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Driven flow with exclusion and spin-dependent transport in graphenelike structures
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We present a simplified description for spin-dependent electronic transport in honeycomb-lattice structures
with spin-orbit interactions, using generalizations of the stochastic nonequilibrium model known as the totally
asymmetric simple exclusion process. Mean field theory and numerical simulations are used to study currents,
density profiles, and current polarization in quasi-one-dimensional systems with open boundaries, and externally
imposed particle injection (α) and ejection (β) rates. We investigate the influence of allowing for double site
occupancy, according to Pauli’s exclusion principle, on the behavior of the quantities of interest. We find that
double occupancy shows strong signatures for specific combinations of rates, namely high α and low β, but
otherwise its effects are quantitatively suppressed. Comments are made on the possible relevance of the present
results to experiments on suitably doped graphenelike structures.
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I. INTRODUCTION

In this paper we consider a simplified model for spin-
dependent electronic transport in honeycomb-lattice structures
with spin-orbit (SO) interactions. Suitable generalizations of
the totally asymmetric simple exclusion process (TASEP) are
applied to such systems. This extends previous work which
dealt with steady-state properties [1] and dynamics [2] of
the most basic implementation of the TASEP on honeycomb-
lattice geometries.

The TASEP, in its one-dimensional (1D) version, already
exhibits many nontrivial properties because of its collective
character [3–9]. It has been used, often with adaptations, to
model a broad range of nonequilibrium physical phenomena,
from the macroscopic level such as highway traffic [10] to the
microscopic, including sequence alignment in computational
biology [11] and current shot noise in quantum-dot chains [12].

In the time evolution of the 1D TASEP, the particle number
n� at lattice site � can be zero or 1, and the forward hopping
of particles is only to an empty adjacent site. In addition to
the stochastic character provided by random selection of site
occupation update [13,14], the instantaneous current Ĵ� �+1

across the bond from � to � + 1 depends also on the stochastic
attempt rate, or bond (transmissivity) rate, t� associated with
it. Thus,

Ĵ� �+1 =
{
n�(1 − n�+1) with probability t�
0 with probability 1 − t�.

(1)

In Ref. [12] it was argued that the ingredients of 1D TASEP
are expected to be physically present in the description of
electronic transport on a quantum-dot chain; namely, the
directional bias would be provided by an external voltage
difference imposed at the ends of the system, and the exclusion
effect by on-site Coulomb blockade. Following similar lines,
the present work with its emphasis on honeycomb structures
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is partly motivated by recent progress in the physics of
graphene and its quasi-1D realizations, such as nanotubes and
nanoribbons [15–17]. Being a classical model, the TASEP
does not incorporate quantum interference effects, which play
an important role in electronic transport. However, when
considering transport in carbon allotropes under an applied
bias the lattice topology affects how currents combine, and
how they are microscopically located, whether classical or
quantum. These features show up in the model we treat by
such effects as the sublattice structure seen in steady-state
currents and densities for the hexagonal lattice [1,2].

Here we focus on modeling the behavior of spin polariza-
tion [18] in graphenelike quasi-1D geometries, in the presence
of SO couplings [19]. The spin-flipping character of SO
interactions is represented, e.g., in a tight-binding description,
by a nondiagonal 2 × 2 matrix in the space of eigenfunctions
of the electron’s spin σz [20–25]. Although the effective
strength of intrinsic SO coupling in graphene is estimated to
be 25–50 μeV [26], much smaller than the nearest-neighbor
hopping γ0 = 2.8 eV [15], doping with suitable impurities can
result in samples where SO interactions are more significant
in specific neighborhoods next to impurity locations [27–30].

In Sec. II we briefly recall basic features of the spin-
independent TASEP model used in Refs. [1,2], and outline
the adaptations and approximations here added to the model,
in order to describe spin polarization, SO interactions, and
spin-dependent currents. A mean field theoretical description
is given for the problem. The corresponding numerical tests
are given in Sec. III. Section IV is devoted to discussions and
conclusions.

II. TASEP MODEL: THEORY

A. Introduction

We only consider cases where mean flow direction is
parallel to one of the lattice directions, and bond rates are
independent of the coordinate transverse to the flow direction.
These configurations have no bonds orthogonal to the mean
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flow direction; thus they fall easily within the generalized
TASEP description to be used, where each bond is to have
a definite directionality, compatible with that of average
flow. Furthermore, for simplicity we always use periodic
boundary conditions (PBCs) across. So, in the terminology of
quasi-1D carbon nanotubes (CNTs) and carbon nanoribbons
(CNRs) [15], the structures to be discussed correspond to
zigzag CNTs. Most experimental studies, as well as many
theoretical ones, deal with impurities on CNRs. However, edge
effects play an important role in the energetics of favored defect
locations for the latter type of system. Since here we do not
attempt detailed numerical comparisons to experimental data,
our choice of considering only nanotube geometries where
we need not account for this sort of positional preference
inhomogeneity is justified on grounds of keeping the number
of relevant parameters to a minimum.

The structures studied here have an integer number of
elementary cells (one bond preceding a full hexagon) along
the mean flow direction; see Refs. [1,2]. Also, we have to
expect a two-sublattice character in general [1].

Open boundary conditions are used at both ends of the strip
with the associated, externally imposed, injection and ejection
(attempt) rates α and β [3,6]. For all internal bonds � we take
their transmissivity rates, defined in Eq. (1), to be t� ≡ 1.

Thus, a nanotube with Nr elementary cells parallel to the
flow direction, and Nw transversally, has Ns = Nw(4Nr + 1)
sites and Nb = Nw(6Nr + 2) bonds (including the injection
and ejection ones).

In the TASEP context, the simplest way to simulate the
effects associated with SO couplings in doped systems is by
assigning a quenched random distribution of spin-flipping sites
(substitutional impurities) to an otherwise pure sample, with
the following rule: every time a particle passes through such
a site the z component of its spin 1/2 will change sign, with
probability πf (or remain the same, with probability 1 − πf ).
In what follows, we always take πf = 1 for simplicity. All
the original TASEP rules are kept except that, regarding
exclusion effects, the physical properties of the problem under
investigation immediately suggest two plausible alternatives:
(model A) keep the maximum occupation per site n� = 1 as
in the original formulation or (model B) allow two particles
simultaneously on the same site, provided that their spins are
opposite (thus mimicking Pauli’s principle).

In model A, polarization and global current (and density)
aspects are decoupled. Thus, although the evolution of spin
polarization along the system shows interesting and nontrivial
features, overall currents and total (spin-up plus spin-down)
density profiles will be the same as in the spinless cases studied
in Refs. [1,2]. On the other hand, we will see below that model
B exhibits some rather intricate interplay between spin and
real-space degrees of freedom.

B. Mean field description

1. Impurity-induced spin polarization decay

Initially we give a simplified approach to describe the
behavior of spin polarization, by focusing on the path followed
by a single particle traveling along the system, in the course
of which spin-flipping events may occur. With xi � 1 being
the concentration of spin-flipping (impurity) sites, the TASEP

directionality rules imply that, for a system with Nr rings
along the flow direction, each particle flowing through the
nanostructure will have to go through exactly N = 4Nr + 1
sites. Assuming impurities to be uniformly distributed along
the system according to a grand-canonical distribution with
mean xi , we replace each slice of the nanotube across the
average flow direction with an “effective” site (N in all) and
take xi as the probability of stepping on an impurity at each
“effective” site. So we are replacing the actual realizations
of random discrete spin-flipping sites by a homogeneous
“effective medium” with a probability per slice xi of the
particle’s spin being flipped. Recalling that the particle’s spin
upon exiting at the ejection point will depend only on whether
it has met an even or odd number of impurities, elementary
probabilistic considerations allow one to work out the exact
probability distribution for the current polarization at any cross
section (take, for simplicity, a fully polarized injected current).
The spin fraction of the average exiting current with plus or
minus spin turns out to be, for N � 1,

P± = 1
2 [1 ± (1 − 2xi)

N ], (2)

from which the (ensemble-averaged) exit polarization is

〈P(xi)〉 ∝ exp(−N/N0), N0 = −[ln(1 − 2xi)]
−1. (3)

Such an effective-medium approach of course neglects all
correlations between particle occupation at neighboring sites
and the corresponding local currents [recall Eq. (1)]; its
predictions are also independent of whether model A or B is
adopted. Furthermore, the results for normalized polarizations
will depend only on xi and on the position � (1 � � � 4Nr + 1)
of the cross section under consideration, and not, e.g., on the
value of the (α- and β-dependent) steady-state current through
the system. In Sec. III we test the predictions of this simplified
description against the results of numerical simulations.

2. Currents and density profiles

The mean field description of total currents and density
profiles in model A is identical to that for spinless models and
is given at length in Refs. [1,2].

In model B there are four mutually exclusive possibilities
for occupation of a site: vacant, one particle with positive
spin, one particle with negative spin, and two particles with
opposite spins. Their associated probabilities for site � are
denoted, respectively, by p0

� , p+
� , p−

� , and p+−
� , with p0

� +
p+

� + p−
� + p+−

� = 1.
We also use here corresponding state indicator variables

p̂0
� , p̂+

� , p̂−
� , and p̂+−

� , such that, for example, p̂+
� can be one

or zero, respectively specifying that site � is occupied or not
by a spin-+ particle. Then p+

� is the average of p̂+
� , and so on.

Ignoring, until stated otherwise, the possible effect of
impurities, the possible updates of bonds linking, say, sites
� and � + 1 contributing to the instantaneous positive-spin
current Ĵ+ through transfer across of a spin-+ particle have
initial configurations with the following indicators: p̂+

� p̂0
�+1,

p̂+
� p̂−

�+1, p̂+−
� p̂−

�+1, and p̂+−
� p̂0

�+1. Those for Ĵ− have a similar
set but with + and − superscripts interchanged.

From the bond update details given at the beginning of
Sec. III, unit bond rates are associated with the first three
configurations listed for each of Ĵ+ and Ĵ−, while the rate

042121-2



DRIVEN FLOW WITH EXCLUSION AND SPIN-DEPENDENT . . . PHYSICAL REVIEW E 95, 042121 (2017)

is 1
2 for the last (shared) configuration. Consequently, in place

of Eq. (1), for any configuration of the system with model B
the currents on bond �, � + 1 are given (exactly) in terms of
the indicator variables (collectively denoted as {p̂}) by

Ĵ+
� �+1 = p̂+

� p̂0
�+1 + 1

2 p̂+−
� p̂0

�+1 + p̂+
� p̂−

�+1 + p̂+−
� p̂−

�+1

≡ C+
� �+1({p̂}), (4)

Ĵ−
� �+1 = p̂−

� p̂0
�+1 + 1

2 p̂+−
� p̂0

�+1 + p̂−
� p̂+

�+1 + p̂+−
� p̂+

�+1

≡ C−
� �+1({p̂}). (5)

The currents Ĵ+
� �+1, Ĵ−

� �+1 have no terms with factors p̂0
�

or p̂+−
�+1, for obvious physical reasons. With Î denoting the

identity indicator, that means that they can, for example, be
multiplied by (Î − p̂+−

�+1), to give new forms Ĵ±
� �+1 = C± ′

� �+1 =
C±

� �+1(Î − p̂+−
�+1) which are still exact.

The most direct and obvious mean field approximation for
the mean currents J+, J− is obtained by replacing each p̂ in
the C+, C− of Eqs. (4) and (5) by its average p. The resulting
form proves to be entirely adequate for most purposes in this
investigation. But equally well one could have made the mean
field replacement using the equivalent forms C+ ′, C− ′, which
results in a different mean field description.

The latter description is slightly more complicated but it
might be expected to better capture the physics of the process
in the high-density regions, where large p+−

�+1 suppresses the
current. So it is used in Sec. III C for one such case. Apart from
there we use mean field approximations with mean currents
J±

� �+1 = C±
� �+1({p}).

The original mean field theory for the TASEP chain assumes
approximate factorization of correlation functions. In the same
spirit we approximate p+−

� by p+
� p−

� . It is seen that this gives
completeness to the set of steady-state mean field equations
that arises from conservation of the + and − spin currents J+,
J−, at each vertex including boundary vertices � = 0, L in the
case of open boundary conditions. With this approximation,
the mean numbers of + (R�) or − (S�) spin particles at site �

are, respectively,

R� = p+
� (1 + p−

� ), S� = p−
� (1 + p+

� ). (6)

Then, using also p0
� + p+

� + p−
� + p+−

� = 1, the mean field
equations for the average currents become

J+
� �+1 = p̂+

�

(
1 + 1

2
p−

�

)
[1 − (p+

�+1 + p−
�+1 + p+

�+1p
−
�+1)]

+p+
� (1 + p−

� )p−
�+1 ≡ f (p+

� ,p−
� ,p+

�+1,p
−
�+1), (7)

J−
� �+1 = p−

�

(
1 + 1

2
p+

�

)
[1 − (p+

�+1 + p−
�+1 + p+

�+1p
−
�+1)]

+p−
� (1 + p+

� )p+
�+1 ≡ f (p−

� ,p+
� ,p−

�+1,p
+
�+1) . (8)

Similarly, with spin-+ particles injected at rate α+ at the left
boundary site � = 0 the mean current J+ entering there is

J+
0 = α+[1 − p+

0 (1 + p−
0 )]. (9)

Likewise, with ejection rate β+ for spin-+ particles at the right
boundary site � = L, the mean current J+ leaving there is

J+
L = β+p+

L (1 + p−
L ). (10)

The corresponding boundary currents for spin-− particles
satisfy corresponding equations in which the + and − signs
are interchanged.

The study of steady-state properties involves relating the
currents J+, J− and the density profiles R�, S� to the injection
and ejection rates α+, α−, β+, β−. In general this involves the
use of profile maps resulting from current conservation at each
lattice vertex.

3. Model B on linear chain (without impurities)

As seen below, for model B on the nanotube the maps are
quite complex, being two-stage maps of four sets of variables
(p+

� and p−
� for two sublattices), so we first go to the simpler

and more transparent case of model B on the linear chain, still
without impurities.

There, in the steady state all bonds �, � + 1 carry the same
J+ and the same J−, which must also equal the injected and
ejected currents. For 0 � � � L − 1, using Eqs. (7) and (8),

f (p+
� ,p−

� ,p+
�+1,p

−
�+1) = J+

0 = J+
L , (11)

f (p−
� ,p+

� ,p−
�+1,p

+
�+1) = J−

0 = J−
L , (12)

where J+
0 , J+

L are given in Eqs. (9) and (10) (similarly for J−
0 ,

J−
L ).

Eqs. (11) and (12) constitute the “one-stage” map giving,
in principle, for specified currents, p+

�+1 and p−
�+1 in terms

of p+
� and p−

� and finally, using the detailed forms of the
injection and ejection currents, all p+

� , p−
� and currents in

terms of the boundary rates. This description properly handles,
through the specific forms of current in Eqs. (7) and (8) the
new effects of the conditional double occupancy in model B.
Furthermore, the description is clearly complete (with the use
of the approximation p+− = p+p−).

By exploiting the symmetries and relative simplicity of the
dependencies on p+

� , p−
� , p+

�+1, and p−
�+1 of the combinations

J+
� �+1 ± J−

� �+1 it is possible to obtain explicit functional forms
for p+

�+1, p−
�+1 in terms of p+

� , p−
� , and the constant values of

J+, J−:

p+
�+1 = 1

2A
[−(B + CA)

±
√

(B + CA)2 − 4A(Cp−
� − D)], (13)

p−
�+1 = p+

�+1 + C, (14)

where

A = p+
� + p−

� + p+
� p−

� , B = p+
� + p−

� ,

D = A − (J+ + J−), C = J+ − J−

p+
� p−

�

. (15)

This gives the explicit two-variable profile map for model B
on the linear chain.

We next consider the possible fixed points of the map. There
can be two real (physical) ones, at (p+

� ,p−
� ) = (p+

<,p−
<) and

(p+
>,p−

>), the first (“lower”) one having entries lower than those
in the other (“upper”) one, and they correspond to unstable
(repulsive) and stable (attractive) ones, respectively, in the
forward mapping � → � + 1.
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So, e.g., starting with p+ and p− between the fixed points
and very close to the lower one, at first many iteration
steps leave (p+,p−) close to the starting value before it
rapidly moves away and homes in on the attractive fixed
point. So the associated profile (p+

� ,p−
� ) has p+

� and p−
� both

monotonically increasing with � and each qualitatively similar
to the low-current-phase form a + b tanh(φ + �θ ) of the mean
field TASEP chain, with a − b = p<, a + b = p> for each of
p+

� and p−
� .

For the other possibilities (two coincident physical fixed
points or none) the possible profiles are again qualitatively
similar to those of the TASEP at its critical point or in its
maximal current phase (i.e., with − tan replacing tanh). So
for model B on the chain without impurities the mean field
phase diagram and density profiles in the various phases are
like those of the TASEP chain.

For a quantitative example we proceed next from the
full formalism of Eqs. (13)–(15) to the case with boundary
conditions, such that the map has a fixed point at p+

� =
p−

� ≡ x∗, corresponding to equal and level density profiles for
spin-up and spin-down particles (hence, unpolarized). From
the results above, this is only possible if

J+ = J− = x∗ − 1
2x∗2 − x∗3 − 1

2x∗4. (16)

The level profiles will normally extend to one or the other
boundary, depending on the relative sizes of the injection and
ejection rates. Then we may use the relationship of J+ and J−
to the rates at that boundary. For example, when that boundary
is the injection site the above analysis shows that for equal
level profiles α+ = α− is needed, and then

J+ = J− = α[1 − x∗(1 + x∗)]. (17)

The corresponding level spin-up and spin-down particle
densities are then

R = S = x∗(1 + x∗), (18)

with no net polarization.
Equation (16) also allows the extraction of the maximal

current Jm for level profiles and shows that it occurs when
the two fixed points become coincident. This is because the
function on the right-hand side of Eq. (16) has a single
maximum in the physical region x∗ � 0. It is then the J+ = J−
value at which the two solutions (fixed points) come together.
One gets J+

m = J−
m = 0.243207 . . . for x∗

m = 0.39817 . . . , so
Rm = Sm = 0.55671 . . . . These predictions are compared to
simulation results in Sec. III B below.

Finally, concerning model B on the pure chain we note
that with fully polarized injection, e.g., α+ = 1, α− = 0, no
double occupancy occurs at any site, so all properties become
identical to those of the standard TASEP.

4. Model B on nanotube (without impurities)

As in previous studies [1,2], what follows for model B on
the nanotube concerns situations with azimuthal symmetry.
The “top” open boundary of the hexagonal nanotube is taken
to be the ring of sites all with � = 0, all having the same
injection rates (α+,α−), and similarly with the ejection sites,
at � = L at the other end of the tube. So � indicates site position

down the tube and no site azimuth coordinate is needed for the
steady-state properties here discussed.

For the TASEP on the nanotube it is necessary to distinguish
two sublattices, “even” and “odd.” At each interior site of the
even sublattice (having even label) two bonds are incident
from above and one leaves below, and vice versa for all odd
sublattice sites; for a pictorial representation see Fig. 1 of
Ref. [2]. We take L even (L = 2M) so that injection and
ejection are on the same (even) sublattice.

Because of the branching and recombination of bonds
referred to above, in the steady state each bond (2�,2� + 1)
(for all �) carries the same (J+,J−) which is twice that for
each bond (2� + 1,2� + 2) (all �) and the same as the injection
(J+

0 ,J−
0 ) and ejection (J+

L ,J−
L ). That is, for σ = ±,

J σ
2� 2�+1 = 2J σ

2�+1 2�+2 = J σ
0 = J σ

L , (19)

for any � in [0,M − 1].
The J σ ’s here are as given in terms of {p+

� ,p−
� } by

Eqs. (7)–(10). The current-balance Eq. (19) above provides
the mapping relationships between probability variables at
successive positions �, in principle enough to find all mean
field profiles and currents in terms of boundary rates. But
successive sites lie on different sublattices so, as in previous
studies [1,2], any, even qualitative, connection with analytic
functions requires a two-stage map between adjacent sites
on the same sublattice, via one on the other sublattice. The
quadratic dependence of bond currents on p variables of both
sites they link, coming from the conditional double occupancy,
is a further complicating feature, making most further progress
purely numerical.

Nevertheless, more analytic progress is possible concerning
the fixed points of the two-stage mapping for a given sublattice,
whose connection with level portions of particle density
profiles associated with low current phases and with maximal
current aspects are exploited in Sec. II B 3 above. We next
consider these, using the example of unpolarized cases.

For fully unpolarized systems, e.g., arising from α+ =
α− = α and β+ = β− = β, we have p+

� = p−
� ≡ p�, and

J+ = J− on each sublattice. The fixed points of the two-step
map then correspond to having all p� the same on each
sublattice; i.e.,

p2� = u, p2�+1 = v (all �), (20)

with u and v the level values of the probabilities at the sites of
the two sublattices.

Then, from Eq. (19) the two-stage map from a site on
the even sublattice to a forward adjacent site (on the odd
sublattice), and then from there to a further forward adjacent
site on the even sublattice, is

f (u,u,v,v) = J0 = JL, f (v,v,u,u) = 1
2J0. (21)

Numerical methods can readily provide solutions of these
equations for u, v for a range of specified values of J0, from
zero to a cutoff at J0 ≈ 0.332. For small J0, the behavior of u

and v is given by

u = J0 + O
(
J 3

0

)
, v = J0

2
+ 5

8
J 2

0 + O
(
J 3

0

)
. (22)

The resulting u, v can be inserted into the injection and ejection
current forms, Eqs. (9) and (10), to obtain corresponding
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boundary rates. Such results and corresponding level sublat-
tice particle densities U = u(1 + u) and V = v(1 + v) allow
comparisons with results from steady-state simulations.

Finally in this section, still for the fully unpolarized case, we
give results for the dividing line on the (α,β) phase diagram,
between current independent of α and current independent of
β. By analogy with the standard 1D TASEP [3–7] this could
possibly be the signature of a coexistence line, though we do
not investigate such a connection here.

The calculation involves the full range of possible site
average occupations. Both forms of mean field theory outlined
in Sec. II B 2 were used. That from the C± gives the line
equation as

α

(
1 − α

2

)
(
1 + α

2

) = 2β
(1 − β)

2 − β
. (23)

A more complicated equation results from using the mean
field theory from the C± ′, but in fact it turns out to make little
quantitative difference.

5. Effect of impurities on model B

The mean field picture of spin-flipping processes is implic-
itly given in Sec. II B 2. Indeed, one can see that interchanging
p+

� and p−
� in Eqs. (7) and (8) for the mean field current of

bond �, � + 1 without impurity represents the spin flip and
correct current with an impurity residing on site �.

Recall that model B with unpolarized injection is unaffected
by the (equivalent) flipping of plus and minus spins, so that
case is covered by the results in Secs. II B 3 and II B 4 for
chains and nanotubes, respectively. We thence proceed to treat
the nanotube with fully polarized injection (the corresponding
case for the chain being trivial).

In the nanotube one has the branching and recombination
of particle paths, leading to the statistical features already
discussed for model A in Ref. [1]. For model B the new effects,
caused by the allowed conditional double occupancy, are most
apparent at high densities of particles of both spins. This is
evident for the unpolarized injection case in the low-current
high-density situation occurring, e.g., for α+ = α− � β+ =
β− (see the simulation results in Fig. 5). But in all cases, the
profiles discussed in Sec. II B 4 are transformed by any specific
configuration of impurities into successive sections between
the impurities in which the p+

� and p−
� are interchanged. These

give the qualitative features seen in the configuration-specific
simulation results shown in Figs. 4 and 5.

Quantitative comparisons are possible using the density
profiles for the pure nanotube for each successive section.
Similarly, the mean field spin-up and spin-down particle
currents J+ and J− given previously are interchanged by the
impurities, and their values can be compared with simulation
results.

III. TASEP MODEL: NUMERICS

A. Introduction

For a structure with Nb bonds, an elementary time step
consists of Nb sequential bond update attempts, each of these
according to the following rules: (1) select a bond at random,
say, bond ij , connecting sites i and j ; (2) if the chosen bond

has an occupied site to its left and an empty site to its right,
then (3) move the particle across it, i.e., from i to j with
probability (bond rate) pij . If an injection or ejection bond is
chosen, step 2 is suitably modified to account for the particle
reservoir (the corresponding bond rate being, respectively, α

or β). Thus, in the course of one time step, some bonds may be
selected more than once for examination and some may not be
examined at all. This constitutes the random-sequential update
procedure described in Ref. [13] for the 1D TASEP, which
is the realization of the usual master equation in continuous
time.

In order to account for particle spin, adaptations are needed.
As in the original TASEP rules, we stick to the interpretation
that a successful bond update attempt means the motion of a
single particle across that bond. In model B, for step 2 above
one allows double occupancy if in agreement with Pauli’s
principle; furthermore, if site i itself is doubly occupied and
site j is empty, then either particle may be moved from i

to j with 50% probability. For step 3, with α↑ and α↓ being
the mutually exclusive, spin-dependent, particle injection rates
(α ≡ α↑ + α↓), spins are independently chosen with probabil-
ity P ↑ (↓) = α↑ (↓)/α for individual injection attempts. The case
α↑ = α corresponding to a fully polarized injected current
is of special interest. Also, the case of a fully depolarized
incoming current, α↑ = α↓ = α/2, is considered below. With
regard to ejection, if the rightmost site is singly occupied
the particle is ejected with spin-independent probability β;
for double occupation, the particle to be ejected (also with
probability β) is chosen with 50% probability. The ejection
procedures just delineated are consistent with our definition
of an elementary bond update as involving crossing of the
bond by at most a single particle; comments on the connection
of this to actual experimental situations are made in Sec. IV.
For the remainder of this paper, this amounts to replacing the
ejection rates β+ and β− introduced in Sec. II B 2 with a single,
spin-independent, parameter β.

We evaluated steady-state currents, density profiles, and
(normalized) spin polarizations. For the nanotube geometry,
the steady-state current J is the time- and ensemble-averaged
number of particles which enter the system per unit time,
divided by the number Nw of parallel entry channels (to
provide proper comparison with the strictly one-dimensional
case). For each given realization of quenched randomness
(collection of randomly chosen locations of spin-flipping
sites) we repeated the following procedure Nsam = 10–100
times (each time with a distinct seed, i.e., producing Nsam

independent samples of the stochastic update process): starting
with an empty lattice, we kept injecting spin-up particles
into the system’s left edge, at a fixed injection rate α;
after waiting for a suitable time until steady-state conditions
set in, we would take Nmax = 1 × 105–1 × 106 successive
realizations of stochastic update. As is well known [31,32],
the sample-to-sample rms deviations for quantities estimated
in this way are essentially independent of Nsam as long as
Nsam is not too small, and vary as N

−1/2
max . Furthermore, we

considered Nq independent realizations of quenched disorder;
for reasons to be explained below, both cases Nq = 1 (fixed
sample) and Nq > 1 (typically of order 100) turn out to be of
interest. In contrast to the stochastic aspects just mentioned,
disorder-associated sampling does not produce a distribution
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of results whose width shrinks with growing sample size:
the pertinent distributions display a permanent spread, as
exemplified in the following.

B. Chain without impurities: Maximal current

In order to test the mean field theory of Sec. II B 3, in
particular the predictions of Eqs. (16)–(18) concerning equal
level profiles and the maximal current for model B on a chain
with no impurities, we took unpolarized injection with α =
β ranging from 0.6 to 1.0. We ran simulations with chain
length L = 41, this length having proved sufficient to keep
finite-size effects contained within the error bars associated
with intrinsic stochastic fluctuations for Nmax = 105, and to
provide approximately level sections to the profiles for α =
β � 0.75. For α = β = 1 one gets the highest total current
Jm = 0.399(7), and a tangentlike profile consistent with the
maximal current phase [3–7]. The case α = β = 0.75 has J =
0.395(4). i.e., the same within quoted errors, and its profiles
R and S range in the left half of the system by about ±0.02
from the value ≈ 0.47 at the injection site. Thus, to a good
approximation one can assume that both (α,β) pairs are within
a maximal current phase analogous to the one exhibited by the
standard TASEP. So the mean field prediction J−

m = J+
m =

0.243207 . . . and Rm = 0.55671 . . . are of the order of 20%
in excess of the numerical estimates.

On the other hand, the relationship in Eq. (17), written
in the form J+ = α(1 − R), is verified by the numerical
results within stochastic error, as should be expected because
it requires no factorization approximation (unlike the other
mean field relationships used).

C. Nanotube with impurities

We now turn to the nanotube geometry, in the presence
of impurities. In order to reduce nonessential fluctuations, we
used a canonical ensemble to generate our impurity realiza-
tions. For a nanotube with Ns sites in all, and nominal impurity
concentration xi , we would randomly draw mi out of the Ns

possible locations, mi being the integer closest to xi Ns . Con-
sequently the effective concentration xeff

i differs from xi ; how-
ever, even in the physically reasonable range xi � 1 such dis-
crepancy is very small for the (relatively large) systems used.
In our simulations we generally took xi = 0.01; for Nw = 14,
Nr = 20 (a combination we used quite often, as seen below)
one gets mi = 11, giving xeff

i = 11/1134 = 0.09700 . . . .
We started by fixing the external rates at (α,β) = (1/2,1/2).

For a nanotube with Nw = 14 and Nr = 20 we examined
the decay of the polarization P of a fully polarized current
injected at the system’s left end, against position along the
average flow direction. We collected data from Nq = 1 × 106

independent samples of impurity configurations, in order to
produce smooth probability density curves at the right (exit)
end, where an ejected particle would necessarily have gone
through 81 sites. The results for models A and B, as well
as for the effective-medium (EM) approach described in
Sec. II, are shown in Fig. 1. Averages and rms dispersions
are as follows: 〈P〉 = 0.184(60), 0.177(48), and 0.199(31),
respectively, for model A, model B, and EM. It is worth
remarking that already with Nq = 100 the numerical estimates

FIG. 1. Log-linear plot of probability density function for polar-
ization at the right end (exit) of a nanotube, for a current injected with
Pin = 1 at its left end. Here α = β = 1/2, Nw = 14, Nr = 20, and
xi = 0.01. (A) and (B) refer, respectively, to models with single or
conditional double site occupation; in both cases, samples were taken
over Nq = 1 × 106 distinct realizations of impurity configurations.
EM refers to the effective-medium description given in Sec. II.

for both average polarizations and dispersions are very
close to those just quoted: one gets 〈P〉 = 0.181(60) and
0.173(48), respectively, for models A and B, although the
corresponding distributions are of course rather spiky and
shapeless.

So, in this case: (i) whether single or conditional double
occupancy is allowed has no clearly discernible effect on
polarization decay; also (ii) the steady-state current through
the system is J = 0.3064(1) in model A, 0.307(1) in model
B, identical within error bars (and in line with results for
spinless systems with the same (α,β) [1]); and, furthermore,
(iii) although the EM description predictably underestimates
fluctuations, its result for the polarization distribution at the
right end still falls well within the broader dispersion of both
numerically evaluated curves.

Next, we compare fixed-sample (Nq = 1) versus multiple-
sample polarization results, still at (α,β) = (1/2,1/2). For
Nq = 100, Fig. 2 again shows the broad scatter associated
with sampling over disorder configurations. By contrast, for
the two examples corresponding to Nq = 1 (where the sharp
downward steps correspond to x values of the particular
locations of spin-flipping sites in the respective disorder
realization), the amount of spread (related exclusively to
sampling over stochastic updates) is quite suppressed, as
anticipated above.

It can be seen that the central estimates for the Nq =
100 curve are well aligned, suggesting a simple exponential
dependence, P(x) ∝ exp(−x/x0) against position. A fit gives
x0 = 47.9(2). This is to be compared with N0 = 49.5 from
Eq. (3) with xi = 0.01. Although the large scatter associated
with each individual data point means that only limited
significance can be attached to this result, it is remarkable that
the sequence of average polarizations behaves so regularly.
Similar calculations for model B gave results very close to
those displayed, for model A, in Fig. 2.
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FIG. 2. Log-linear plot of polarization against position x along
average flow direction of a nanotube, for a current injected with
Pin = 1 at its left end. Here α = β = 1/2, Nw = 14, Nr = 20, and
xi = 0.01. Each of the polarization profiles denoted Nq = 1 (blue
and red) corresponds to a distinct, fixed realization of the impurity
distribution.

Changing the external rates to (α,β) = (3/4,1/4) produced
drastically distinct results for polarization decay, especially
regarding differences between models A and B. This is seen
in Fig. 3, where data for Nw = 14 and Nr = 10 are shown.
A shorter system than for (α,β) = (1/2,1/2) was used in
order to produce a nontrivial structure of the distribution for
model B; had we used Nr = 20 this would give essentially
a δ function centered at zero, on the scale of Fig. 3 (see
the corresponding entry in Table I below). So, while the
probability density function for exiting polarization in model
A compares to the EM prediction in a similar manner to the

FIG. 3. Log-linear plot of probability density function for polar-
ization at the right end (exit) of a nanotube, for a current injected with
Pin = 1 at its left end. Here α = 3/4, β = 1/4, Nw = 14, Nr = 10,
and xi = 0.01. (A) and (B) refer, respectively, to models with single or
conditional double site occupation; in both cases, samples were taken
over Nq = 1 × 106 distinct realizations of impurity configurations.
EM refers to the effective-medium description given in Sec. II.

TABLE I. For systems with xi = 0.01, Nw = 14, Nr = 20, and
α and β as specified, J (A) and J (B,X) are steady-state currents for
model A with initial polarizationPin = 1, and model B withPin = X,
X = 0 or 1. Pex denotes polarization at the system’s exit. All from
numerical simulations with Nmax = 1 × 106, Nq = 100. See text for
further explanation of groups I, II, and III.

α,β J (A) J (B,1) J (B,0) Pex(A) Pex(B,1)

Group I

1/4,1/4 0.1963(1) 0.1963(1) 0.2184(1) 0.179(56) 0.184(54)
1/4,1/2 0.1963(1) 0.1963(1) 0.2184(1) 0.178(54) 0.176(50)
1/4,3/4 0.1963(1) 0.1963(1) 0.2184(1) 0.188(64) 0.181(52)
1/2,1/2 0.3064(1) 0.307(1) 0.3755(1) 0.183(53) 0.177(47)
1/2,3/4 0.3064(1) 0.307(1) 0.3755(1) 0.179(61) 0.176(44)

Group II

1/2,1/4 0.2133(1) 0.2457(1) 0.2457(1) 0.187(69) 0.001(4)
3/4,1/4 0.2133(1) 0.2457(1) 0.2456(1) 0.190(68) 0.000(4)

Group III

3/4,1/2 0.3336(1) 0.355(5) 0.4561(2) 0.184(56) 0.168(39)
3/4,3/4 0.34817(4) 0.355(5) 0.4771(1) 0.177(46) 0.177(46)
1,1 0.35069(3) 0.369(9) 0.5314(1) 0.188(64) 0.168(44)

case (α,β) = (1/2,1/2), allowing double occupancy here has
a strong polarization-curbing effect.

We then varied α and β, probing selected points in the
parameter space. Our results are displayed in Table I.

The main feature evinced is a clear separation into three
distinct patterns of behavior. For group I, one has (with the
definitions given in the caption to Table I) J (A) depending
only on α, J (A) = J (B,1) < J (B,0), and (within error bars)
Pex(A) = Pex(B,1). For group II, J (A) depends only on β,
J (A) < J (B,1) = J (B,0); Pex(B,1) = 0, while Pex(A) > 0.
For group III one has J (A) < J (B,1) < J (B,0) and Pex > 0
for both model A and (B,1). Note that for all cases withPex > 0
the prediction of the effective-medium approach of Sec. II,
namely that Pex does not depend on α or β, seems to be
qualitative and, to a reasonable extent quantitatively, fulfilled.

As expected from the mean field theory in Sec. II B one can
draw a correspondence between group I and the low-current,
low-density phase of 1D TASEP [3,6] where J is determined
singly by α for α < β, α < 1/2. Similarly, group II has its
analog in the low-current, high-density phase α > β, β < 1/2
of the 1D case where J depends only on β. Finally, group III
seems to be akin to the 1D maximal-current phase at α,β >

1/2, although this remark will have to be qualified, as seen
below. A phase with maximal-current features was found for
large α and β in earlier studies of TASEP on honeycomb
lattices; see Fig. 7 of Ref. [1].

It is to be noticed that the fractional standard deviations
of currents in Table I are, in general, of similar magnitude
in models A and B, and much smaller than those of exit
polarizations (when the latter are nonzero), even though
both quantities result from averaging over quenched disorder
configurations. Although such a feature is certainly expected
for model A, where current and polarization aspects are fully
decoupled, it is not obviously forthcoming in model B. To
understand this it must be kept in mind that, for each fixed
disorder configuration, current evaluation involves extensive
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FIG. 4. (a) PolarizationsP(x) and (b) full densities ρ(x) (spin -up
plus spin -down) against position x along average flow direction of a
nanotube with Nw = 14, Nr = 20, xi = 0.01, and (α,β) = (1/2,1/2)
for a current injected with Pin = 1 [A, (B,1)] or Pin = 0 [(B,0)] at
its left end. In all cases, the same fixed impurity realization has been
used (Nq = 1); for each of models A and B, the two sequences of
distinct sublattice densities [1,2] are plotted separately for ease of
visualization.

stochastic sampling of allowed particle motions. Averaging
over the latter ensemble has the effect that, in model B as
well as model A, the influence of spin-flipping impurities on
the system-wide current shows up only through their overall
concentration (as opposed to depending on their specific
locations).

Further insight into the contrasting behavior of models A
and B in groups I and II can be gained by studying the respec-
tive steady-state density profiles. In order to have an unbiased
view of the stochastic effects involved in establishing and
maintaining the stationary regime, we suppressed fluctuations
related to sampling over quenched disorder by using the same
fixed impurity configuration (Nq = 1) in all cases depicted in
Figs. 4 and 5.

For the low-density case (α,β) = (1/2,1/2), the density
profiles are very similar for both models, while the fixed-
sample polarization results are nearly identical on the scale
of Fig. 5. This confirms that the additional degree of freedom
provided by allowing double occupation plays only a minor
role here.

Furthermore, we recall that domain-wall theory predicts,
and it has been numerically verified [33], that for ordinary
TASEP with spinless particles on staggered chains the dif-
ference between steady-state sublattice density profiles is
constant, i.e., x independent. This feature turns out to hold
in the case of Fig. 4 for model A and, to a very good extent, for
model B with Pin = 0, but not so for model B with Pin = 1.
Such agreement would be expected for model A where spatial
and spin degrees of freedom are effectively decoupled, because
it is known that (i) domain-wall and mean field theory give
identical predictions for steady-state properties of TASEP on
(homogeneous or staggered) 1D chains [33], and (ii) the mean
field description of TASEP on a hexagonal lattice with uniform
bond rates coincides with that of a chain with alternating

FIG. 5. (a) Polarizations P(x) and (b) full densities ρ(x) (spin up
plus spin down) against position x along average flow direction of a
nanotube with Nw = 14, Nr = 20, xi = 0.01, and (α,β) = (3/4,1/4)
for a current injected with Pin = 1 [A,(B,1)] or Pin = 0 [(B,0)] at
its left end. In all cases, the same fixed impurity realization has been
used (Nq = 1); for each of models A and B, the two sequences of
distinct sublattice densities [1,2] are plotted separately for ease of
visualization.

bond rates p1 = 1, p2 = 1/2 [1,2]. On the other hand, the
fact that the constant-difference effect carries across to model
B with Pin = 0, but not if Pin = 1, indicates that the former
behaves throughout the system similarly to the flow of two
immiscible fluid species with equal local densities. For the
latter, on average the spin-flipping sites provide transformation
of the spin-up “species” onto the spin-down one along the
system, until polarization finally approaches zero, and the
sublattice density differences approach a constant value. So
the effects of such “species transmutation” are not included in
the mean field approach which predicts constant density profile
differences.

We have verified that the “immiscible species” picture is
only semiquantitatively correct, on account of the long-range
density correlations known to exist generally in the TASEP.
Indeed, the injection and ejection rules described above
suggest that, as far as densities are concerned, one could
approximate the flow of an incident current with Pin = 0 at
rates α and β in model B as two separate copies of the flow of
a spinless fluid at rates α/2 and β in model A. However, for
the system described in Fig. 4, the nearly constant single-spin
densities for 5 � x � 70 are ρ1 ≈ 0.253 and ρ2 ≈ 0.145
with half current J/2 ≈ 0.1878 (from Table I) in (B,0) with
(α,β) = (1/2,1/2), while in model A with (α,β) = (1/4,1/2)
total particle densities are ρ1 ≈ 0.215 and ρ2 ≈ 0.127 (not
shown in the figure) with J = 0.1963(1) (from Table I).

In the high-density case (α,β) = (3/4,1/4) depicted in
Fig. 5, double occupancy is paramount for the steady-state
profile configurations, especially on the system’s right half.
The fact that the current is the same in model B, for initial
polarization equal to either one or zero (see Table I), confirms
that the low-β bottleneck on the right plays the dominant role
in establishing stationary flow.
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FIG. 6. Polarization against position x along average flow direc-
tion of a nanotube, for a current injected with Pin = 1 at its left end.
Here α = 3/4, β = 1/4, Nw = 14, Nr = 20, and xi = 0.01. Average
over Nq = 1000 distinct realizations of the impurity distribution.
The curves correspond to fits of central estimates to a form P(x) =
exp [−(x/x0)δ] (see text).

Regarding the above considerations of the “immiscible
species” picture for the flow with Pin = 0, one sees in Fig. 5
that the spatial extent x � 35 of the region where P(x) has
essentially vanished is slightly longer than that, x � 45, where
the profiles coincide for Pin = 0 and 1. So, density-wise the
case (B,1) crosses over from a behavior like that of model
A, up to x � 20, towards that of (B,0), albeit with a “healing
length” corresponding to 35 � x � 45 along which, although
P = 0 already, the local densities have not fully converged to
the same values as for (B,0).

In Fig. 6 we show polarization against position (averaged
over quenched disorder realizations) for model B with (α,β) =
(3/4,1/4). It is clear that, contrary to the case depicted in
Fig. 2, fitting a pure exponential form to the sequence of
central estimates (blue, long-dashed curve in Fig. 6) gives
unsatisfactory results. However, considering a generalized
exponential function P(x) = exp [−(x/x0)δ] gives a much
closer fit with δ = 1.65(4); see the solid red line in Fig. 6.

We investigated the effects of system size on the results
exhibited so far. In agreement with previous studies for spinless
systems [1,2] the dependence of overall currents and average
densities on transverse (Nw) and longitudinal (Nr ) dimensions
is rather weak. Regarding polarization-specific features, we
checked the characteristic decay lengths x0, both in the low-
and high-density phases, as well as the phenomenological
parameter δ for the latter case. As expected, the Nw dependence
is residual. We found also that x0 as well as δ (the latter, where
pertinent) also exhibit only a weak Nr dependence. This is not
obvious from the outset, especially for the high-density phase
in model B, given the influence of low β at the ejection sites
on the buildup of double occupation backward from there (see
Figs. 5 and 6); in this case, for Nr = 20, 30, and 40 one gets
(keeping δ = 1.65 fixed) x0 = 21.1(4), 23.8(7), and 25.7(9),
respectively.

Next we examined the transition between the patterns
of behavior characterizing groups I and II of Table I. Keeping

FIG. 7. (a) Polarization at right end and (b) steady-state current J
for a nanotube with Nw = 14, Nr = 20, and xi = 0.01, for a current
injected with Pin = 1 [A,(B,1)] or Pin = 0 [(B,0)] at its left end,
against ejection rate β. Injection rate α = 1/2 (fixed). Averages over
Nq = 100 distinct realizations of the impurity distribution.

α = 1/2 fixed we varied β from 0.25, within the high-density
(HD) phase, to 0.50, within the low-density (LD) one. Figure 7
shows exit polarization Pex and steady-state current J . One
sees that for β ≈ 0.32 the current for (B,1) sharply turns
from being equal to that of (B,0) to a constant value against
increasing β, indicating an α-dominated regime there, and
eventually merging with J (A) for β � 0.43. Though the
departure in behavior of Pex for (B,1) from the (B,0) pattern
is not as clearly marked as for J , it converges faster to that
of model A, say, by β ≈ 0.34. We scanned the β axis also
for different values of fixed α, namely 1/4, 3/4, and 1. In all
cases we found the same qualitative picture as that given for
α = 1/2 in Fig. 7. The α dependence of the β value for which
the current for (B,1) becomes constant against varying β is
given approximately by

β(α) = 0.8α − 0.4α2. (24)

Going back to Table I and referring to Eq. (24), one sees that
the (B,1) results for (α,β) = (3/4,3/4) and (3/4,1/2) are both
associated with the intermediate-behavior section analogous
to the 0.32 � β � 0.43 stretch in Fig. 7.

Corresponding analysis of numerical data for the unpolar-
ized case (B,0) provides a test of the theoretical results obtained
in Eq. (23); see Table II. One sees that the agreement between
mean field theory and numerics is very good in this case.

TABLE II. For model (B,0) and selected values of α, βth are the
values of β for which total current J becomes β independent, as
predicted by Eq. (23); βnum are numerically obtained results (see,
e.g., Fig. 7).

α βth βnum

1/4 2/9 0.23(1)
1/2 2/5 0.40(1)
3/4 6/11 0.55(2)
1 2/3 0.65(2)
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FIG. 8. Points (ρu and ρv) show steady-state sublattice full
(spin-up plus spin-down) densities against position along flow
direction, for model B on a nanotube with Nw = 14 and Nr = 20 at
(α,β) = (1/4,1/4). Pin = 0, so impurities are statistically irrelevant
in establishing total current and density profiles. Horizontal dashed
lines (Uth and Vth) show mean field predictions derived from Eqs. (20)
and (21). See text.

In order to provide further checks of the mean field
theoretical predictions from Sec. II B 4 we took (α,β) =
(1/4,1/4). These rates, as can be seen from Table I, correspond
to a point deep in the low-current, low-density region of
the phase diagram where both sublattice density profiles
are expected to be level throughout the system (apart from
an upturn close to the ejection end; see Fig. 4 for a less
extreme example). Also, we took an unpolarized injected
current, Pin = 0, so impurities would have no net effect. In
such conditions one would expect the conditions expressed in
Eqs. (20) and (21) to apply. Theoretical and simulation results
are displayed, for both sublattices, in Fig. 8. The numerically
evaluated full (spin-up plus spin-down) densities for the level
section of the profiles are ρu = 0.254(2) and ρv = 0.153(2),
to be compared to the predictions from theory. The latter are
found by plugging the full (numerically evaluated) steady-state
current J = 0.2184(1) from Table I into the specific forms
of Eqs. (7) and (8) given by Eq. (21), and solving for
U ≡ u(1 + u) and V ≡ v(1 + v). One gets Uth = 0.2814(2)
and Vth = 0.1586(1), which are respectively 10% and 4% in
excess of simulation results. Then inserting J and Uth into left-
and right-hand sides of Eq. (9) gives α = 0.3039(4), different
by ∼20% from the actual value, 1/4.

We have also checked how the characteristic decay length x0

depends on impurity concentration. In this case we restricted
ourselves to (α,β) = (1/2,1/2), well within the portion of
phase space for which polarization decay follows a simple
exponential form. We considered xi = 0.003, 0.005, 0.0075,
and 0.01, all in the very low impurity-density regime. For
model B withPin = 1 we took systems of fixed width Nw = 14
and varying lengths in the range 20 � Nr � 120. For fixed xi

the final estimates of x0 took into account the dispersion among
the results of the individual fits for each Nr . The sequence of
the {x0} was adjusted to a power-law form, x0 ∝ x−a

i , from

FIG. 9. Steady-state current J as a function of impurity concen-
tration xi for model B at (α,β) = (1,1) with a fully polarized current
injected at the left end (Pin = 1). Nw = 14, Nr = 20. The solid line
is an ad hoc exponential fit to the data. The inset shows details of the
main figure close to the vertical axis.

which a = 1.03(2). This agrees well with the result a = 1.1(1)
of Ref. [25].

We now illustrate how the interplay of double occupancy
and spin-flipping impurities can result in an enhancement of
the steady-state current across the system. Taking model B with
a fully polarized current injected at the left end (Pin = 1), we
considered α = β = 1. In this way the constraints imposed
by boundary conditions are minimized, and the remaining
impediments to particle flow are only those associated with
exclusion according to Pauli’s principle. In order to probe
asymptotic trends, we allowed the impurity concentration to
vary well beyond the physically reasonable regime, xi � 1.
The results are shown for a system with Nr = 14 and Nr = 20
in Fig. 9, together with an ad hoc exponential fit to the
data which gives the limiting current Jlim = 0.416(2). This is
significantly higher than the value J = 0.35069(3) for xi ≡ 0,
the latter coinciding with the (impurity-independent) current
for model A; see Table I. However, the impurity-induced
current enhancement is not enough to equal the effect of
injecting a fully depolarized beam for model B, in which
case the (also impurity-independent) corresponding value is
J = 0.5314(1), again from Table I. Overall, the resulting
picture emphasizes the role played by Pauli’s principle in
creating a bottleneck near the left end of the system for a
polarized injected beam.

IV. DISCUSSION AND CONCLUSIONS

Model B introduced here bears a number of similarities
to those generally known as “two-lane TASEP” models, in
particular the implementation of Reichenbach et al [34,35].
The latter authors consider strictly 1D systems with conditional
double occupancy rules obeying Pauli’s principle. Their spin-
flipping mechanism is purely stochastic, and it is shown that
several nontrivial effects take place for specific (mesoscopic)
ranges of its occurrence rate. We now outline relevant
differences between our approach and theirs. In the present
case, spin flipping results from a combination of quenched
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and stochastic factors. These are, respectively, fixed locations
of spin-flipping sites (for each given realization of impurity
distribution) and the fact that, for the honeycomb geometry,
the paths effectively followed by particles are dynamically and
randomly chosen within a highly degenerate sample space.
These features stem naturally from those of the physical
systems under consideration here, within the limitations of
the classical model used for their description. For the same
reason, we use distinct injection rates α↑, α↓ and a single,
spin-independent ejection attempt rate β (in contrast with β↑,
β↓ of Refs. [34,35]). This corresponds to an experimental
arrangement where full control can be exerted, e.g., by spin
filtering, on the polarization of an incoming electron beam, but
the ejection mechanism at the system’s end is a voltage-based,
spin-independent one.

Model A discussed above turns out to be a convenient
testing ground for the introduction of polarization features, and
also to provide useful comparisons with model B, especially
as regards the relevance, or not, of double site occupancy
in the latter. It can be seen, e.g., in Table I and Fig. 7, that
the current in model A is a lower bound for that in the
(B,1) implementation, i.e., model B with injected polarization
Pin = 1 [the upper bound being given by (B,0) ]. Accordingly,
having J (A) = J (B,1) for a given (α,β) correlates well with
having very similar, though not identical, density profiles; see
Fig. 4. Conversely, J (A) < J (B,1) signals marked differences
in such quantities, to the extent that double occupancy is very
frequent along large sections of the system for the latter case;
see Fig. 5.

As expected on general grounds, and from the mean field
arguments in Sec. II B, both models A and B share with 1D
TASEP the basic feature of exhibiting regions of the (α,β)
plane where the overall current is solely determined either by
injection (α) or ejection (β) rates, and which are associated
respectively with low- or high-density profiles; see Figs. 4
and 5. For (B,1) the dividing line is given approximately by
Eq. (24), to be compared with the corresponding condition

for 1D TASEP [3–9], namely, α = β. Furthermore, the
discussion in the preceding paragraph indicates that for (B,1)
the low- (high-)density phase is strongly connected with low
(high) probability of average occurrence of doubly occupied
sites.

One may propose a semiquantitative correspondence of
the TASEP rates (α,β) with physical parameters of electron
transport on graphenelike structures. While the externally
imposed potential difference between injection and ejection
points is the qualitative analog of the directionality imposed by
TASEP rules, its low or high intensity may be roughly mapped
onto combinations of (α,β) which favor low or high currents,
respectively. Additionally, the chemical potential difference
�μL,R between the graphenelike structure and leads on left
and right is expected to be akin to α and β, respectively.
Since usually one has �μL = �μR [36], this would mean
that experimental setups correspond to α = β. In this case
the results found here, especially the shape of the dividing
line given by Eq. (24) and consequent implications, would
indicate that double occupancy does not play a quantita-
tively significant role in electronic transport on graphenelike
structures.
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