes meets
serious difficulties. Furthermore, large earthquakes are rare,
occurring, say, once in hundreds of years for a given fault,
and it is extremely difficult to examine the reproducibility
of the observed phenomena and to take data with reliable
error bars attached. In the model studies, on the other hand,
it is often not difficult to put reliable error bars to the data
under well-controlled conditions, say, by performing extensive
computer simulations.
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One of the standard models widely employed in statistical
physics study of earthquakes might be the Burridge-Knopoff
(BK) model [10,11]. The model was first introduced in
Ref. [12]. In the BK model, an earthquake fault is simulated
by an assembly of blocks, each of which is connected via
the elastic springs to the neighboring blocks and to the
moving rigid plate, and are slowly driven by an external
force mimicking the plate drive. As discussed in Ref. [13],
the many-block BK model may well represent the motion
of a deformable fault layer, possibly corresponding to the
low-velocity fault zone (LVFZ) observed in many long mature
faults [14], pulled uniformly by the more or less rigid crust
contingent to it. The model might also be useful in describing
other stick-slip-type phenomena such as landslides [15].

In earthquakes studies, the simplicity of the BK model
might provide us some beneficial points as compared with,
e.g., the standard elastodynamical continuum model. For one,
the simplicity of the model often enables one to generate
sufficiently many events, say, hundreds of thousands of events,
to reliably evaluate the statistical properties with reliable
statistical precision, while, in the continuum model, only a
small number of events are usually generated. For the other,
the BK model contains only a small number of fundamental
parameters, which makes it possible via the systematic survey
of these parameter dependencies to concentrate on the role
and the interrelation of these small number of fundamental
parameters in earthquake occurrence, to extract and clar-
ify the physical mechanism underlying apparently complex
earthquake phenomena. Finally, the BK model, even in its
continuum limit, describes a setting a bit different from that of
the standard elastodynamical continuum model, especially in
the way of its stress loading as argued in Ref. [13].

A crucially important part of the model might be the type
of friction force assumed [8,16]. In the pioneering study of
the statistical properties of the BK model, Carlson, Langer,
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and collaborators employed the simple velocity-weakening
friction force. The friction force is assumed to be a single-
valued decreasing function of the velocity [10,11,17–28].

More realistic constitutive relation now standard in seis-
mology might be the rate-and-state-dependent friction (RSF)
law [29–31]. The RSF law assumes that the friction depends
not only on the slip velocity V but also on the “state” of
the slip interface, which is phenomenologically described via
the “state variable” � obeying its own evolution law. The
time-evolution law of the state variable generally includes a
characteristic slip distance L, which gives a measure of the
length scale at which a slip interface loses its initial memory
of the state.

This RSF law has widely been used in numerical simula-
tions mostly on the continuum model [32–40] but also on the
BK model. For example, Cao and Aki performed a numerical
simulation of earthquakes by combining the 1D BK model
with the RSF law in which various constitutive parameters
were set nonuniform over blocks [41]. Ohmura and Kawamura
extended an earlier calculation by Cao and Aki to study the
statistical properties of the 1D BK model combined with the
RSF law with uniform constitutive parameters [10,42]. Clancy
and Corcoran also performed a numerical simulation of the 1D
BK model based on a modified version of the RSF law [43].

Of course, the space discretization in the form of blocks
inherent to the BK model is an approximation to the original
continuum crust. (Note, however, that the discreteness may
also be regarded as a measure of the underlying spatial
inhomogeneity [35].) It introduces the short-length cutoff scale
into the problem in the form of the block size, which could
in principle give rise to an artificial effect not realized in the
continuum.

Rice criticized that the discrete BK model with a simple
velocity-weakening law was “intrinsically discrete,” lacking
in a well-defined continuum limit, arguing that the spa-
tiotemporal complexity observed in the discrete BK model
was due to an inherent discreteness of the model, which
should disappear in continuum [35,36]. If the grid spacing
d is taken larger than the “nucleation length,” which was
proportional to the critical slip distance L, the system exhibits
an apparently complex or critical behavior, whereas, if the
grid spacing d is taken smaller than it, the system tends
to exhibit a quasiperiodic recurrence of large events. In
this picture, the block-discretization effect of the BK model
should closely be related to its nucleation phenomena via
the nucleation length. In the continuum limit where the grid
spacing tends to zero, the system is expected to always
exhibit a quasiperiodic or a “characteristic” behavior where
large earthquakes repeat near-periodically without critical
features [35].

Indeed, we recently examined the nature of the nucleation
process of the discrete BK model under the RSF law by
systematically varying the extent of the discreteness of the
model toward the continuum limit, and also by systematically
varying various model parameters, including the frictional
and the elastic parameters [13,44]. It was observed that the
model exhibited a quasistatic initial phase in its nucleation
process when the frictional instability was weak, i.e., when
the normalized frictional-weakening parameter b was less
than a critical value bc determined by the elastic-stiffness

parameter l as bc = 2l2 + 1, while the quasistatic initial phase
was absent when the frictional instability was strong, i.e., when
b > bc = 2l2 + 1. The continuum limit entails the relation
l → ∞ so that the continuum limit of the BK model under
the RSF law necessarily lies in the weak frictional instability
regime and accompanies a long-durating quasistatic nucleation
process.

In view of these recent findings on the nucleation phe-
nomena of the 1D BK model under the RSF law, we wish to
examine in the present paper the statistical properties of subse-
quent main shocks themselves, by systematically varying the
extent of the model discreteness and various model parameters,
paying particular attention to its characteristic versus critical
features. The computation of the present paper is an extension
of the earlier calculation of Ref. [42] on the same model. These
authors concentrated on the strong frictional instability regime,
studying the limited number of observables, i.e., the magnitude
distribution and the recurrence-time distribution. In the present
paper, we deal with not only the strong frictional instability
regime but also the weak frictional instability regime, even
including its continuum limit. Note that the weak frictional
instability regime is computationally more demanding since
it necessarily accompanies a slow nucleation process that
requires more computational resources. We also compute
various observables not computed in Ref. [42], including the
rupture-zone size (rupture length) distribution, the seismic-
time correlations before and after the main shock, the mean
slip amount, and the mean stress drop at the main shock,
etc., aimed at reaching deeper understanding of the nature of
seismic events of the model.

We then find that the characteristic feature of main shocks
becomes more pronounced as one moves from the strong to
the weak frictional instability regime. While the magnitude
distribution of the model in the strong frictional instability
regime of b > bc exhibits an almost flat distribution spanning
from smaller to larger events as reported in Ref. [42], the
distribution tends to be more peaked at a characteristic
magnitude as one moves to the weak frictional instability
regime of b < bc. It means that a hypothetical, uniform
fault obeying the RSF law tends to exhibit a pronounced
characteristic behavior, accompanied by the quasiperiodic
recurrence of earthquakes of more or less similar magnitude.
Such a characteristic property is in apparent contrast to the
power-law critical behavior as embodied by the GR law, but
corroborates the Rice’s claim [35].

When one looks at the rupture-length (Lr ) distribution,
a simpler behavior turns out to emerge. Both in the strong
and the weak instability regimes, the distribution exhibits
an exponential behavior at larger sizes, ≈ exp[−Lr/L0],
characterized by the characteristic “seismic correlation length”
L0. This observation hints that certain forecast might be
possible, at least for a mature homogenous fault, on the basis
of such pronounced characteristic features. It is also observed
that not only the mean stress drop but also the mean slip amount
at the main shock tends to be Lr -independent for larger events.

Events of the model might be classified into two distinct
categories, called here the type I and the type II events. The
type I event tends to occur with its epicenter located at the
rim of the rupture zone of the preceding event, and tends to
be unilateral, i.e., its rupture propagates predominantly in one
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direction and the epicenter lies near the edge of the rupture
zone of the event. By contrast, the type II event tends to
occur with its epicenter located in the interior of this event,
the rupture propagating in both directions. The type II event
has a more enhanced characteristic feature than the type I
event. For example, the type II event tends to repeat several
times with a more or less common epicenter and rupture zone,
with features of the so-called “asperity.” The dominance of
either type I or type II events depends on the weak or strong
frictional instability regime, i.e., the type I (type II) event tends
to dominate in the strong (weak) frictional instability regime.
The fact that seismic events of the model tend to be increasingly
more characteristic in the weaker frictional instability regime
might be understood from the dominance of the type II event
in the weak frictional instability regime.

Continuum limit of the model is also examined. Since
the continuum limit of the model always lies in the weak
frictional instability regime of the original discrete model
irrespective of its parameter values, our results suggest that
seismic events of a mature homogeneous fault should be
more or less “characteristic,” with features of asperities. Such
enhanced characteristic features enable one to discuss about
“typical scales” underlying the seismic events, those of length,
time, and energy. We then try to give explicit estimates of these
scales underlying seismicity.

Overall, the properties of the BK model under the RSF
law are sometimes considerably different from those of the
BK model under the pure velocity-weakening law employed
in most of the previous simulations on the BK model
[10,11,17–28]. Roughly speaking, characteristic features tend
to be more enhanced in the RSF-law model than in the pure
velocity-weakening-law model.

The rest of the paper is organized as follows. In Sec. II, we
define our model, the 1D BK model obeying the RSF law, and
present its equation of motion. In Sec. III, we report the results
of our numerical simulation on various statistical properties of
the model, e.g., the magnitude distribution, the rupture-length
distribution, the main shock recurrence-time distribution, the
seismic-time correlations before and after the main shock, the
mean slip amount, and the mean stress drop at the main shock,
etc., covering both the strong and the weak instability regimes.
In Sec. IV, we deal with the continuum limit of the model and
investigate how various statistical properties behave in this
limit. Finally, Sec. V is devoted to summary and discussion.
Implications to real seismicity are discussed.

II. MODEL

The 1D BK model consists of a 1D array of N identical
blocks of the mass m, which are mutually connected with the
two neighboring blocks via the elastic springs of the spring
stiffness kc, and are also connected to the moving plate via the
springs of the spring stiffness kp, and are driven with a constant
rate ν ′. All blocks are subject to the friction strength �, which
is the source of nonlinearity in the model. The equation of
motion for the ith block can be written as

m
d2Ui

dt ′2
= kp(ν ′t ′ − Ui) + kc(Ui+1 − 2Ui + Ui−1) − �i,

(1)

where t ′ is the time, Ui is the displacement of the ith block,
and �i is the friction force at the ith block. For simplicity, the
motion in the direction opposite to the plate drive is inhibited
by imposing an infinitely large friction for Vi = dUi

dt ′ < 0,
where Vi is the velocity of the ith block.

For the friction law, we assume the RSF law given by

�i =
{
C + A log

(
1 + Vi

V ∗

)
+ B log

V ∗�i

L

}
N , (2)

where �i(t ′) is the time-dependent state variable (with the
dimension of time) representing the “state” of the slip interface,
V ∗ is a crossover velocity underlying the RSF law, N is an
effective normal load, L is a critical slip distance, which is a
measure of the sliding distance necessary for the surface to
evolve to a new state, with A, B, and C positive constants
describing the RSF law. The first term (C term) is a constant
taking a value around 2

3 [8], which dominates the total
friction in magnitude, the second term (A term) a velocity-
strengthening direct term describing the part of the friction
responding immediately to the velocity change, the third part
(B term) an indirect velocity-weakening term dependent of
the state variable. Laboratory experiments suggest that the
A and B terms are smaller than the C term by one or two
orders of magnitude, yet they play an essential role in stick-slip
dynamics [8,16,31].

Note that, in the standard RSF law, the A term is often
assumed to be proportional to log( Vi

V ∗ ). Obviously, this form
becomes pathological in the V → 0 limit because it gives
a negatively divergent friction. In other words, the pure
logarithmic form of the A term cannot describe the state at a
complete rest. We cure this pathology by phenomenologically
introducing a modified form given above [44]. The modified
form, where the A term becomes proportional to the block
velocity V at V � V ∗ but reduces to the purely logarithmic
form at V 	 V ∗, is enabled to describe a complete halt.
The characteristic velocity V ∗ represents a crossover velocity,
describing a low-velocity cutoff of the logarithmic behavior of
the friction.

For the evolution law of the state variable, we use here the
so-called aging (slowness) law given by

d�i

dt ′
= 1 − Vi�i

L . (3)

Under this evolution law, the state variable �i grows linearly
with time at a complete halt Vi = 0 reaching a very large
value at the outset of the nucleation process, while it decays
very rapidly during the seismic rupture.

The equation of motion can be made dimensionless by
taking the length unit to be the critical slip distance L, the time
unit to be ω−1 = √

m/kp, and the velocity unit to be Lω,

d2ui

dt2
= νt − ui + l2(ui+1 − 2ui + ui−1)

−
[
c + a log

(
1 + vi

v∗
)

+ b log θi

]
, (4)

dθi

dt
= 1 − viθi, (5)

where the dimensionless variables are defined by t = ωt ′, ui =
Ui/L, vi = Vi/(Lω), v∗ = V ∗/(Lω), ν = ν ′/(Lω), θi = �iω,
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a = AN /(kpL), b = BN /(kpL), c = CN /(kpL), while
l ≡ √

kc/kp is the dimensionless elastic stiffness parameter.
It is sometimes more convenient to rewrite the equation

of motion in terms of the velocity variable vi instead of the
displacement ui . By differentiating Eq. (4) with respect to t

and by using Eq. (5), one gets

d2vi

dt2
+ a

vi + v∗
dvi

dt
+ [l2(vi+1 − 2vi + vi−1) + 1 − b]vi

= ν − b

θi

. (6)

The block displacement or the slip amount ui can be obtained
up to a constant by integrating the velocity vi with respect
to t .

One sees from Eqs. (6) and (5) that the constant frictional
parameter c no longer remains in the governing equations,
meaning this parameter is essentially irrelevant to the dy-
namical properties of the model. In our simulations, we use
either Eq. (4) or (6) depending on the situation. In solving
the high-speed motion, we use Eq. (4), while in solving the
low-speed motion as realized in the initial phase or the early
stage of the acceleration phase, we use Eq. (6).

The frictional parameter a/b tends to suppress or enhance
the frictional instability. The earthquake instability is driven
primarily by the velocity-weakening b term, while the velocity
strengthening a term tends to mitigate the unstable slip toward
the aseismic slip. Since the frictional parameters a and b

compete in their function, either a < b or a > b might affect
the dynamics significantly. When a � b, the compensation
effect due to the a term tends to induce a slow slip succeeding
a main shock, i.e., an afterslip, while, when a 	 b, it gives
rise to slow-slip events (SSE), no longer accompanying the
high-speed rupture at any stage of the event. Earthquake
properties in this regime of a > b will be reported in a separate
paper, with emphasis on the slow-slip phenomena.

Estimates of typical values of the model parameters
representing natural earthquake faults have been given in
Ref. [13]. The BK model and its continuum limit possess
a built-in time scale, ω−1, corresponding to the typical rise
time of an earthquake event, which may be estimated to be
∼1 [s]. The model possesses two distinct and independent
length scales: one associated with the fault slip and the other
with the distance along the fault. The former length scale is the
critical slip distance L, which was estimated to be �1 [cm],
while the other is the distance the rupture propagates per unit
time, vs/ω, which was estimated to be �2–3 [km], where vs is
the s-wave velocity in the LVFZ. The spring constant kp was
related to the normal stress as N

kpL � 102–103. Then, as C is

known to take a value around 2
3 , c would be of order 102–103,

a and b being one or two orders of magnitude smaller than c.
The crossover velocity V ∗ and its dimensionless counterpart
v∗ is hard to estimate though it should be much smaller than
unity, and we take it as a parameter.

The continuum limit of the BK model corresponds to
making the dimensionless block size d to be infinitesimal
d → 0, simultaneously making the system infinitely rigid l =
1
d

→ ∞ [28]. Since the continuum limit entails l → ∞, the
condition of the weak frictional instability b < bc = 2l2 + 1

is always satisfied there. Hence, the continuum limit of the
model always lies in the weak frictional instability regime
accompanying the quasistatic nucleation process.

Simulations are made by numerically solving the coupled
equations of motions for vi (or ui) and θi (1 � i � N ) by
means of the fourth-order Runge-Kutta method. The total
number of blocks N is taken to be N = 800 in most cases,
while other sizes up to N = 1600 are studied to check the
possible finite-size effects. Open boundary conditions are
adopted for the block at each end of the system. We have
checked that the results shown below for the systems size
N = 800 are free from finite-size effects in that the results
have well converged against further increase of N . Concerning
the initial conditions, all blocks are assumed to be ar rest, i.e.,
vi = 0 (1 � i � N ) at t = 0, the state variable is taken to be
uniform θi = 108, while the displacement of each block is
assumed to take random values uniformly distributed between
−5 and 5 from block to block. Events at earlier times are
just transient and nonstationary, strongly affected by the initial
conditions. We wait until the system reaches the stationary
state losing initial memory and compute various observables
in such stationary states.

We emphasize that, although the model is completely
uniform or “homogenous” in the model parameters describing
its equations of motion, it exhibits quite erratic or irregular be-
havior as will be shown in subsequent sections. In other words,
the outcoming state of the model, e.g., the displacement, the
velocity and the stress, etc., could be quite “inhomogeneous”.
The origin of such irregular behaviors lies in the imposed
initial conditions inevitably existing in any real setting, from
which the irregularity or the complexity is self-evolved via the
intrinsic “chaotic” dynamics.

III. RESULTS

In this section, we study various statistical properties of
the 1D BK model, including the magnitude distribution, the
rupture-length distribution, the recurrence-time distribution,
the mean slip amount, and the mean stress drop at the main
shock.

We begin with the magnitude distribution. The magnitude
of an event, μ, may be defined by

μ = ln

(∑
i

�ui

)
, (7)

where �ui is the displacement of the ith block during a given
event, and the sum is taken over all blocks involved in the
event.

The computed magnitude distribution is shown in Fig. 1
both in the strong frictional instability regime of larger b (a) and
in the weak frictional instability regime of smaller b (b). The
parameters are taken to be a = 1, c = 1000, l = 3, ν = 10−8,
and v∗ = 10−2 so that the critical value of b discriminating
the weak or strong frictional instability is bc = 2l2 + 1 = 19.
As can be seen from Fig. 1(a), the magnitude distribution
in the strong frictional instability regime exhibits an almost
flat distribution spanning from smaller to larger events. While
events of various sizes tend to occur, the distribution does not
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FIG. 1. The magnitude distribution of earthquake events of the
1D BK model for various frictional-parameter b values (a) in the
strong frictional instability regime of b > bc = 19 and (b) in the weak
frictional instability regime of b < bc. The other parameter values are
a = 1, l = 3, c = 1000, v∗ = 10−2, and ν = 10−8. The system size
is N = 800.

obey the GR law. The result in the strong frictional instability
regime is consistent with the earlier result of Ref. [42].

As b is decreased toward bc and the system approaches the
weak frictional instability regime, the magnitude distribution
changes its shape with more weight at a larger magnitude.
In the weak frictional instability regime of b < bc, the data
exhibit a more characteristic behavior with a pronounced peak
at a magnitude μ = μp, meaning large events of the magnitude
μp predominantly occur. Hence, a main shock in the weak
frictional instability regime, which covers the continuum limit
of the model, tends to acquire a pronounced characteristic
feature.

We also examine the other parameter dependence of the
magnitude distribution, the a-dependence in Fig. 2, and the
v∗-dependence in Fig. 3, both in the strong and the weak
instability regimes. As can be seen from these figures, the
distribution depends only weakly on a, but does not depend
on v∗ in the parameter range studied. As can be seen from
Eq. (6), the magnitude distribution is also insensitive to the
frictional parameter c, which we also confirmed (the data not
shown here).

A magnitude μ has been defined as the log of the multiple
of the rupture length Lr , defined as the total number of blocks
involved in a given event, and the mean slip amount �u. If one
looks at the distribution of the rupture length Lr , an interesting
tendency shows up. In Fig. 4, we show the distribution of
Lr on a semilogarithmic plot for various b in the strong
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FIG. 2. The magnitude distribution of earthquake events of the 1D
BK model for various a values (a) in the strong frictional instability
regime of b = 30 > bc = 19 and (b) in the weak frictional instability
regime of b = 8 < bc. The other parameter values are l = 3,
c = 1000, v∗ = 10−2, and ν = 10−8. The system size is N = 800.

[Fig. 4(a)] and in the weak [Fig. 4(b)] frictional instability
cases. The parameter choice is the same as in Fig. 1. As can
be seen from Fig. 4, the data tend to lie on a straight line
except for smaller events, indicating that the distribution has
an exponential form � exp[−(Lr/L0)] with a characteristic
rupture length L0. Such an exponential behavior prevails both
in the weak and in the strong frictional instability regimes.
The observed finite L0 is not a finite-size effect. In the region
where the mean slip amount �u is nearly constant, which
is the case for larger events in the weak frictional instability
regime as will be shown in Fig. 10, apparent different shapes
between the μ-distribution [Fig. 1(b)] and the Lr -distribution
[Fig. 4(b)] might be understandable by noting the relation
dμ � d ln(�uLr ) � (�u/Lr )dLr .

We also examine the b-dependence of L0, and the result
is shown in Fig. 4(c). At b = bc = 19 discriminating the
weak and strong instability regimes, there occurs a change
of behavior in the b-dependence of L0. Anyway, the existence
of a characteristic rupture length of the length scale L0 � 102

seems to be a notable feature of the 1D BK model under the
RSF law. We shall discuss its continuum limit in the next
section. A change of behavior of the b-dependence of L0 can
be seen in Fig. 4 also around b � 30. This change of behavior
is closely related to the observation that the dominant type of
events changes around b � 30. We shall return to this issue
in Fig. 9.

In real seismicity, a main shock often accompanies after-
shocks and foreshocks, which obey the Omori law or the
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FIG. 3. The magnitude distribution of earthquake events of the 1D
BK model for various v∗ values (a) in the strong frictional instability
regime of b = 30 > bc = 19 and (b) in the weak frictional instability
regime of b = 8 < bc. The other parameter values are a = 1, l = 3,
c = 1000, and ν = 10−8. The system size is N = 800.

inverse Omori law. For the BK model under the velocity-
weakening friction law, by contrast, earlier studies indicated
that such an aftershock (foreshock) sequence obeying the
Omori (inverse Omori) law has hardly been observed [25–28].
Then, we investigate here the corresponding properties for
the BK model under the RSF law. In Fig. 5, the frequency
of events correlated with main shocks is shown as a function
of the time t both before (t < 0) and after (t > 0) the main
shock. To make comparison with the previous works, we take
here the definition of aftershocks and foreshocks same as those
of Refs. [25–28], i.e., main shocks are taken as events of their
magnitude greater than μc = 4, and the frequency of all events
that occur at time t in the neighborhood of the epicenter of a
main shock, its epicenter being located within the distance
�r (in units of block number) from the main shock epicenter
block, is plotted versus the time t . Average is made over main
shocks where the time origin t = 0 is set common.

The computed time correlation is shown in Fig. 5 both in
the strong [Fig. 5(a)] and in the weak [Fig. 5(b)] instability
cases. The peak structure observed around t � 200 ∼ 300 in
Fig. 5(a) and t � ±250 in Fig. 5(b) are associated with the
subsequent (or preceding) main shock. As can be seen from
Figs. 5(a) and 5(b), seismic activity tends to be suppressed after
the main shock, an aftershock sequence being not evident.

In the strong frictional instability case of Fig. 5(a), seismic
activity tends to be gradually enhanced before the main
shock toward the main shock. This enhancement occurs on
the time scale of the recurrence period of main shocks,
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FIG. 4. The rupture-length Lr distribution of earthquake events
of the 1D BK model on a semilogarithmic plot for various frictional-
parameter b values (a) in the strong frictional instability regime of
b > bc = 19 and (b) in the weak frictional instability regime of
b < bc. The other parameter values are a = 1, l = 3, c = 1000,
v∗ = 10−2, and ν = 10−8. The system size is N = 800. The inverse
slope of the tail of the distribution yields a characteristic rupture-
length scale L0 as indicated in the figure. The b-dependence of L0 is
shown in panel (c).

representing a long-term activation of seismicity toward the
main shock rather than standard foreshocks. In the weak
frictional instability regime, even such a long-term activation
is not discernible. The computed time correlation takes a
symmetric form before and after the main shock, without
standard foreshocks and aftershocks. As such, the standard
aftershock-foreshock sequence obeying the Omori (inverse
Omori) law is not realized in the 1D BK model even under
the RSF law. Some ingredients not taken into account in the
present model, e.g., the higher-dimensionality effect and/or
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FIG. 5. The event frequency before and after the main shock
occurring at the time t = 0 (a) in the strong frictional instability
regime of b = 30 > bc = 19 and (b) in the weak frictional instability
regime of b = 8 < bc. The other parameter values are a = 1, l = 3,
c = 1000, v∗ = 10−2, and ν = 10−8. The system size is N = 800.
The number of events occurring within the distance �r from
the epicenter site of the main shock is counted irrespective of
their magnitude. Note that the abscissa is scaled with the plate
velocity ν.

the slow relaxation process, seem to be necessary to realize
foreshock-aftershock sequences.

The interval (or the recurrence) time T between main
shocks is also of interest. Ohmura and Kawamura studied
the recurrence-time distribution of the model in the strong
frictional instability case and observed that it possessed a
double-peak structure, each peaked at apparently independent
times T = T1 and T2 (T1 < T2). In order to get further insight
into the issue, we compute here the local recurrence-time
distribution in the strong instability case, and the result is
shown in Fig. 6. Main shocks are defined here with their
magnitude of μ � μc = 4, while the main shocks with its
epicenter lying in the neighborhood of the preceding main
shock with �r � 25 are counted as the next event. As can
be seen from Fig. 6, the double-peak structure is discernible
at T1 � 300 and T2 � 750, though in a less pronounced
compared with the ones observed in Ref. [42], presumably
due the smaller value of v∗ adopted here, i.e., v∗ = 10−2 here
versus v∗ = 1 in Ref. [42].

We find that these two distinct recurrence times are actually
originated from two distinct types of seismic events, which we
call the type I and the type II events. The type I event occurs
with its epicenter lying just next to the rim of the rupture
zone of the preceding event and tends to be unilateral; i.e.,
the rupture propagates only in one direction. By contrast, the
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FIG. 6. The distribution of the main-shock recurrence time of
the 1D BK model. The parameter values are a = 1, b = 30, l = 3,
c = 1000, v∗ = 10−2, and ν = 10−8. The system size is N = 800.
The dashed lines represent the recurrence-time distribution of the
type I events (green) and of the type II events (blue). For the details,
see the main text. Note that the abscissa is scaled with the plate
velocity ν.

epicenter of the type II event lies in the interior of the rupture
zone of the preceding event, and its rupture tends to propagate
in both directions. The two types of events are illustrated in
Fig. 7 on the position versus the time plot.

We confirm that the two peaks of the recurrence distribution
of Fig. 6 are indeed associated with these two types of events,
i.e., the peak at T1 with the type I event and the peak at T2

with the type II event. In our simulations, the type I events
are defined as events with its epicenter lying one block next
to the rim of the rupture zone of preceding events, while all
other main shocks are regarded as type II events. In Fig. 6,
we also show the “dissolved” recurrence time distributions for
the type I events and for the type II events as defined above
separately, which validates the above identification.

We note that, as can be seen from Fig. 7, the type II
event possesses a feature of the so-called “asperity” in that a
nearly common area tends to rupture repeatedly with a nearly
common block as an epicenter. The 1D BK model certainly
contains a mechanism of stabilizing such an asperity-like
event.

A hint of such a stabilization mechanism might be obtained
from the stress distribution just before and after the type II
event, an example of which is demonstrated in Fig. 8. As can

rupture zone

epicenter

Position

T
im

e

type1 type2

FIG. 7. Schematic spatiotemporal pattern of the type I and the
type II events. Bars represent the rupture zone of the event, and
crosses represent its epicenter site.
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a = 1, b = 30, l = 3, c = 1000, v∗ = 10−2, and ν = 10−8. The
epicenter block is indicated by the arrow.

be seen from the figure, the higher stress before the main shock
is released after the main shock in its rupture zone, while the
stress drop near the epicenter remains modest. This is because,
at the initial stage of the main shock, the rupture has not been
fully developed in the sense that the block sliding velocity
stays relatively low around the epicenter region [13,44]. In
contrast, the stress drop on the both sides of the epicenter
region is significant, providing a relatively low-stress region
surrounding the epicenter region of relatively high stress.
Since the stress loading after the main shock is uniform,
the epicenter region of relatively high stress tends to be an
epicenter of the next event, provided that it is not involved in
other events which occur with its epicenter at some distant
site outside of the rupture zone of the target event. Then,
the low-stress region surrounding the epicenter site serves to
provide a stress “trench”, preventing the epicenter site from
being involved in the events propagated from the outer region.
This mechanism works effectively especially in the present 1D
model, stabilizing the type II asperity-like event. By contrast,
the mechanism is expected to be less effective in 2D simply
due to the geometrical reason: the possible paths of the rupture
propagation from outside could be far richer in 2D than in 1D
so that the high stress state at the epicenter region tends to be
more vulnerable to the rupture invasion from outside. If so, the
type II event would be more eminent in 1D than in 2D.

Note that the asperity-like character of the type II event
is self-generated from the completely homogenous evolution
law and homogenous material parameters. In seismology,
the asperity-like events are usually attributed to the spatial
inhomogeneity of the earthquake fault, i.e., the asperity is
considered to a special spot with a special geography or special
material parameters distinct from other places. Our present
result demonstrates, on the other hand, that the completely
homogenous system, at least in material parameters describing
its equation of motion and constitutive law, still can self-
generate asperity-like phenomena via its dynamical evolution.
Example of similar self-generated asperity-like phenomena
in a spatially homogeneous setting was also reported in
certain 2D coupled map lattice model [45,46]. Of course, the
asperity-like type II event sequence in the homogenous model
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FIG. 9. The b-dependence of the rate of the type I event. The
other parameter values are a = 1, l = 3, c = 1000, v∗ = 10−2, and
ν = 10−8. The borderline value of b separating the strong and weak
frictional instability regimes, bc = 19, is indicated by the vertical
dotted line. The inset shows the a-dependence of the rate of the type I
event at b = bc = 19.

does not last permanently. It is interrupted at a certain stage,
but could continue over many events, say, ten times.

In Fig. 9, the rate of the type I events among all events
is plotted versus the parameter b. In the strong frictional
instability regime of larger b, most of the events are type I
so that the T2-peak of Fig. 6 originated from the type II
events is faint. Especially for b � 30, almost all events are
type I. In the weak frictional instability regime of smaller b,
on the other hand, the type II events are dominant so that
the T1 peak is hardly discernible. Near the border b � bc,
the type I/type II ratio exhibits a pronounced increase as b

is increased across bc. Such a dominance of either type I or
type II event for b > bc or < bc might explain the changeover
observed in several observables. For example, the change in
the form of the magnitude distribution shown in Fig. 1 is
attributed to the observation that the type II event possesses
a pronounced characteristic property with an eminent single-
peaked distribution, while the type I event tends to be less
characteristic with a flat distribution spanning from smaller to
larger events. The type I/type II ratio hardly depends on a:
see the inset of Fig. 9. As can be seen from Figs. 4(c) and
9, the rupture length L0 at b � bc = 19 is dominated by the
type II events where L0 � 150, while L0 at around b � 30
is dominated by the type I events where L0 � 90. One then
sees that the rupture length L0 tends to be longer in the type II
events than in the type I events by, say, a factor of two. This
may simply reflect the fact that the type I event is unilateral
while the type II one is bilateral.

In Fig. 10(a), the mean slip amount of blocks involved in
an event, �u, is shown as a function of the rupture-zone size
Lr for the case of b = 30 � bc = 19 and of b = 8 � bc, each
corresponding to the strong and the weak frictional instability
regimes. A similar plot is given also for the mean stress drop
in Fig. 10(b). The mean stress drop is defined here as the
difference between the elastic forces at the onset and at the
end of a given event, averaged over all blocks involved in this
event, where the (dimensionless) elastic force at a given block
i is given by νt − ui + l2(ui+1 − 2ui + ui−1). As can be seen
from these figures, both the mean slip and the mean stress
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FIG. 10. The rupture-length Lr dependence of (a) the mean slip
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parameter b value is either b = 30 > bc = 19 in the strong frictional
instability regime (red), and b = 8 < bc in the weak frictional
instability regime (blue). The other parameter values are a = 1, l = 3,
c = 1000, v∗ = 10−2, and ν = 10−8.

drop increase monotonically with Lr , and eventually tend to
saturate taking nearly Lr -independent values. The tendency
is more eminent in the weak frictional instability regime
of b < bc.

It has been known for some time that in real seismicity
the stress drop tends to be nearly independent of the event
size taking a value around 3 MPa, though with rather large
dispersions between 0.03 ∼ 30 MPa [8].

By contrast, if the stress drop is to be size-independent,
the standard elastic theory would expect the mean slip being
proportional to the rupture length Lr . As we shall show
in Sec. IV, the event-size independence of the mean slip
observed here for the discrete BK model actually persists
in its continuum limit. Hence, the saturation of the mean
slip with respect to the event size Lr is not just due to the
discreteness of the BK model, but is an essential property
of the model construction. Presumably, this would be related
to the way of the plate loading in the BK model, where the
blocks constituting a deformable fault layer are directly pulled
by the contingent moving rigid plate via the elastic springs,
whereas, in the standard elastic continuum model, the plate
loading is applied infinitely apart from the fault layer. Such
setting implicitly assumed in the 1D BK model is expected to
apply to long mature faults with its length much longer than the
seismoginic-zone width. Such setting is also the one assumed
in the so-called “W model” [47,48], which also predicts the
saturation of the slip amount for very long ruptures. The
scaling relation between the mean slip amount and the rupture
length for natural faults has long been discussed [8,47–52],
where some reported that the mean slip amount tended to be
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FIG. 11. The mean slip amount during the rupture propagation
of a main shock is plotted versus the block position measured
from the epicenter block. The frictional-parameter b value is either
(a) b = 30 > bc = 19 in the strong frictional instability regime
or (b) b = 8 < bc in the weak frictional instability regime. The
other parameter values are a = 1, l = 3, c = 1000, v∗ = 10−2, and
ν = 10−8. Events that propagate with exactly the distance
Lr = 100, 200, and 300 in their longer direction are collected, and
the data are averaged over the events satisfying this condition.

size-independent for very large events with Lr much longer
than the seismogenic-zone width W [8,49–51].

Additional information can be obtained by looking at the
manner how the rupture propagates during the main shock.
Thus, we show in Fig. 11 the mean slip during the rupture
propagation of a main shock plotted versus the block position
measured from the epicenter block. The frictional-parameter
b value is either b = 30 in the strong frictional instability
regime (a) or b = 8 in the weak frictional instability regime (b).
Events that propagate exactly of the distance Lr = 100, 200,
and 300 in the longer direction are collected, and the data
are averaged over the events satisfying this condition. Similar
plots are also given for the mean stress drop in Fig. 12 for the
same parameters sets as Fig. 11.

As can be seen from Figs. 11 and 12, both the mean
slip and the mean stress drop tend to reach a constant
plateau value except at the beginning and at the end of the
rupture. Such a plateau-like behavior is more pronounced in
the weak frictional instability regime, where the plateau-like
behavior immediately sets in event near the epicenter block,
presumably due to the accompanying nucleation process in
this regime [13,44]. The important observation here is that
this plateau value is independent of the event size Lr , except
for smaller events not exhibiting a plateau behavior. Such
a plateau-like behavior independent of the event size Lr
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FIG. 12. The mean stress drop during the rupture propagation
of a main shock is plotted versus the block position measured
from the epicenter block. The frictional-parameter b value is either
(a) b = 30 > bc = 19 in the strong frictional instability regime
or (b) b = 8 < bc in the weak frictional instability regime. The
other parameter values are a = 1, l = 3, c = 1000, v∗ = 10−2,
and ν = 10−8. Events which propagate with exactly the distance
Lr = 100, 200, and 300 in their longer direction are collected, and
the data are averaged over the events satisfying this condition.

immediately explains the reason why the mean stress drop
and the mean slip amount becomes nearly independent of
the rupture length except for smaller events, especially in the
weak frictional instability case. We note in passing that the
plateau-like behavior might be originated from the pulse-like
propagation of the rupture front in a main shock, which tends
to flatten the stress state within the rupture zone.

IV. THE CONTINUUM LIMIT

In this section, we examine the continuum limit of the
discrete BK model. The continuum limit corresponds to
making the block size to be infinitesimally small, d → 0,
simultaneously making the system infinitely rigid l → ∞ so
that d = 1/l [28]. The dimensionless distance x between the
block i and i ′ is given by

x = |i − i ′|d = |i − i ′|
l

. (8)

As discussed in Ref. [28], the equation of motion in the
continuum limit is given in the dimensionful form by

d2U

dt ′2
= ω2(ν ′t ′ − U ) + ξ 2 d2U

dx2
− �′, (9)

where U (x,t ′) is the displacement at the position x and the
time t ′, �′ is the friction force per unit mass, while ω and
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FIG. 13. (a) The block-size d dependence of the magnitude
distribution. The parameters are a = 1, b = 6, c = 1000, v∗ = 10−2,
and ν = 10−8. The d → 0 limit corresponds to the continuum limit
where l = 1/d . The system size (the total number of blocks) is N/d

with N = 800. (b) The magnitude distribution near the continuum
limit (d = 1/16) for various frictional-parameter b values. The other
parameters are the same as in (a).

ξ (�vs) are the characteristic frequency and the characteristic
wave velocity, respectively.

The length unit scaling the block size is then ξ/ω, while the
length unit scaling the block displacement is the characteristic
slip distance L.

The continuum limit of the BK model necessarily lies in the
weak frictional regime since bc = 2l2 + 1 → ∞ in this limit.
Hence, the statistical properties of the model in its continuum
limit should generally be those of the weak frictional instability
regime with enhanced characteristic properties.

In order to examine the convergence toward the continuum
limit d → 0, we show in Fig. 13(a) the magnitude distribution
with systematically varying the block size d from d = 1
corresponding to the original BK model to smaller values
down to d = 1/16. The parameters are taken a = 1, b = 6,
c = 1000. As can be seen from the figure, the computed
magnitude distribution tends to converge as d is taken smaller,
approaching a limiting form. In fact, the convergence appears
reasonably good already at d = 1/16. Note that, although
the initial (d = 1) choice of the parameter lies in the strong
frictional instability regime, the one emerging in the continuum
limit resembles that of the weak frictional instability with an
enhanced characteristic feature.

In Fig. 13(b), we show the magnitude distribution functions
computed at d = 1/16, expected to be close to the continuum
limit, with varying the frictional-parameter b value as b = 5, 7,
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FIG. 14. The rupture-length L̃r = Lrd = Lr/l distribution near
the continuum limit (d = 1/16) for various frictional-parameter b
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and ν = 10−8.

and 10. As expected from the fact that the continuum limit
always lies in the weak frictional instability regime irrespective
of the frictional-parameter b value, the computed magnitude
distributions are always single-peaked with an enhanced
characteristic feature irrespective of their frictional-parameter
b value.

In Fig. 14, we show on a semilog plot the rupture-length
distribution computed at d = 1/16 expected to be close to
the continuum limit, with varying the frictional-parameter
b value. As in the original model with d = 1, the tail of
the distribution exhibits a near-linear behavior corresponding
to the exponential behavior, yielding a characteristic length
scale associated with the inverse slope L̃0 = L0d = L0/l in
the continuum limit d → 0 (l → ∞). The result indicates
that, in the continuum limit of the BK model, there exists
a characteristic length scale for the main shock rupture length.
As can be seen from Fig. 14, this length L̃0 turns out to
be around several tens in the dimensionless unit, increasing
with b somewhat. Recalling that the length unit along the
fault has been given by vs/ω ∼ 2 [km], this characteristic
length scale may roughly be estimated to be L̃0 ∼ 100 [km]
with uncertainty of, say, a factor of two. If one literally
translates the result into the real world, it means that, an
event in a hypothetical infinite uniform fault obeying the
RSF law, the main shock rupture length cannot be indefinitely
large, with a characteristic length scale of ∼100 [km]. As a
consequence of this exponential behavior of the rupture length,
the occurrence probability of the events of, say, L̃r � 10L̃0 is
quite low, ∼0.005%, suggesting the practical upper limit of the
rupture length of earthquakes being, say, 10L̃0 ∼ 1000 [km].
Interestingly, this upper limit comes close to the rupture length
of 1960 Chile Earthquake.

In Fig. 15, we show the main shock recurrence-time
distribution computed at d = 1/16 close to the continuum
limit, with varying the frictional-parameter b value. The
pronounced peak structure corresponding to the occurrence of
the next (second-next,... etc.) main shock persists as observed
in the original model with d = 1 in the weak frictional regime.
It indicates the near periodic recurrence of main shocks.
The second and further peaks arise because the next event
sometimes happens to be missed due to the somewhat arbitrary
condition of the “vicinity” �r , and the second-next event
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FIG. 15. The main shock recurrence-time distribution near the
continuum limit (d = 1/16) for various frictional-parameter b values.
The other parameter values are a = 1, c = 1000, v∗ = 10−2, and
ν = 10−8.

is counted as the next event. The computed recurrence-time
distribution resembles the one estimated for large events at
natural faults, in that the distribution exhibits a single peak at
a characteristic magnitude [53,54].

In Fig. 16 we show the b-dependence of the rate of the
type I event computed at d = 1/16 close to the continuum
limit for the cases of a = 0.1 and 1. Since the region lies in
the weak frictional instability regime of the original model
with d = 1, most of the events should be of type II so that the
computed ratio stays rather small, being less than 0.1 for most
of the parameter values. Yet, the type I ratio tends to increase
as b gets smaller. There could be two factors in this increase.
First, for b < 1, the model exhibits a stationary creep-like
behavior, no longer accompanying the standard high-speed
rupture of a main shock. Second, for a � b, the main shock
changes its character, accompanied by a slow afterslip, and
for a significantly greater than b, the high-speed rupture no
longer occurs but SSE occurs instead. If so, the change of
behavior is expected as b (> a) approaches a. Indeed, in
Fig. 16, the rapid increase of the type I rate occurs at a larger
frictional-parameter b value for a = 1 than for a = 0.1. In
other words, in the parameter region of a � b and/or b < 1,
the basic character of the events changes where the slow-slip
behaviors tend to become dominant, significantly modifying
the statistical properties. We leave this issue of the slow slip
of the BK model in the future publication.
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FIG. 17. The rupture-length dependence of (a) the mean slip
amount and (b) the mean stress drop, which represents the continuum
limit of Fig. 10. The frictional-parameter b value is b = 5, 7, 10, while
the other parameters are a = 1, c = 1000, v∗ = 10−2, and ν = 10−8.

In Fig. 17, we show the rupture-length L̃r dependence of the
mean slip amount (a) and of the mean stress drop (b) computed
at d = 1/16 close to the continuum limit, with varying the
frictional-parameter b value as b = 5, 7, and 10. It corresponds
to the continuum limit of Fig. 10 of the original model with
d = 1. As expected, the obtained behavior is similar to the one
observed in the original model in the weak frictional instability
regime. In particular, both the mean stress drop and the mean
slip amount tend to be independent of the rupture length except
for smaller events.

V. SUMMARY AND DISCUSSION

Statistical properties of the one-dimensional spring-block
(Burridge-Knopoff) model of earthquakes obeying the rate-
and state-dependent friction law are studied by extensive
numerical computer simulations. The quantities computed
include the magnitude distribution, the rupture-length dis-
tribution, the main-shock recurrence-time distribution, the
seismic-time correlations before and after the main shock,
the mean slip amount, and the mean stress drop at the
main shock, etc.

The statistical properties turned out to differ considerably
depending on whether the system is either in the weak or
the strong frictional instability regime, each corresponding to
b > bc (= 2l2 + 1) or b < bc, where b is the frictional
weakening parameter and l is the elastic stiffness parameter.
In the weak frictional instability regime, seismic events
generally tend to possess enhanced characteristic features.
The magnitude distribution, for example, changes its character
depending on whether in the strong or the weak frictional
instability regime: the distribution is eminently single-peaked

in the weak frictional instability regime whereas tends to be
flat in the strong frictional instability regime [13,44].

Large events of the model can be classified into the two
categories which we call types I and II. The type I event
occurs with its epicenter located at the rim of the rupture zone
of the previous event, and tend to be unilateral propagating
mainly in only one direction. On the other hand, the type II
event resembles the asperity-like earthquake with its epicenter
located in the interior of its rupture zone and recur near
periodically, the rupture propagating into both directions.
We observed that in the strong frictional instability regime
large events are dominated by the type I events, while in
the weak frictional instability regime by the type II events.
The difference in the statistical properties in the strong and
weak frictional instability regimes is understandable as the
difference in the character of the type I and II events. In
particular, an enhanced characteristic feature observed in
the weak frictional instability regime is originated from the
enhanced characteristic feature of the type II events.

One interesting finding of our simulation is that the
distribution of the rupture length Lr exhibits an exponential
behavior at larger sizes, ≈ exp[−Lr/L0] with a characteristic
“seismic correlation length” L0, both in the strong and the
weak frictional instability regimes, indicating the existence
of an intrinsic length scale associated with the main shock
size. L0 is around 10 ∼ 100 lattice spacings, though somewhat
b-dependent.

We also studied the seismic time correlation before and
after the time events, to examine whether the model exhibits
a foreshock or aftershock sequence. Except for the gradual
increase of the seismic activity toward the next main shock at
the time scale of the main shock interseismic period, no clear
signature of foreshock or aftershock sequences is observed in
the model. In particular, the model does not exhibit a foreshock
or aftershock sequence obeying the Omori (inverse Omori)
law. This absence might partly be due to the one-dimensional
feature of the model. It might be interesting to investigate the
corresponding time correlations in higher dimensions.

The continuum limit of the model is then examined, by
systematically taking a finer block size. As discussed in Sec. II,
the continuum limit of the BK models differs from the standard
elastodynamic model in that the characteristic time scale ω−1

has been introduced in its equation of motion. In the continuum
limit, the model is expected to lie in the weak frictional
instability regime irrespective of its parameter values. Indeed,
we confirmed that this expectation was fully met. The event
in the continuum limit of the 1D BK model exhibits pro-
nounced characteristic features, corroborating the argument by
Rice [35].

Meanwhile, in the parameter range of b � 1 or a � b, the
slow-slip phenomena come into play, considerably changing
the character of seismic events. We will deal with such slow-
slip regime in a separate paper.

The properties of the BK model under the RSF law are
sometimes considerably different from those of the well-
studied BK model under the pure velocity-weakening law
employed in most of the previous simulations on the model.
Namely, characteristic features tend to be more enhanced in
the RSF-law model than in the pure velocity-weakening-law
model. This is presumably due to the fact that the RSF law
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possesses an intrinsic length scale in it, the characteristic slip
distance, whereas the pure velocity-weakening law does not
possess such a length scale.

Finally, we wish to discuss possible implications of our
present results to real seismicity, by providing rough estimates
of various characteristic numbers, on the basis of the estimates
of typical time and length scales given in Ref. [13]. Of course,
these should be taken only as rough estimates since our model
itself is a very crude one. The characteristic rupture length
L0 of seismic events has been estimated to be ∼100 [km]
as given in Sec. IV. This means that event at a hypothetical
homogenous infinite fault, events cannot be indefinitely large,
say, Lr � 10L0, the upper limit being of order several
hundreds till a thousand kilometers. Events in the continuum
limit tend to possess a character of asperity event (type II in
our notation) even in the completely homogeneous parameter
setting, and tend to repeat quasiperiodically. The typical
recurrence time can be estimated from Fig. 15 to be 100 ∼ 300
in dimensionless units, which, in the dimensionful number,
corresponds to a few hundred years with the typical ν value of
order a few [cm] per year. The typical slip amount might be
estimated from Fig. 17(a) to be 100 ∼ 300 in dimensionless
units, which, in the dimensionful number, corresponds to a
few [m]. These numbers seem quite reasonable ones expected
for large interplate earthquakes occurring at a mature interplate
fault.

Another interesting observation of the present study is that
not only the mean stress drop but also the mean slip tends
to be rupture-length (Lr ) independent for larger events. Such
a saturation of Lr is similar to the one expected in the so-
called “W model,” which was supported by large strike-slip
earthquakes at natural faults [8,49–51]. Indeed, our Fig. 17
suggests that such a saturation occurs around L̃r � 100 in the
dimensionless units, which corresponds in real seismicity to
large events of Lr � 200 [km]. Interestingly, such a saturation
of the mean slip amount against the rupture length was indeed
reported. For example, Fig. 1(a) of Ref. [51] suggests that
the slip amount tends to saturate for longer rupture length of
Lr � 100–200 [km].

In this way, an important message from the present study
is that, at least in a mature homogeneous fault obeying the
RSF law, events tend to be eminently characteristic with
characteristic length, time, and energy scales. Our present
model is 1D rather than 2D, which might overemphasize
the characteristic feature of the associated seismicity. Yet,
our preliminary calculation on the corresponding 2D BK
model suggests that the model keeps enhanced characteristic
features in the continuum limit even in 2D. This observation
would mean that, at least when one looks at a single
mature homogenous fault, say, Nankai trough, earthquakes
might be strongly characteristic, with peaked distributions in
various observables. Indeed, such model observations appear
to be supported by seismic observations on mature interplate
faults [9,54–56].

Of course, if ones looks at real seismicity, things often could
be much more complex and erratic. Earthquake statistics is
often characterized by power-laws without any characteristic
scales as seen in, e.g., the celebrated GR law. Then, an
emerging, highly important fundamental question would be
what is the true origin of the observed “complexity” and

apparently “critical” (power-law) behavior of real earth-
quakes. The answer to this question might not necessarily be
unique.

One possible factor might be the “inhomogeneity”. This
has already been seen even in the present homogenous
model in the form of the block discreteness. We have
observed that the things tend to be more characteristic as
one approaches the continuum limit. Enhanced discreteness
drives the system toward the strong frictional instability
regime where the things tend to be more erratic or critical,
as emphasized by Rice many years ago [35]. Of course,
a real fault cannot be completely homogeneous even at a
single fault, and there could be various forms and levels of
inhomogeneity.

Concerning the GR law, one plausible scenario of its origin
might be the following: if one looks at events occurring at
a single mature interplate fault, the magnitude distribution
might indeed deviate from the GR law, possibly with a
peak or some structure appearing at a magnitude value
characteristic of that fault, whereas, if one takes an average
over many different faults with different material parameters as
is usually done in taking statistics, the characteristic magnitude
scales compensate with each other, eventually leading to the
unpeaked distribution apparently without any characteristic
magnitude scale [2,10,55,56]. This is very different from the
original SOC mechanism of producing the seismic “critical-
ity”, but a similar mechanism of producing power-laws or
scale-invariance has been known in statistical physics and
solid-state physics, especially in random and inhomogeneous
systems, e.g., the glass (spin glass, structural glass, etc.)
problem [57].

As the constitutive law, we have used the RSF law, now
standard in seismology. Our knowledge of the friction law,
however, is still limited, especially in the high-speed regime,
so that there always remains a possibility that the deviation
from the RSF law gives the resulting earthquake events certain
critical features. Indeed, our previous simulations employing
the velocity-weakening friction law yielded the seismic events
with more enhanced critical features [10,24,25].

In any case, we hope that the present results on the 1D BK
model under the RSF law would provide a useful reference
in understanding the complex earthquake phenomena. Further
extensions would be desirable in several directions. One is an
extension to 2D. The 2D model possesses a richer geometry
and might modify some part of the present results. The second
might be to take account of the degrees of freedom along
the perpendicular-to-fault direction into the model. In the BK
model, while the deformable fault layer is represented by an
assembly of blocks, the perpendicular degrees of freedom are
largely suppressed or simplified in that the block assembly is
directly pulled by the moving rigid plate via only one layer of
elastic springs. Although such a simplification might work for
a mature interplate fault with a well-developed LVFZ, in order
to evaluate the generality of the properties of the BK model, it
might be interesting to examine the effect of the perpendicular-
to-fault degrees of freedom neglected in the original BK model
by appropriately extending it. The third might be to study the
effect of inhomogeneity of various forms and levels, a part of
which we discussed above. The last is to study the slow-slip
phenomena within the BK model. Indeed, our preliminary
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simulations suggest that the SSE could be describable even
within the BK model. Then, it would be highly interesting to
study the inter-relation between the SSE and the usual high-
speed rupture within a single framework of the simple BK
model to get deeper insight into general seismicity.

As such, the BK model, in spite of its long history and
its apparent simplicity, still remains to be a fruitful model
involving rich physics to be uncovered. It provides us a useful
reference point in understanding basic physical processes
underlying apparently complex earthquake phenomena.
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