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Manipulation and amplification of the Casimir force through surface fields using helicity
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We present both exact and numerical results for the behavior of the Casimir force in O(n) systems with a
finite extension L in one direction when the system is subjected to surface fields that induce helicity in the order
parameter. We show that for such systems, the Casimir force in certain temperature ranges is of the order of
L−2, both above and below the critical temperature, Tc, of the bulk system. An example of such a system would
be one with chemically modulated bounding surfaces, in which the modulation couples directly to the system’s
order parameter. We demonstrate that, depending on the parameters of the system, the Casimir force can be either
attractive or repulsive. The exact calculations presented are for the one-dimensional XY and Heisenberg models
under twisted boundary conditions resulting from finite surface fields that differ in direction by a specified angle,
and the three-dimensional Gaussian model with surface fields in the form of plane waves that are shifted in phase
with respect to each other. Additionally, we present exact and numerical results for the mean-field version of the
three-dimensional O(2) model with finite surface fields on the bounding surfaces. We find that all significant
results are consistent with the expectations of finite-size scaling.
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I. INTRODUCTION

Casimir forces result from, and provide insight into, the be-
havior of a medium confined to a restricted space, canonically
the region between two plane, parallel surfaces. In the case
of the electromagnetic Casimir force [1–5], the medium is the
vacuum, and the underlying mechanism is the set of quantum
zero point or temperature fluctuations of the electromagnetic
field. The now widely investigated critical Casimir force (CCF)
results from the fluctuations of an order parameter and more
generally the thermodynamics of the medium supporting that
order parameter in the vicinity of a critical point [6–9]. In fact,
the free energy of a confined medium can mediate a Casimir
force at any temperature provided its excitations are long-range
correlated ones. This fact, along with the wide range of options
for a mediating substance, opens up a range of possibilities for
the study and exploitation of the Casimir force arising from a
confined medium.

One of the principal influences on the Casimir force is
the nature of the bounding surface. With respect to the
CCF, published investigations have been focused, almost
exclusively, on systems belonging to the Ising universality
class. On a basic level, based on the behavior of coupling
in the vicinity of the surface, there are three universality
classes—extraordinary (or normal), ordinary, and surface-bulk
(or special) [7,8,10]. Experimental investigations into the
influence of surface universality classes on the Casimir force
have been reported in Refs. [11–17]. Most of them focus on
the behavior of colloids in a critical solvent. They probe the
dependence of the force between boundaries on temperature,
the concentration of the components of the solvent, and the
relative preference of the surfaces of the colloids for the
components of the solvent. For example, in Ref. [14] the
critical thermal noise in a solvent medium consisting of a
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binary liquid mixture of water and 2,6-lutidine near its lower
consolute point is shown to lead to attractive or repulsive
forces, depending on the relative adsorption preferences of
the colloid and substrate surfaces with respect to the two
components of the binary liquid mixture. On the theoretical
side, the influence of the surface fields has been studied
on the case of the two-dimensional Ising model via exact
calculation [18–21], using the variational formulation due to
Mikheev and Fisher [22,23], with the help of the density-
matrix renormalization-group numerical method [24–27], via
conformal invariance [28,29], Monte-Carlo methods [28], and
numerically using bond propagation algorithms [30]. The
three-dimensional Ising model has been studied with Monte
Carlo methods in Refs. [31–37], mean-field-type calculations
[38–43], and renormalized local functional theory [44]. In
general, it has been shown that the Casimir force depends
on the strength of the surface fields h1 and h2 and that it can
change sign as the magnitudes of the surface field, the thickness
of the films, and the temperature of the system are varied.

For the general case of O(n) systems, there is no similarly
thorough classification [45]. References [2,46–53] report on
studies of the Casimir force in liquid crystals, and [54–60]
describe investigations for 4He and 3He-4He mixtures. In the
case of helium films, however, it is generally accepted that
the boundary conditions are determined, in the region where
the liquid behaves as a quantum liquid, by its quantum nature,
and thus it cannot be easily influenced by modification of
bounding surfaces, in that there are no surface fields that couple
to the order parameter in such systems. In that respect, liquid
crystals seem much more readily adjustable, and in particular
more amenable to the influence of boundary conditions. For
example, in Ref. [46] it is shown that director fluctuations in
nematics induce long-range interactions between walls, which
are attractive with symmetric boundary conditions, but they
may become repulsive with mixed ones. In smectics, such
forces are longer-ranged than van der Waals forces.

In Ref. [48], the authors concluded that in the case of finite
surface coupling, the fluctuation-induced forces for nematics
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are weaker than those in the strong anchoring limit. In the
example of the three-dimensional lattice XY model with
nearest-neighbor interaction, it has been shown [61] that the
Casimir force depends in a continuous way on the parameter
α characterizing the so-called twisted boundary conditions
when the angle between the vector order parameter at the two
boundaries is α, where 0 < α � π . The effect is essential;
depending on α, the force can be attractive or repulsive. By
varying α and/or the temperature T , one can control both
the sign and the magnitude of the Casimir force in a reversible
way. Furthermore, when α = π , an additional phase transition,
which occurs only in finite systems, has been discovered,
associated with the spontaneous symmetry breaking of the
direction of rotation of the vector order parameter through the
body of the system.

In the current article, we show that the strength and the
mutual orientation of surface fields—as well as structuring
on the surface via chemical or other alternations that can be
described in terms of surface fields—lead to interesting and
substantial modification in the behavior of the force between
the confining surface. Such modification includes the change
of the sign of the force, as well as nonmonotonic behavior,
the appearance of multiple minima, the appearance of a
longitudinal Casimir force, and an amplification of the force
in regions with strong helicity effects. We will demonstrate the
above with the example of a few models: the one-dimensional
XY and Heisenberg models, the three-dimensional Gaussian
model, and the three-dimensional O(2) XY model.

We start with the one-dimensional XY and Heisenberg
models.

II. 1D CONTINUUM SYMMETRY MODELS
WITH BOUNDARY FIELDS

Here we consider two one-dimensional models with con-
tinuous O(n) spin symmetry: XY (n = 2) and Heisenberg
(n = 3) chains of N spins with ferromagnetic interaction J

between nearest-neighbor spins, the boundary fields H1 and
H2 of which are at an angle 0 � ψ � π with respect to each
other. Obviously, such systems do not exhibit spontaneous
ordering at nonzero temperatures given their low dimension
and the short-range nature of the interactions between spins, as
has been shown to follow rigorously from the Mermin-Wagner
theorem [62]. Nevertheless, they posses an essential singular
point at T = 0 and will, in that limit, support spontaneous
order. We will demonstrate that when the boundary fields are
nonzero, the Casimir force, FCas, of these systems displays
very rich and interesting behavior. We also show that near
T = 0 the force has a scaling behavior and that, depending
on the angle between the boundary fields and the value of the
temperature scaling variable x ∼ NkBT/J , this force can be
attractive or repulsive. More precisely, we will establish the
following:

(i) For low temperatures, when x = O(1) and

N � J

(
1

H1
+ 1

H2

)
, (2.1)

the leading behavior of the Casimir force can be written in the
form

βFCas(T ,N,H1,H2) = N−1X(ψ,x), (2.2)

with x a scaling variable and X a universal scaling function.
Equation (2.2) implies that, under constraint Eq. (2.1), XCas

depends only on the scaling variable x defined in Eq. (2.12)
and the angle ψ . The latter parameter effectively describes the
boundary conditions on the system. Note that, unlike the Ising
model, the boundary conditions depend here continuously on
one parameter—in our notation ψ .

(ii) When x → 0+ the scaling function of the Casimir
force becomes positive, i.e., the force turns repulsive provided
that ψ �= 0. In that case XCas ∼ x−1 and, thus, the overall N

dependence of the force is of the order of N−2.
(iii) When x � 1 the scaling function has a sign that depends

on the sign of cos(ψ): for 0 < |ψ | < π/2 the force will be
attractive, while for π/2 < |ψ | < π it will be repulsive. For
x � 1 the force decays exponentially to zero.

(iv) For any ψ such that 0 < |ψ | < π/2 the Casimir force
changes from attractive to repulsive when the temperature
decreases from a moderate value to zero for fixed system
size, N .

(v) When ψ = 0 the force is attractive for any value of the
scaling variable x.

These 1D models have been studied analytically in the case
of free (frequently termed “open” or Dirichlet) and periodic
boundary conditions [63–67], but we are not aware of any
investigation of them in the presence of boundary fields, which
are responsible for the effects of interest in this article.

A. The 1D XY model

We consider a system with the Hamiltonian

H = −J

N−1∑
i=1

Si · Si+1 − H1 · S1 − HN · SN, (2.3)

where Si , with S2
i = 1 and Si ∈ Z2, i = 1, . . . ,N , are N spins

arranged along a straight line. The Hamiltonian can be written
in the form

H = −J

N−1∑
i=1

cos(ϕi+1 − ϕi) − H1 cos(ψ1 − ϕ1)

−HN cos(ψN − ϕN ), (2.4)

where the surface magnetic field angles ψ1,ψ2 and individual
spin angles ϕ1, . . . ,ϕN are measured with respect to the line of
the chain, which is taken to be, say, the x axis. The free energy
−βFN of this system is given by

exp(−βFN ) =
∫ 2π

0
exp(−βH)

N∏
i=1

dϕi

2π
. (2.5)

Performing the requisite calculations (see Appendix A),
one obtains

exp(−βFN ) =
∞∑

k=−∞
exp(ikψ)Ik(h1)Ik(K)N−1Ik(hN ),

(2.6)

where

ψ ≡ (ψ1 − ψN ), K ≡ βJ, h1 ≡ βH1, hN ≡ βHN.

(2.7)
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Here Ik(x) is the modified Bessel function of the first kind
[68,69]. Note that the free energy depends only on the
difference in angles, (ψ1 − ψN ), and not on ψ1 and ψN

separately. For the Casimir force in the system, i.e., for the
finite-size part of the total force [see Eq. (A8)], one then has
the exact expression

βFCas

=
2
∑∞

k=1 cos[k(ψ1−ψ2)] log
[

Ik(K)
I0(K)

]
Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1 Ik(hN )
I0(hN )

1 + 2
∑∞

k=1 cos [k(ψ1−ψ2)] Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1 Ik(hN )
I0(hN )

.

(2.8)

From here on we will be interested in the behavior of the
system in the limit β � 1, i.e., when T → 0. Obviously, when
β � 1 from Eq. (2.7) one has h1 � 1, hN � 1, and K � 1,
which means that in Eq. (2.6) one uses the large argument
asymptote of Ik(z) for z � 1. We will use the asymptote in the
form reported in Ref. [70],

Iν(z) = ez−ν2/2z

√
2πz

[
1 + 1

8z
+ O

(
ν2

z2

)]
. (2.9)

Retaining only the first term in the above expansion, one
obtains

βFCas(x) = 1

Neff
XCas(ψ,x,heff), (2.10)

where

XCas = −x

∑∞
k=1 k2 cos(kψ) exp

[− 1
2k2

(
h−1

eff + x
)]

1 + 2
∑∞

k=1 cos(kψ) exp
[− 1

2k2
(
h−1

eff + x
)]
(2.11)

and

x ≡ Neff

K
, h−1

eff = h−1
1 + h−1

2 , Neff = N − 1. (2.12)

Here, x is the scaled version of the reduced temperature
variable, which in systems with a nonzero transition temper-
ature takes the form x = tνL, with t the reduced temperature
∝T − Tc, L the characteristic size of the finite system, and ν

the correlation length exponent. Recall that with an effective
transition temperature of T = 0 and K ∝ 1/T , the definition
in Eq. (2.12) is consistent with this definition under the
assumption that ν = 1.

Obviously, when Eq. (2.1) is fulfilled one has x � h−1
eff , and

one can safely ignore heff in Eq. (2.11). Then the behavior of
the force is exactly as stated in Eq. (2.2).

The representation of XCas given by Eq. (2.11) is convenient
for all values of x except in the limit x � 1. For that limit,
using the Poisson identity Eq. (A9), one obtains

XCas(ψ,x,heff)

= − x

2
(
x + h−1

eff

)

+ x

2
(
x + h−1

eff

)2

∑∞
n=−∞ (2nπ + ψ)2 exp

[− (2nπ+ψ)2

2(x+h−1
eff )

]
∑∞

n=−∞ exp
[− (2nπ+ψ)2

2(x+h−1
eff )

] .

(2.13)

Under the assumption that the constraint (2.1) is fulfilled and
given the asymptotic behavior of XCas from Eqs. (2.11) and
(2.13), we derive

XCas(ψ,x) =
{

− 1
2 + 1

2x
ψ2 + · · · , x → 0 + ,

−x cos(ψ) exp(−x/2), x � 1.
(2.14)

From Eq. (2.13) one can also derive an expression for the
low-T behavior of the system that retains the dependence on
H1 and H2. The result is

βFCas = −1

2

1

(J/H1 + J/HN + N − 1)

+ 1

2
K

(ψ1 − ψN )2

(J/H1 + J/HN + N − 1)2 . (2.15)

This result can also be directly derived by realizing that the
ground state of the system is a spin wave such that the end spins
are twisted with respect to each other at angle ψ = ψ1 − ψN .

Equations (2.11), (2.13), (2.14), and (2.15) confirm the
validity of the statements (i)–(iv) in the first part of this section.
For example, Eq. (2.11) demonstrates that when ψ = 0, the
force is attractive for any value of the scaling variable x;
Eq. (2.14) then confirms this behavior for small and large
values of the scaling variable x.

The behavior of the scaling function XCas(ψ,x) for different
values of ψ as a function of the scaling variable x is shown in
Fig. 1. Figure 2 shows a three-dimensional (3D) plot of this
function for x ∈ [0,10] and ψ ∈ [−π,π ].

B. The 1D Heisenberg model

The Hamiltonian of the system is again given by Eq. (2.3) with the conditions that now the N spins Si , i = 1, . . . ,N , again
arranged along a straight line, are three-dimensional vectors Si ∈ Z3, i = 1, . . . ,N .

As shown in Appendix B, the free energy of the system is given by the exact expression

exp(−βFN ) =
(

π

2K

)(N−1)/2
π

2
√

h1hN

∞∑
n=0

(2n + 1)Pn(cos ψh)In+1/2(h1)In+1/2(hN )[In+1/2(K)]N−1

= sinh h1

h1

sinh hN

hN

[
sinh K

K

]N−1
{

1 +
∞∑

n=1

(2n + 1)Pn(cos ψh)
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1
}

, (2.16)

where ψh is the angle between the vectors H1 and HN , and we have used that I1/2(x) = √
2/(πx) sinh(x). Here In+1/2(z) is the

modified Bessel function of the first kind of half-integer index, Pn(x) is the Legendre polynomial of degree n, and K , h1, and hN
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are defined in accordance with Eq. (2.17):

K ≡ βJ, h1 ≡ βH1, hN ≡ βHN. (2.17)

When h1 → 0 and hN → 0, the system considered becomes the one with Dirichlet boundary conditions, a case that was studied
by Fisher in Ref. [63]. Taking into account that In+1/2(x) = [2n+1/2�(n + 3/2)]−1xn+1/2 + O(x5/2+n) and that P0(x) = 1, one
concludes that only the term with n = 0 will contribute to the free energy in this case. One obtains

exp(−βFN ) =
(

π

2K

)(N−1)/2

[I1/2(K)]N−1 =
[

sinh K

K

]N−1

. (2.18)

The last expression is precisely the result derived in Ref. [63].
From Eq. (2.16) one can easily derive the corresponding exact expression for the Casimir force for the one-dimensional

Heisenberg model. One has

βFCas =
∑∞

n=1(2n + 1)Pn(cos ψh) ln
[ In+1/2(K)

I1/2(K)

] In+1/2(h1)
I1/2(h1)

In+1/2(hN )
I1/2(hN )

[ In+1/2(K)
I1/2(K)

]N−1

1 + ∑∞
n=1(2n + 1)Pn(cos ψh) In+1/2(h1)

I1/2(h1)
In+1/2(hN )
I1/2(hN )

[ In+1/2(K)
I1/2(K)

]N−1 . (2.19)

In the limit T → 0 when h1 � 1, hN � 1, and K � 1 from Eq. (2.9) one obtains

βFCas(x) = 1

Neff
XCas(ψh,x,heff), (2.20)

where the scaling variable x, as well as heff , are as defined in Eq. (2.12) while the scaling function XCas is

XCas(ψh,x,heff) = −1

2
x

∑∞
n=1 n(n + 1)(2n + 1)Pn(cos ψh) exp

[− 1
2n(n + 1)

(
x + h−1

eff

)]
1 + ∑∞

n=1(2n + 1)Pn(cos ψh) exp
[− 1

2n(n + 1)
(
x + h−1

eff

)] . (2.21)

As in the case of the XY model, when Eq. (2.1) is fulfilled one can ignore heff in the above expression. If not stated otherwise,
we will always suppose this to be the case. Then the scaling function XCas depends only on the scaling variable x and the angle
ψh that parametrizes the boundary conditions on the system, exactly as set forth in Eq. (2.2). The representation of XCas given
by Eq. (2.21) is applicable for all values of x except in the limit x � 1. Keeping in mind that P1(cos ψh) = cos ψh, and in light
of the fast decay off the terms in the sums in Eq. (2.22), it is clear that for those very small values of x the sign of the force will
be determined by the sign of cos ψh. For the leading behavior of the Casimir force when x � 1, one obtains

XCas(ψh,x,heff) = −1 + h−1
eff

h−1
eff + x

+ x(1 − cos ψh)(
h−1

eff + x
)2 + x

coth
(

1
h−1

eff +x

) − 1(
h−1

eff + x
)2 , (2.22)

which follows from Eq. (B16). One can also derive the first three terms in that expansion by considering the N dependence of
the ground energy of the 1D Heisenberg model, assuming it to be in the form of a spin wave. Explicitly, for the behavior of the
Casimir force for T → 0 from Eq. (2.22) one obtains

βFCas = − 1

(J/H1 + J/HN + N − 1)
+ K

1 − cos ψh

(J/H1 + J/HN + N − 1)2 . (2.23)

The behavior of the scaling function XCas(ψ,x) for different values of ψ as a function of the scaling variable x is shown in
Fig. 3, while Fig. 4 shows a 3D plot of this function for x ∈ [0,10] and ψ ∈ [−π,π ]. Thus, for the overall behavior of the Casimir
force as a function of ψh one arrives at the same set of conclusions for the Heisenberg model as for the XY model as a function
of ψ , as summarized in statements (i)–(v).

III. THE 3D GAUSSIAN MODEL

The Gaussian model [8,67], or the Gaussian approximation [71], assumes spins with continuously variable amplitude and a
polynomial free energy that is at most second order in the amplitude of the spins. Here, we focus on such a system with scalar
spins. This means that, strictly speaking, there is no helicity. However, the surface fields that influence the order parameter will
have sinusoidal variation along the film boundaries, conforming to the behavior of the individual components of a field that
induces helical order in a multicomponent system. We therefore expect that the results to be derived and discussed in this section
will be germane to corresponding behavior in such a system. We consider a planar discrete system containing L two-dimensional
layers with a Hamiltonian

−βH =
M∑

x=1

N∑
y=1

{
K‖

L∑
z=1

Sx,y,z(Sx+1,y,z + Sx,y+1,z) + K⊥
L−1∑
z=1

Sx,y,zSx,y,z+1 + h1Sx,y,1 cos(kxx + kyy)

+hLSx,y,L cos[kx(x + 	x) + ky(y + 	y)] − s

L∑
z=1

S2
x,y,z

}
, (3.1)
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FIG. 1. The scaling function XCas of the XY model as a function
of the scaling variable x [see Eq. (2.12)] for different values of the
phase change ψ .

which describes a system with short-ranged nearest-neighbor
interactions possessing chemically modulated bounding sur-
faces situated at z = 1 and z = L. Here h1 = βH1 and hL =
βHL are the external fields acting only on the boundaries of
the system. In the specific example considered, the modulation
depends on the coordinates x and y in a wavelike way specified
by the applied surface fields h1cos(kxx + kyy) ≡ h1 cos(k · r)
and hL cos[kx(x + 	x) + ky(y + 	y)] ≡ hL cos[k · (r + 	)],
the phases of which are thus shifted with respect to each other
by 	x in the x direction and by 	y in the y direction. Here
r = (x,y), k = (kx,ky), and 	 = (	x,	y). Periodic boundary
conditions are applied along the x and y axes, while missing
neighbor (Dirichlet) boundary conditions are imposed in the z

direction. These boundary conditions are expressed as follows:

S1,y,z = SM+1,y,z, Sx,1,z = Sx,N+1,z, (3.2)

and

Sx,y,0 = 0 and Sx,y,L+1 = 0. (3.3)

FIG. 2. The surface of the scaling function XCas(ψ,x) of the XY

model as a function of the scaling variables x and ψ . The horizontal
plane marks the XCas = 0 value.

FIG. 3. The scaling function XCas of the Heisenberg model as a
function of the scaling variable x [see Eq. (2.21)] for different values
of the phase change ψ .

Given those boundary conditions, the Hamiltonian in
Eq. (3.1) can be rewritten in the form

−βH =
M∑

x=1

N∑
y=1

L∑
z=1

Sx,y,z{K‖(Sx+1,y,z + Sx,y+1,z)

+K⊥Sx,y,z+1 + δ1,zh1 cos [k · r]

+ δL,zhL cos [k · (r + 	)] − sSx,y,z}. (3.4)

Since we will be considering the limit M,N → ∞, we can
always take the wave-vector components kx and ky to coincide
with (2πp)/M and (2πq)/N for some p = 1, . . . ,M and q =
1, . . . ,N , respectively. In Eqs. (3.1) and (3.4), one has

K‖ = βJ ‖ and K⊥ = βJ⊥, (3.5)

where J ‖ and J⊥ are the strengths of the coupling constants
along and perpendicular to the L layers of the system. The
parameter s > 0 on the right-hand side of (3.4) is subjected
to the constraint that it has a value that ensures the existence
of the partition function of the system. It is easy to check
that 2K‖ + K⊥ − s ≡ β(2J ‖ + J⊥) − s = 0 determines the
critical temperature βc of the bulk model, i.e., one has

βc = s/(2J ‖ + J⊥). (3.6)

FIG. 4. The surface of the scaling function XCas(ψ,x) of the
Heisenberg model as a function of the scaling variables x and ψ .
The horizontal plane marks the XCas = 0 value.
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For the model defined above, the Casimir force acting on the bounding planes at z = 1 and z = L has both orthogonal (βF
(⊥)
Cas )

and lateral (βF
(‖,α)
Cas , α = x or y) components, which can be written in the form

βF
(··· )
Cas = L−3

(
J⊥

J ‖

)
X

(··· )
Cas (xt ,xk,x1,xL), (3.7)

where (· · · ) stands for either (⊥) or (‖,α), with α = x or y. Here

x1 =
√

LK‖ h1

K⊥ , xL =
√

LK‖ hL

K⊥ (3.8)

are the field-dependent scaling variables, xt is the temperature-dependent one with

xt = L

√
2

(
βc

β
− 1

)[
2

J ‖

J⊥ + 1

]
, xk =

√
J ‖

J⊥ Lk, (3.9)

with k =
√

k2
x + k2

y the scaling variable related to the surface modulation. When h1 = O(1) and hL = O(1), we will see that F (··· )
Cas

has a field-dependent contribution, which, in this regime, will provide the leading contribution to the force of the order of L−2.
The Hamiltonian (3.4) can be easily diagonalized in a standard way—see Appendix C. The resulting free energy of the system,

F , is

F = 	F0 + 	Fh, (3.10)

where

−β	F0 = 1

2
MNL ln π − 1

2

L∑
l=1

M∑
m=1

N∑
n=1

ln

{
s − K‖

[
cos

(
2πm

M

)
+ cos

(
2πn

N

)]
− K⊥ cos

(
πl

L + 1

)}
(3.11)

is the field independent part of the free energy, and 	Fh, the field-dependent contribution, is as follows: (i) When either p �= M

or q �= N ,

−β	Fh = MN

8(L + 1)

L∑
l=1

sin2
(

πl
L+1

)[
h2

1 + h2
L − 2hLh1(−1)l cos(k · 	)

]
s − K‖[ cos

( 2πp

M

) + cos
( 2πq

N

)] − K⊥ cos
(

πl
L+1

) , (3.12)

where k = (kx = 2πp/M,ky = 2πq/N ) and 	 = (	x,	y); and (ii) when p = M and q = N ,

−β	Fh = MN

2(L + 1)

L∑
l=1

sin2
(

πl
L+1

){h1 − hL(−1)l cos[2π (	x + 	y)]}2

s − 2K‖ − K⊥ cos
(

πl
L+1

) . (3.13)

Note that there is a fundamental difference between the subcases in Eqs. (3.12) and (3.13); while in the first subcase (i) the
average field applied on the surfaces is zero when spatially averaged, in the second subcase (ii) it is a constant. In the last subcase,
one can think of hL as a constant field acting on the second surface being twisted in the direction with respect to the constant
field h1 applied to the first one with a twist governed by 	x and 	y .

Obviously,

s − K‖
[

cos

(
2πm

M

)
+ cos

(
2πn

N

)]
− K⊥ cos

(
πk

L + 1

)

= (βc/β − 1)[2K‖ + K⊥] + K⊥
[

1 − cos

(
πk

L + 1

)]
+ K‖

[
2 − cos

(
2πm

M

)
− cos

(
2πn

N

)]
> 0 (3.14)

for β < βc. The above implies that the statistical sum of the infinite system exists for all β < βc. The statistical sum of the finite
system exists, however, under the less demanding constraint that

(βc/β − 1)[2J ‖ + J⊥] + J⊥
[

1 − cos

(
π

L + 1

)]
> 0. (3.15)

In the remainder of the paper, we will assume that the constraint given by Eq. (3.15) is fulfilled for all temperatures considered
here.

For the contribution of the field-independent term to the transverse Casimir force,

β	F
(0,⊥)
Cas = − ∂

∂L
(β	f0), (3.16)
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with

	f0 = lim
M,N→∞

	F0

MN
, (3.17)

it is demonstrated in Appendix C that

β	F
(0,⊥)
Cas = −1

2

∫ π

−π

∫ π

−π

δ{coth[(1 + L)δ] − 1}dθ1dθ2

(2π )2
,

(3.18)

where δ = δ(θ1,θ2|βc/β,J ‖/J⊥) is given by the expression

cosh δ = 1 +
(

βc

β
− 1

)(
1 + 2

J ‖

J⊥

)

+ J ‖

J⊥ (2 − cos θ1 − cos θ2). (3.19)

The result in Eq. (3.18) is an exact expression for β	F
(0,⊥)
Cas ; no

approximations have been made. Since coth(x) > 1 for x >

0, one immediately concludes that 	F
(0,⊥)
Cas < 0, i.e., it is an

attractive force for all values of L. To obtain scaling and, thus,
the scaling form of 	F

(0,⊥)
Cas , we have to consider the regime

L � 1. Obviously, the Casimir force will be exponentially
small if δ is finite. For the scaling behavior of the force—see
Appendix C—one obtains

β	F
(0,⊥)
Cas = L−3

(
J⊥

J ‖

)
X

(0,⊥)
Cas (xt ), (3.20)

where X
(0,⊥)
Cas (xt ) is the universal scaling function

X
(0,⊥)
Cas (xt ) = − 1

8π

{
Li3(e−2xt ) + 2xtLi2(e−2xt )

− 2x2
t ln(1 − e−2xt )

}
(3.21)

and the scaling variable xt is

xt = L

√
2

(
βc

β
− 1

)(
1 + 2

J ‖

J⊥

)
, (3.22)

in accordance with Eq. (C33). It is easy to show that X
(0,⊥)
Cas (xt )

is a monotonically increasing function of xt . The behavior of
X

(0,⊥)
Cas (xt ) is visualized in Fig. 5.

FIG. 5. The scaling function X
(0,⊥)
Cas (xt ) as a function of the

temperature-dependent scaling variable xt . The horizontal line marks
the Casimir amplitude X

(0,⊥)
Cas (0) = −ζ (3)/(8π ).

At the critical point one has xt = 0, and then one im-
mediately obtains the well-known Casimir amplitude for the
Gaussian model under the Dirichlet boundary condition,

X
(0,⊥)
Cas (xt = 0) = −ζ (3)

8π
. (3.23)

It is easy to show that

X
(0,⊥)
Cas �

{
− 1

8π
exp(−2xt )[1 + 2xt (1 + xt )], xt � 1,

− 1
8π

ζ (3) + 1
48π

x2
t

(
6 − 4xt + x2

t

)
, xt → 0.

(3.24)

For the field component of the transverse Casimir force,

β	F
(h,⊥)
Cas = − ∂

∂L
(β	fh), (3.25)

where

	fh = lim
M,N→∞

	Fh

MN
, (3.26)

one derives the following [see Eqs. (C21) and (C22) in
Appendix C]:

(i) If p �= M or q �= N ,

β	F
(h,⊥)
Cas = λ sinh(λ)

32K⊥

{[
h2

1 + h2
L − 2hLh1 cos(k · 	)

]2
csch2

[
1 + L

2
λ

]
−[h2

1 + h2
L + 2hLh1 cos(k · 	)]2sech2

[
1 + L

2
λ

]}
.

(3.27)

(ii) If p = M and q = N ,

β	F
(h,⊥)
Cas = λ sinh(λ)

32K⊥

{
[h1 − hL cos 2π (	x + 	y)]2csch2

[
1 + L

2
λ

]
− [h1 + hL cos 2π (	x + 	y)]2sech2

[
1 + L

2
λ

]}
.

(3.28)

Here we have introduced the helpful notation

cosh λ = � (3.29)

for the case when � � 1 and

cos λ = � (3.30)
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in the opposite case when � � 1, where

� = 1 +
(

βc

β
− 1

)[
2

J ‖

J⊥ + 1

]
+ J ‖

J⊥

[
2 − cos

(
2πp

M

)
− cos

(
2πq

N

)]
. (3.31)

Note the following:
(a) When h1 = O(1), hL = O(1), and

w = Lλ/2 (3.32)

is such that w = O(1), the Casimir force is of the order of O(L−2) despite the fact that the system is at a temperature above the
bulk critical one.

(b) If h1 and hL are such that the field-dependent scaling variables x1 = O(1) and xL = O(1) [see Eq. (3.8)], then, in terms
of w, the Casimir force β	F

(h,⊥)
Cas reads

β	F
(h,⊥)
Cas = L−3

(
J⊥

J ‖

)
X

(h,⊥)
Cas (w,x1,xL), (3.33)

where the scaling function X
(h,⊥)
Cas (w,x1,xL) is as follows:

(i) If p �= M or q �= N ,

X
(h,⊥)
Cas (w,x1,xL) = 1

8w2
{[

x2
1 + x2

L − 2x1xL cos (k · 	)
]
csch2w − [

x2
1 + x2

L + 2x1xL cos (k · 	)
]
sech2w

}
. (3.34)

(ii) If p = M and q = N ,

X
(h,⊥)
Cas (w,x1,xL) = 1

8w2{[x1 − xL cos 2π (	x + 	y)]2csch2w − [x1 + xL cos 2π (	x + 	y)]2sech2w}. (3.35)

The latter expression implies that in the regime considered here, the field-dependent part of the force is of order of L−3, as it is
the field-independent part of it.

The asymptotic behavior of 	F
(h,⊥)
Cas for w � 1 can be easily obtained from Eqs. (C23) and (C24). The result is

β	F
(h,⊥)
Cas � − 2w2

K⊥L2
e−2wh1hL

{
cos (k · 	), p �= M or q �= N,

cos 2π (	x + 	y), p = M,q = N.
(3.36)

which implies that in this limit the transverse component of the force is exponentially small in L and attractive or repulsive
depending on the product h1hL cos[k · 	] or h1hL cos 2π (	x + 	y).

For the field contribution to the longitudinal component of the Casimir force along the α axis, where α = x,y, one has

β	F
(h,α)
Cas (L) = − ∂

∂	α

	fh. (3.37)

Thus, from Eqs. (C21) and (C22), one derives the following:
(i) If p �= M or q �= N ,

β	F
(h,α)
Cas (L) = −h1hL

4K⊥ kα sin(k · 	)
sinh(λ)

sinh[λ(L + 1)]
. (3.38)

(ii) If p = M and q = N ,

β	F
(h,α)
Cas (L) = −π sin[2π (	x + 	y)]

2K⊥ hL

{
h1

sinh(λ)

sinh[(L + 1)λ]
+hL cos[2π (	x+	y)]

[
� − sinh(λ)

tanh(L + 1)λ

]}
. (3.39)

When Lλ � 1, the above simplifies to the following:
(i) If p �= M or q �= N ,

β	F
(h,α)
Cas (L) � − kα

2K⊥ sinh[λ]e−(L+1)λh1hL sin (k · 	). (3.40)

(ii) If p = M and q = N ,

β	F
(h,α)
Cas (L) � − πh2

L

4K⊥ sin[4π (	x + 	y)]{� − sinh[λ]} − π

K⊥ sinh[λ]e−(L+1)λh1hL sin[2π (	x + 	y)]. (3.41)

Note that in the first subcase, the L � 1 limit of the lateral force is zero. In the second subcase, when the average value of the
external field on the upper surface is not zero, the lateral force tends to a finite, well-defined limit that is proportional to the
surface area of the system. Obviously, this force has the meaning of a local purely surface force.
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Subtracting from 	F
(h,α)
Cas its L-independent part, we obtain the lateral force that will act on the upper surface due to the

presence of the lower one if we act in the lateral direction on the upper one. In the case p = M and q = N , one obtains

βδF
(h,α)
Cas (L) ≡ β

[
	F

(h,α)
Cas (L) − lim

L→∞
	F

(h,α)
Cas (L)

]
= − πhL

2K⊥ sin[2π (	x + 	y)] sinh(λ){h1/ sinh[(L + 1)λ] + hL cos[2π (	x + 	y)][1 − coth(L + 1)λ]}. (3.42)

In the other subcase when p �= M or q �= N , one has that βδF
(h,α)
Cas (L) ≡ β	F

(h,α)
Cas (L).

In scaling variables for βδF
(h,α)
Cas (L), one has

βδF
(h,α)
Cas (L) = L−3

(
J⊥

J ‖

)
X

(h,α)
Cas (w,x1,xL), (3.43)

where w is the scaling variable defined in Eq. (3.32), and the following:
(i) If p �= M or q �= N ,

X
(h,α)
Cas = −πx1xL pα sin(k · 	)

w

sinh[2w]
, (3.44)

where pα = p for α = x, and pα = q for α = y.
(ii) If p = M and q = N ,

X
(h,α)
Cas = −πxLw sin[2π (	x + 	y)]{x1/ sinh[2w] + xL cos[2π (	x + 	y)][1 − coth 2w]}. (3.45)

Equation (3.43) implies that in the scaling regime, the
longitudinal Casimir force is of the same order of magnitude
as the orthogonal component of the force.

Let us now clarify the physical meaning of the regimes
w = O(1) and w � 1 in terms of the temperature T . Taking
into account Eq. (3.31), one has

� = 1 +
(

βc

β
− 1

)[
2

J ‖

J⊥ + 1

]
+ 2

J ‖

J⊥

[
sin2 kx

2
+ sin2 ky

2

]
,

(3.46)

where kx = 2πp/M, ky = 2πq/N , and all the other terms in
the sum determining � are dimensionless. We again have to
consider two subcases:

(i) If p �= M or q �= N .
In this case, in order to have λ small, one needs to have

β/βc → 1 and kα → 0, α = x,y. Under these conditions, one
has

λ �
√

2

(
βc

β
− 1

)[
2

J ‖

J⊥ + 1

]
+ J ‖

J⊥
[
k2
x + k2

y

]
. (3.47)

Then

w = 1
2

√
x2

t + x2
k , (3.48)

where xt and xk are defined in Eq. (3.9). From Eq. (3.48)
it is clear that in order to have w = O(1), one needs to
have simultaneously xt = O(1) and xk = O(1). Taking into
account that ν = 1/2 for the Gaussian model, one has that
x2

t is in its expected form at tL
1/ν , with t = (T − Tc)/Tc. The

condition xk = O(1) implies that in order to encounter the
regime w = O(1), one needs to have a modulation with a
wave vector k � L−1, which includes, e.g., the k = 0 case. If
xk � 1, one will have, even at the critical point β = βc, that
w � 1 and, according to Eq. (3.36), that the field contributions
to the Casimir force will then be exponentially small.

(ii) If p = M and q = N .

As is clear from Eq. (3.46), this subcase reduces to the
previously considered one with kx = ky = 0. The last implies,
therefore, that ω = xt/2.

When w = O(1), from Eqs. (3.27) and (3.28) with h1 =
O(1) and hL = O(1) one has that 	F

(h,⊥)
Cas = O(L−2), i.e., the

longitudinal force in this case is an order of magnitude larger
in L than the usual transverse Casimir force, which is of the
order of O(L−3).

The behavior of the function X
(h,⊥)
Cas (w,x1,xL) is visualized

in Fig. 6 if (i) p �= M or q �= N and in Fig. 7 if (ii) p = M

and q = N .
We observe, inspecting the legends, that the maximal values

of the function X
(h,⊥)
Cas (w,x1,xL) are in this case smaller than

in the previous case shown in Fig. 6.
Let us turn now to the behavior of the total orthogonal

Casimir force F
(⊥)
Cas . From Eqs. (3.10), (3.16), (3.17), (3.20),

(3.25), and (3.33), one has

F
(⊥)
Cas ≡ 	F

(0,⊥)
Cas + 	F

(h,⊥)
Cas (3.49)

−0.5

0

0.5

1.0

1.5

2.0

FIG. 6. The scaling function X
(h,⊥)
Cas (w,x1,xL) [see Eq. (3.34)] as

a function of w ∈ (0,10] and (k · 	) ∈ [0,2π ] for x1 = xL = 1. As
we see, X(h,⊥)

Cas (w,x1,xL) can be both positive and negative, depending
on the values of its arguments.
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−0.2

0

0.2

0.4

FIG. 7. The scaling function X
(h,⊥)
Cas (w,x1,xL) [see Eq. (3.35)] as

a function of w ∈ (0,10] and 	x + 	y ∈ [0,1] for x1 = xL = 1. As
we see, also in this case X

(h,⊥)
Cas (w,x1,xL) can be both positive and

negative, depending on the values of its arguments. Let us recall that
in this subcase w = xt/2.

and

βF
(⊥)
Cas = L−3

(
J⊥

J ‖

)
X

(⊥)
Cas(xt ,xk,x1,xL). (3.50)

The behavior of the scaling function of the total orthogonal
Casimir force X

(⊥)
Cas(xt ,xk,x1,xL) is depicted in Figs. 8–10 for

the case when (i) p �= M or q �= N , and in Fig. 11 for the
case (ii) p = M and q = N with xk = 0. Let us note that in
the case (i) the function X

(⊥)
Cas is symmetric about x1 and xL,

while in the case (ii) that is not so. The last implies that when
x1 �= xL in the case (ii) we have to consider separately the
subcase x1 � xL and x1 � xL.

Figures 8 and 11 show the behavior of the force for equal
values of the field scaling variables x1 = xL. When they are
not equal, this behavior is visualized in Figs. 9 and 10 for the
case (i) and in Figs. 12–14 for the case (ii). Figures 9 and
12 represent the situation when x1 � xL, namely x1 = 10xL,
while Figs. 10 and 14 represent the results for the case when
x1 = −xL = 1.

The comparison of these figures with Figs. 6 and 7 shows,
as might be expected from the data presented in Fig. 5, that the

−0.5

0

0.5

1.0

1.5

FIG. 8. The scaling function X
(⊥)
Cas(xt ,xk,x1,xL) as a function of

xt ∈ (0,10] and k · 	 ∈ [0,2π ] for xk = 0.1, x1 = xL = 1. As we
see, X

(⊥)
Cas can be both positive and negative, depending on the values

of its arguments.

−0.025

0

0.025

0.050

0.075

0.100

0.125

FIG. 9. The scaling function X
(⊥)
Cas(xt ,xk,x1,xL) as a function of

xt ∈ (0,10] and k · 	 ∈ [0,2π ] for xk = 0.1, x1 = 10xL = 1. As we
see, the scaling function in that case is predominantly positive.

contribution of X
(0,⊥)
Cas (xt ) to the overall behavior of the force

is quite small, at least in the depicted cases.
Let us now consider the behavior of the longitudinal

Casimir force (see Figs. 15 and 16). We first note that it
does not have a contribution that is field-independent. Thus,
the scaling function, which characterizes this force, is given
by Eqs. (3.44) and (3.45). Because of the term sin(k · 	),
multiplying the expression for the force in the first case, and
to sin[2π (	x + 	y)] in the second case, the scaling function
X

(h,α)
Cas can be both positive and negative, independently of the

values of x1 and/or xL.

IV. THE 3D MEAN-FIELD XY MODEL

A. With infinite surface fields

In Ref. [61], the XY model characterized by the functional

F[m; t,L] =
∫ L/2

−L/2
dz

[
b

2

∣∣∣∣dm
dz

∣∣∣∣
2

+ 1

2
at |m|2 + 1

4
g|m|4

]
(4.1)

has been studied in the presence of what have been termed
twisted boundary conditions.

Switching to polar coordinates,

m(z) = (�(z) cos ϕ(z),�(z) sin ϕ(z)), (4.2)

−0.5

0

0.5

1.0

1.5

FIG. 10. The scaling function X
(⊥)
Cas(xt ,xk,x1,xL) as a function of

xt ∈ (0,10] and k · 	 ∈ [0,2π ] for xk = 0.1, x1 = −xL = 1. As we
see, the scaling function in that case can be both positive and negative,
depending on the values of its arguments.
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−0.2

0

0.2

0.4

FIG. 11. The scaling function X
(⊥)
Cas(xt ,xk = 0,x1,xL) as a func-

tion of xt ∈ (0,10] and 	x + 	y ∈ [0,1] for x1 = xL = 1. As we see,
X

(⊥)
Cas can be both positive and negative, depending on the values of

its arguments.

these boundary conditions can conveniently be defined by
requiring that

ϕ(±L/2) = ±α/2, �(±L/2) = ∞, (4.3)

i.e., the moments at the boundaries are twisted by an angle
α relative to one another. It has been shown that the Casimir
force has the form

βFCas(t,L) = b

ĝ
L−4X

(α)
Cas(xt ), (4.4)

where â = a/b, ĝ = g/b, xt = âtL2, and

X
(α)
Cas(xt ) =

{
X4

0[p2 − (1 + τ )], xt � 0,

X4
0[p2 − (1 + τ/2)2], xt � 0.

(4.5)

Here

τ = xt/X2
0, X0 =

∫ ∞

1

dx√
(x − 1)[x2 + x(1 + τ ) + p2]

,

(4.6)

and p can be determined for any fixed value of xt so that the
twisted spins at the boundary make the prescribed angle α. Let

x± = 1
2 [−(τ + 1) ±

√
(τ + 1)2 − 4p2] (4.7)

be the roots of the quadratic term in the square brackets in
the denominator of the integrand in Eq. (4.6). There are two

0

0.02

0.04

0.06

0.08

0.10

FIG. 12. The scaling function X
(⊥)
Cas(xt ,xk = 0,x1,xL) as a func-

tion of xt ∈ (0,10] and 	x + 	y ∈ [0,1] for x1 = 10xL = 1. As we
see, the scaling function in that case is predominantly positive.
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0.050

0.075

0.100

FIG. 13. The scaling function X
(⊥)
Cas(xt ,xk = 0,x1,xL) as a func-

tion of xt ∈ (0,10] and 	x + 	y ∈ [0,1] for 10x1 = xL = 1. As we
see, the scaling function in that case can be both positive and negative.

subcases: (A) the roots are real, and (B) the roots are complex
conjugates of each other.

(A) The roots x± are real. Then

X0 = 2√
1 − x−

K

[√
x+ − x−
1 − x−

]
(4.8)

and

α =
√|x−x+|X0

x−

{
1− 2

X0
√

1 − x−
�

[
x−

x− − 1
,

√
x+ − x−
1 − x−

]}
.

(4.9)

We note that

τ = −1 − x− − x+, p =
√

|x−x+|. (4.10)

(B) The roots x± are complex.
One has

X0 = 2√
r
K(w) (4.11)

and

α = pX0

1 − r
+ 4p

r2 − 1

√
r

1 − w2
�

[(
r − 1

r + 1

)2

,
w√

w2 − 1

]
,

(4.12)

−0.2

0

0.2

0.4

FIG. 14. The scaling function X
(⊥)
Cas(xt ,xk = 0,x1,xL) as a func-

tion of xt ∈ (0,10] and 	x + 	y ∈ [0,1] for x1 = −xL = 1 or x1 =
−xL = −1. As we see, the scaling function in that case can be both
positive and negative.
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FIG. 15. The scaling function X
(h,α)
Cas (w,x1,xL) [see Eq. (3.44)] as

a function of w ∈ (0,3] and (k · 	) ∈ [0,2π ] for x1 = xL = 1.

where

r ≡ r(x−,x+) =
√

(1 − x−)(1 − x+) =
√

2 + τ + p2,

(4.13)

and

w2 ≡ w2(x−,x+) = 1

2
+

x−+x+
2 − 1

2
√

(1 − x−)(1 − x+)

= 1

2

(
1 − 3 + τ

2
√

2 + τ + p2

)
. (4.14)

The scaling function X
(α)
Cas(xt ) of the XY model under twisted

boundary conditions as a function of xt and α is shown in
Fig. 17. We recall, as shown in Ref. [61], the asymptotic
expression for X

(α)
Cas(xt ),

X
(α)
Cas(xt ) � 1

2α2[|xt | + 4
√

2|xt | + 1
2 (48 − 3α2)

]
, (4.15)

when xt → −∞. According to Eq. (4.4), the last implies that
in this regime,

βFCas(t,L) � 1

2
α2 b

ĝ
|xt |L−4 = 1

2

ab

g
α2|t |L−2, (4.16)

i.e., its leading behavior is of the order of L−2 there due to the
existence of helicity within the system.

−2

−1

0

1

2

FIG. 16. The scaling function X
(h,α)
Cas (xt ,x1,xL) [see Eq. (3.45)] as

a function of w ∈ (0,3] and 	x + 	y ∈ [0,1] for x1 = xL = 1. Let
us recall that in this subcase, w = xt/2.

−50

0

50

100

150

FIG. 17. The scaling function X
(α)
Cas(xt ) of the XY model under

twisted boundary conditions as a function of xt and α for h = 0. The
plane surface marks the X

(α)
Cas(xt ) = 0 value of the force: the force is

repulsive above it and attractive below it.

B. With finite surface fields

The model described immediately above constrains the
spins at the surface of the film to point in particular directions.
The physical realization of such a system is much more likely
to be one in which the spins at the surfaces will be under
the influence of finite surface fields. Here, we consider a
model for such a system. To do so, we employ the approach
utilized in Sec. II and Appendix A of [61], in which the
spin system occupies sites on a lattice that is infinite in the
extent in two directions and that consists of a finite number
of layers (here labeled 1 to L) in the third dimension. As
in the case of infinite surface fields, the boundary conditions
are open in that we assume the spins on the surface to be
coupled to an external layer of spins with zero amplitude. We
impose surface fields that couple in the standard way to the
spins on the leftmost layer, labeled 1, and the rightmost layer,
labeled L. The magnitude of each of those fields is hs , and
the angle between them is α. In our mean-field approach, the
free energy is minimized by adjusting the expectation value of
the amplitude and the direction of the spins in each layer. The
Casimir force follows from the difference between the free
energies with L and L + 1 layers; because of the numerical
nature of the free-energy results, we are unable to take the
derivative with respect to film thickness, as in Sec. II.

We find that the Casimir force is consistent with the
following scaling form:

FCas = L−4f (tL2,hcL), (4.17)

where t is the bulk reduced temperature. Furthermore, for
small enough hc and t higher than the value at which the film
orders spontaneously, the function f on the right-hand side of
(4.17) has the form

f (tL2,hcL) = f0(tL2) + f1(tL2)(hcL)2 + O[(hcL)4].

(4.18)
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FIG. 18. Scaled Casimir force, L4FCas, as a function of the scaled
reduced temperature, tL2, and the scaled surface field amplitude, hsL.
The number of layers in the two films is L = 50 and 100, and α, the
angle between the surface fields, is π/3. The difference between the
two plots is barely discernible, indicating that the difference between
the scaling function for L = 50 and the infinite L limit is quite small.

Because of this, it is possible to envision for small hs the
behavior of the Casimir force that one encounters in the
Gaussian model.

Figure 18 is a plot of the scaled Casimir force versus the
scaled reduced temperature and scaled surface fields for two
values of the film thickness, L. The perspective highlights
the departure from the behavior in Eq. (4.18) that occurs
when the temperature is sufficiently far below the bulk critical
temperature that the moments in the film order spontaneously.
The films in question consist of L = 50 and 100 layers, and
the angle between the two surface fields is α = π/3. As is
clear from the figure, the difference between the two plots is
quite small.

As indicated in Fig. 18, L = 50 is sufficiently large that
the difference between the function and the scaling limit
is quite small. Figure 19 illustrates the dependence of the
scaled Casimir force on the scaled surface field amplitude
for various values of the scaled reduced temperature. For all
reduced temperatures greater than −π2, the initial dependence
on scaled surface fields is quadratic, consistent with (4.18). In
fact, for temperatures at and above the bulk critical temperature
(t � 0), the second term on the right-hand side of (4.18) is
the leading nonzero contribution to that expansion. This is

FIG. 19. Scaled Casimir force, L4FCas, as a function of the scaled
surface field, hsL, for various scaled reduced temperatures, tL2. Here,
L = 50 and α = π/3. When tL2 > −π 2, the small hs dependence
of the Casimir force is quadratic, consistent with (4.18). Below that
value of the scaled reduced temperature, the small hs dependence is
linear in the absolute value of that quantity, as exemplified by the
curve for tL2 = −15.

FIG. 20. Dependence of the scaled Casimir force on the scaled
surface field for two values of scaled reduced temperature above
the point, tL2 = −π 2, at which spontaneous ordering occurs in the
film. Here, L = 50 and α = π/3. The plots illustrate the saturation
of the influence of the surface fields, at odds with the amplification
effect seen in Sec. III. The figure also illustrates the fact that the
Casimir force can change sign as the temperature is varied. This is
due to the fact that there is a range of temperatures below the bulk
critical temperature in which the bulk system orders while the film
remains disordered. For T > Tc, both the bulk and the finite system
are disordered. For |hs | � 1, the Casimir force approaches its value
for fixed boundary conditions, the case considered in Sec. IV A.

consistent with the amplification of the Casimir force that
one finds in the Gaussian model—see Sec. III. However, such
amplification only occurs when there is spontaneous ordering
in the film. Figure 20 shows the scaled Casimir force as a
function of the scaled surface field for tL2 = 5 and −5, above
and below the bulk transition but above the threshold for film
ordering. This plot illustrates the saturation of the Casimir
force when the reduced temperature is above the threshold for
film ordering, tL2 = −π2. The Casimir force changes sign as
L increases for fixed α, T , and hs . This is displayed in Fig. 21.
We also note that the force changes sign for moderate values
of L. It can readily be established that the overall behavior
of the Casimir force is in agreement with Eq. (4.18); see, for
instance, Fig. 20.

If spontaneous ordering is possible, then amplification of
the Casimir force does occur. Figure 22 plots the newly scaled
Casimir force L2FCas against system size L, illustrating the
enhanced force amplitude as a function of system size, L,
expressed in terms of the scaled variable tL2. Here, the reduced
temperature is fixed at t = −0.05, while the surface field
amplitudes are set to 0.05, α = π/3, and the system size
varies from L = 2 to 3000. The behavior displayed is a direct

100 200 300 400 500 600 700
L

−0.001

0.001

0.002

L2FCas

FIG. 21. Scaled Casimir force, L2FCas, as a function of L, for
fixed values of temperature t = 0.001, helicity α = π/3, and the
value of the surface field amplitude, hs = 0.1.
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FIG. 22. Illustrating the L dependence of the Casimir force for a
negative value of reduced temperature, t = −0.05, with surface field
amplitude hs = 0.05 and α = π/3. The plot is generated by varying
the film thickness L for fixed values of t , hs , and α. The large graph
shows how L2FCas varies over an extended range of film thicknesses
L, and the inset shows the L dependence over a much smaller range.

result of the energy stored in the helical spin configuration,
a response to the surface fields that are tilted with respect to
each other. Of additional interest in this plot is the variation of
the Casimir force for smaller values of L, shown in the inset.
Note the change in the sign of the Casimir force. A Casimir
force going as L−2 is consistent with the energy associated
with a helicity modulus, which is natural given that the XY

system supports such a modulus in the regime in which it
spontaneously orders. In this case, the surface fields play the
essential role of enforcing a helical structure on the order
parameter when spontaneous ordering occurs.

The enhanced Casimir force is consistent with the scaling
form of (4.17). Figure 23 displays the dependence of the
scaled Casimir force L4FCas on the scaled variable tL2. An
important feature of this plot is its linear dependence on the
scaled reduced temperature when it is sizable and negative.
This leads to an overall L dependence going as L−2. Another
significant property of the critical Casimir force plotted in
Fig. 23 is its change in sign in the vicinity of the bulk critical
point. In this sense, the Casimir force is tunable—and can be
changed from attractive to repulsive—through a variation in
temperature.

FIG. 23. The scaled Casimir force, L4FCas, as a function of the
scaled variable tL2. The thickness of the film is L = 50, the surface
field amplitudes have been set to 0.01, and the angle between them,
α, is π/3.

Finally, Fig. 24 displays the dependence of the scaled
Casimir force, L4FCas, on scaled reduced temperature, tL2,
and scaled surface field amplitude, hsL, for a variety of values
of the angular difference, α, between the two surface fields. As
shown in the plots, when α increases from 0 to π the minimum
of the force becomes shallower and the region of parameters
tL2 and hsL in which the force is repulsive expands. We also
note that the amplitude of the force for any fixed combination
of the parameters tL2 and hsL is a monotonically increasing
function of α. The force is attractive in the whole region of
hsL and tL2 values only for α = 0.

V. DISCUSSION AND CONCLUDING REMARKS

The Casimir force has provided an unexpectedly rich and
varied set of phenomena for study and potential exploitation. In
this paper, we have attempted to demonstrate that interactions
between the bounding system and the media that support
the Casimir force allow for the possibility of utilizing those
interactions, here parametrized as surface fields, to control—
and in certain cases greatly amplify—that force. Our focus has
been the critical Casimir force, but a number of our results
extend far beyond the critical regime. We find that the angle
between surface fields can significantly affect the magnitude
and the sign of the Casimir force, that variations in temperature
can also have such an effect, and that the strength of the
critical Casimir force can undergo substantial amplification
as a consequence of the application of surface fields. Such
fields represent a useful and likely accurate quantification of
the action of modifications of the structure or composition of
bounding surfaces in the medium giving rise to the Casimir
force. Thus, the results presented here could well be utilized
or expanded upon to motivate experimental investigations of
the effects of surface patterning on the Casimir force.

The key findings reported here are twofold. First, the
combination of helicity and surface fields allows for the
manipulation of both the sign and the amplitude of the
Casimir force. In certain circumstances—particularly when
the system supports helicity in the bulk—the force can be
greatly amplified in magnitude. The second finding is that
the expressions describing the Casimir force are consistent
with the expectations of finite-size scaling, as embodied in
Eqs. (2.11), (2.20), (3.20), (3.33), (3.43), (4.4), and (4.17).

One possible setting for an experimental study might be
a nematic liquid crystal film. Here, the order parameter is
quadrupolar, rather than dipolar, as in the case of the XY or
Heisenberg models, but the continuous symmetry with respect
to rotation of the order parameter is nevertheless in the same
general class as in the systems considered here. In fact, a class
of liquid-crystal display (LCD) devices operates on the basis
of inducing a helical structure in liquid crystalline films [72].
It is also possible that the results reported here are applicable
to the case of a liquid helium film in the superfluid state in
which a temperature gradient exists between the substrate on
which the film has condensed and the gas phase bordering its
free surface. Such a temperature gradient induces flow in the
superfluid component, which entails a rotation of the superfluid
wave function in the complex plane [73,74].

The models investigated here are unlikely to be directly
realized in nature, either because of their low dimensionality or
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(b)(a)

(d)(c)

FIG. 24. Scaled Casimir force, L4FCas, as a function of the scaled reduced temperature, tL2, and scaled surface field amplitude, hsL. The
number of layers in the film is L = 50. The values of α, the angle between the surface fields, are, reading left to right and then top to bottom,
(a) 0, (b) π/2, (c) 2π/3, and (d) π .

because they neglect important phenomena such as saturation
of the order parameter, as in the Gaussian model, or they
are based on approximations such as the mean-field theory.
Nevertheless, we are confident in the overall import of our
results, i.e., that surface fields and helicity in the medium that
generates the Casimir force are likely to prove quite significant
as experimentally accessible modifiers of that force. How those
surface fields are to be generated will vary from system to
system, but there is every reason to anticipate that ways will
be found and that the result will provide greater insight into

the Casimir force, and, one hopes, new and useful applications
of this interaction.
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APPENDIX A: CALCULATION OF THE FREE ENERGY FOR THE 1D XY MODEL WITH BOUNDARY FIELDS

The simplest way we know to calculate the free energy of the 1D XY model is based on the identities [68,69]

ez cos θ =
∞∑

n=−∞
einθ In(z) (A1)

and

δn,0 = 1

2π

∫ 2π

0
einθdθ. (A2)
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From Eqs. (2.4) and (2.5), one then obtains

exp (−βFN ) =
∫ 2π

0

N∏
i=1

dϕi

2π
(A3)

×
∞∑

n1=−∞
ein1(ψ1−ϕ1)In1 (h1)

∞∑
n2=−∞

ein2(ϕ1−ϕ2)In2 (K) × · · · ×
∞∑

nN−1=−∞
einN−1(ϕN−1−ϕN )InN−1 (K) (A4)

×
∞∑

nN=−∞
einN (ϕN −ψN )InN

(hN ), (A5)

from which, using Eq. (A2), one obtains Eq. (2.6). Obviously, Eq. (2.6) can be written in the form

exp(−βFN ) = I0(h1)I0(K)N−1I0(hN )

[
1 + 2

∞∑
k=1

cos(kψ)
Ik(h1)

I0(h1)

(
Ik(K)

I0(K)

)N−1
Ik(hN )

I0(hN )

]
. (A6)

From Eq. (A6) for the total pressure,

βFtot = − ∂

∂N
[βFN ], (A7)

exerted by the end points on the system, one then obtains

βFtot = ln I0(K) +
2
∑∞

k=1 cos [k(ψ1 − ψ2)] log
[

Ik(K)
I0(K)

]
Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1 Ik(hN )
I0(hN )

1 + 2
∑∞

k=1 cos [k(ψ1 − ψ2)] Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1 Ik(hN )
I0(hN )

, (A8)

from which one immediately derives the expression (2.8) for the Casimir force given in the main text.
Using the Poisson identity

∞∑
k=−∞

exp(ika − k2b) =
√

π

b

∞∑
n=−∞

exp

[
− (2πn + a)2

4b

]
, (A9)

one can derive expressions for the scaling function of the Casimir force convenient for values of the scaling variable x ranging
from moderate to large values of x and one convenient for small values of x.

APPENDIX B: CALCULATION OF THE FREE ENERGY FOR THE 1D HEISENBERG MODEL WITH BOUNDARY FIELDS

Let us write the vectors in Eq. (2.3) in spherical coordinates supposing the spin chain to be along the x axis. One has

H1 = H1
{
sin ϕh

1 cos θh
1 , sin ϕh

1 sin θh
1 , cos ϕh

1

}
,

HN = HN

{
sin ϕh

N cos θh
N , sin ϕh

N sin θh
N, cos ϕh

N

}
, (B1)

Si = {sin ϕi cos θi, sin ϕi sin θi, cos ϕi}, i = 1, . . . ,N.

Then for the scalar products, one obtains

H1 · S1 = H1
[
sin ϕh

1 sin ϕ1 cos
(
θh

1 − θ1
) + cos ϕh

1 cos ϕ1
] ≡ H1 cos ψ1,

HN · SN = HN

[
sin ϕh

N sin ϕN cos
(
θh
N − θN

) + cos ϕh
N cos ϕN

] ≡ HN cos ψN, (B2)

Si · Si+1 = sin ϕi sin ϕi+1 cos (θi − θi+1) + cos ϕi cos ϕi+1 ≡ cos φi,

where the angle φi, i = 1, . . . ,N − 1, is between the spins Si and Si+1, and the angles ψ1 and ψN are between the vectors H1

and S1, and the vectors HN and SN , respectively.
The free energy −βFN of this system is

exp(−βFN ) =
∫ 2π

0

N∏
i=1

dθi

4π

∫ π

0

N∏
i=1

dϕi sin ϕi exp(−βH), (B3)

where the normalization is over the solid angle 4π because∫ 2π

0
dθ

∫ π

0
dϕ sin ϕ = 4π. (B4)
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To perform the integrations, we use the expansion

ez cos θ =
√

π

2z

∞∑
n=0

(2n + 1)In+1/2(z)Pn(cos θ ) (B5)

combined with the addition theorem for the spherical harmonics [68,69],

Pn(cos φi) = 4π

2n + 1

n∑
m=−n

Y ∗
n,m(ϕi+1,θi+1)Yn,m(ϕi,θi). (B6)

Here In+1/2(z) is the modified Bessel function of the first kind, Pn(x) is the Legendre polynomial of degree n, and Yn,m(ϕ,θ ) is
the spherical harmonic. We remind the reader of the orthogonality relation that holds for the spherical harmonics,∫ π

0
dϕ

∫ 2π

0
dθ sin ϕ Yl1,m1 (ϕ,θ )Y ∗

l2,m2
(ϕ,θ ) = δl1,l2δm1,m2 . (B7)

From Eq. (2.5), we obtain

exp(−βFN ) =
∫ 2π

0

N∏
i=1

dθi

4π

∫ π

0

N∏
i=1

dϕi sin ϕie
h1 cos ψ1

(
N−1∏
i=1

eK cos φi

)
ehN cos ψN , (B8)

where K , h1, and hN are defined in accordance with Eq. (2.17). Now we have to take into account that, according to Eqs. (B5)
and (B6),

eh1 cos ψ1 =
√

π

2h1

∞∑
n1=0

(2n1 + 1)In1+1/2(h1)Pn1 (cos ψ1) = (4π )

√
π

2h1

∞∑
n1=0

In1+1/2(h1)
n1∑

m1=−n1

Y ∗
n1,m1

(ϕ1,θ1)Yn1,m1

(
ϕh

1 ,θh
1

)
, (B9)

ehN cos ψ1 =
√

π

2hN

∞∑
nN =0

(2nN + 1)InN +1/2(hN )PnN
(cos ψN )

= (4π )
√

π

2hN

∞∑
nN =0

InN +1/2(hN )
nN∑

mN=−nN

Y ∗
nN ,mN

(
ϕh

N,θh
N

)
YnN ,mN

(ϕN,θN ), (B10)

and

eK cos φi =
√

π

2K

∞∑
ni+1=0

(2ni+1 + 1)Ini+1+1/2(K)Pni+1 (cos φi) (B11)

= (4π )

√
π

2K

∞∑
ni+1=0

Ini+1+1/2(K)
ni+1∑

mi+1=−ni+1

Y ∗
ni+1,mi+1

(ϕi+1,θi+1)Yni+1,mi+1 (ϕi,θi), (B12)

with i = 1, . . . ,N − 1. Inserting the above expression into Eq. (B8), one can easily perform the integration over ϕi and
θi, i = 1, . . . ,N , taking into account the orthogonality relations Eq. (B7). One derives that n1 = n2 = · · · = nN = n and
m1 = m2 = · · · = mN = m, and thus from Eq. (B8) we obtain

exp(−βFN ) = (4π )

√
π

2h1

√
π

2hN

(√
π

2K

)N−1 ∞∑
n=0

In+1/2(h1)In+1/2(hN )[In+1/2(K)]N−1
n∑

m=−n

Yn,m

(
ϕh

1 ,θh
1

)
Y ∗

n,m

(
ϕh

N,θh
N

)

=
(

π

2K

)(N−1)/2
π

2
√

h1hN

∞∑
n=0

(2n + 1)Pn(cos ψh)In+1/2(h1)In+1/2(hN )[In+1/2(K)]N−1, (B13)

where, in the last line, we have again used the addition theorem for the spherical harmonics Eq. (B6). In Eq. (B13), ψh is the
angle between the vectors H1 and HN , where

cos ψh = sin ϕh
1 sin ϕh

N cos
(
θh

1 − θh
N

) + cos ϕh
1 cos ϕh

N . (B14)

From Eqs. (B13) and (2.16) for the total pressure exerted by the end points on the system, one derives

βFtot ≡ − ∂

∂N
[βFN ] = ln

[
sinh K

K

]
+

∑∞
n=1(2n + 1)Pn(cos ψh) ln

[ In+1/2(K)
I1/2(K)

] In+1/2(h1)
I1/2(h1)

In+1/2(hN )
I1/2(hN )

[ In+1/2(K)
I1/2(K)

]N−1

1 + ∑∞
n=1(2n + 1)Pn(cos ψh) In+1/2(h1)

I1/2(h1)
In+1/2(hN )
I1/2(hN )

[ In+1/2(K)
I1/2(K)

]N−1 . (B15)

From here one derives the exact result for the Casimir force reported in Eq. (2.19) in the main text. From it one can extract the
corresponding scaling behavior reported in Eq. (2.22), which is convenient for evaluation of the behavior of the force for moderate
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and large values of the scaling variable x. Here we present the corresponding derivation of the representation convenient for
extracting the behavior of the force for small values of the scaling variable. Let us start by considering the sum

S(ψh,h1,hN,K) ≡
∞∑

n=1

(2n + 1)Pn(cos ψh)
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1

�
∞∑

n=1

(2n + 1)Pn(cos ψh)
eh1−(n+1/2)2/(2h1)

√
2πh1I1/2(h1)

ehN −(n+1/2)2/(2hN )

√
2πhNI1/2(hN )

[
eK−(n+1/2)2/(2K)

√
2πKI1/2(K)

]N−1

�
∞∑

n=1

(2n + 1)Pn(cos ψh)
exp

[− 1
2 (n + 1/2)2

(
1
h1

+ 1
hN

+ N−1
K

)]
exp

[− 1
2 (1/2)2

(
1
h1

+ 1
hN

+ N−1
K

)]

�
∞∑

n=1

(2n + 1)Pn(cos ψh)
In+1/2

(
1

h−1
eff +x

)
I1/2

(
1

h−1
eff +x

) =
∞∑

n=0

(2n + 1)Pn(cos ψh)
In+1/2

(
1

h−1
eff +x

)
I1/2

(
1

h−1
eff +x

) − 1

=
√

2

π
(
h−1

eff + x
) exp

[ cos ψh

h−1
eff +x

]
I1/2

(
1

h−1
eff +x

) − 1 = 1(
h−1

eff + x
) exp

[ cos ψh

h−1
eff +x

]
sinh

(
1

h−1
eff +x

) − 1. (B16)

APPENDIX C: CALCULATION OF THE FREE ENERGY FOR THE 3D GAUSSIAN MODEL

In the current Appendix, we will outline some technical steps needed to obtain the free energy of the Gaussian model under
the considered boundary conditions.

Performing the Fourier transform

Sx,y,z = 1√
M

M∑
m=1

[
cos

(
2π

M
mx

)
+ sin

(
2π

M
mx

)]
1√
N

N∑
n=1

[
cos

(
2π

N
ny

)
+ sin

(
2π

N
ny

)]√
2

L + 1

L∑
l=1

sin

(
π

L + 1
lz

)
S̃m,n,l

(C1)

in Eq. (3.4), one can easily diagonalize the Hamiltonian. Then, performing the integrations over S̃m,n,l , m = 1, . . . ,M, n =
1, . . . ,N , and l = 1, . . . ,L, one immediately obtains Eqs. (3.11) and (3.12) for the field-independent and field-dependent parts
of the free energy reported in the main text. In what follows, we explain how to perform the summations in these terms. We start
with the term that depends on the applied surface fields.

1. Evaluation of the field-dependent term

Taking L, for definiteness, to be an odd number, we start by rewriting Eq. (3.11) in the form

	Fh = 	F odd
h + 	F even

h , (C2)

where we have the following:
(i) If p �= M or q �= N ,

−β	F even
h = MN

8(L + 1)K⊥ Seven(�,L)
[
h2

1 + h2
L − 2hLh1 cos(k · 	)

]
(C3)

and

−β	F odd
h = MN

8(L + 1)K⊥ Sodd(�,L)
[
h2

1 + h2
L + 2hLh1 cos(k · 	)

]
. (C4)

(ii) If p = M and q = N ,

−β	F even
h = MN

8(L + 1)K⊥ Seven(�,L)[h1 − hL cos 2π (	x + 	y)]2 (C5)

and

−β	F odd
h = MN

8(L + 1)K⊥ Sodd(�,L)[h1 + hL cos 2π (	x + 	y)]2. (C6)

In the above expressions,

Seven(�,L) =
(L−1)/2∑

l=1

sin2
(

2πl
L+1

)
� − cos

(
2πl
L+1

) , (C7)
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Sodd(�,L) =
(L−1)/2∑

l=1

sin2
(

π(2l+1)
L+1

)
� − cos

(
π(2l+1)

L+1

) , (C8)

and � is defined in Eq. (3.31).
It is easy to show that

Seven(�,L) = 1
2 (L − 1)� + (1 − �2)Ŝeven(�,L), (C9)

where

Ŝeven(�,L) =
(L−1)/2∑

l=1

1

� − cos
(

2πl
L+1

) (C10)

and that

Sodd(�,L) = 1
2 (L + 1)� + (1 − �2)Ŝodd(�,L), (C11)

where

Ŝodd(�,L) =
(L−1)/2∑

l=1

1

� − cos
(

π(2l+1)
L+1

) . (C12)

The summations in Eqs. (C10) and (C12) can be performed using [75] the identities

cosh nx − cos ny = 2n−1
n−1∏
k=0

[
cosh x − cos

(
y + 2πk

n

)]
(C13)

and

cos nx − cos ny = 2n−1
n−1∏
k=0

[
cos x − cos

(
y + 2πk

n

)]
. (C14)

With the help of the variable λ, introduced in Eqs. (3.29) and (3.30), for the sums Ŝeven(�,L) and Ŝodd(�,L), we obtain

Ŝeven(�,L) = �

1 − �2
+ 1

2
(1 + L) coth

[
1

2
(1 + L)λ

]
cosh(λ), � � 1 (C15)

and

Ŝeven(�,L) = �

1 − �2
− 1

2
(1 + L) cot

[
1

2
(1 + L)λ

]
csc(λ), � � 1 (C16)

for Ŝeven(�,L), while for the sum Ŝodd(�,L) one has

Ŝodd(�,L) = 1

2
(1 + L)

tanh
[

1
2 (1 + L)λ

]
sinh λ

, � � 1 (C17)

and

Ŝodd(�,L) = 1

2
(1 + L)

tan
[

1
2 (1 + L)λ

]
sin λ

, � � 1. (C18)

Obviously, the two pairs Eqs. (C15) and (C16) and Eqs. (C17) and (C18) represent a continuation from real to purely complex
values of λ. Because of that, in the remainder we will report only one of the corresponding representations concerning the sums.

From Eqs. (C9) and (C15), one obtains

Seven(�,L) = L + 1

2

{
� − coth

[
L + 1

2
λ

]
sinh[λ]

}
, (C19)

whereas from Eqs. (C11) and (C17), one derives

Sodd(�,L) = L + 1

2

{
� − tanh

[
L + 1

2
λ

]
sinh[λ]

}
. (C20)

Using the above expressions and taking into account Eqs. (C2)–(C6) for 	fh [see Eq. (3.26)], one obtains the following:
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(i) If p �= M or q �= N ,

−β	fh = 1

16K⊥

{[
h2

1 + h2
L − 2hLh1 cos(k · 	)

](
� − coth

[
L + 1

2
λ

]
sinh[λ]

)

+ [
h2

1 + h2
L + 2hLh1 cos(k · 	)

](
� − tanh

[
L + 1

2
λ

]
sinh[λ]

)}
. (C21)

(ii) If p = M and q = N ,

−β	fh = 1

16K⊥

{
[h1 − hL cos 2π (	x + 	y)]2

(
� − coth

[
L + 1

2
λ

]
sinh[λ]

)

+ [h1 + hL cos 2π (	x + 	y)]2

(
� − tanh

[
L + 1

2
λ

]
sinh[λ]

)}
. (C22)

Note that in deriving the above expression, no approximations have been made—it is an exact result.
If Lλ � 1 from the above, one immediately obtains the following:
(i) If p �= M or q �= N ,

−β	fh � 1

8K⊥ {� − sinh[λ]}{h2
1 + h2

L

} + 1

2K⊥ sinh[λ]e−(L+1)λh1hL cos (k · 	). (C23)

(ii) If p = M and q = N ,

−β	fh � 1

8K⊥ {� − sinh[λ]}{h2
1 + cos 2π (	x + 	y)h2

L

} + 1

2K⊥ sinh[λ]e−(L+1)λh1hL cos 2π (	x + 	y), (C24)

from which one derives the surface part 	f
(s)
h of the field-dependent term in the free energy:

(i) If p �= M or q �= N ,

−β	f
(s)
h = 1

8K⊥ {� − sinh[λ]}{h2
1 + h2

L

}
. (C25)

(ii) If p = M and q = N ,

−β	f
(s)
h = 1

8K⊥ {� − sinh[λ]}{h2
1 + cos 2π (	x + 	y)h2

L

}
. (C26)

From Eqs. (C21) and (C22), one can determine both the transverse and the longitudinal field contribution to the components
of the Casimir force. The corresponding results are reported in the main text.

2. Evaluation of the field-independent term

We are interested in the L-dependent behavior of the field-independent part of the statistical sum of the system [see Eq. (3.17)],
where 	F0 is given by Eq. (3.11). It is easy to see that

−β	f0 − 1

2
L ln

π

K⊥ = −1

2

1

(2π )2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 = −1

2

1

(2π )2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 S0

(
βc

β
,
J ‖

J⊥ ,L

∣∣∣∣θ1,θ2

)
, (C27)

where

S0

(
βc

β
,
J ‖

J⊥ ,L

∣∣∣∣θ1,θ2

)
≡

L∑
k=1

ln

[
s

K⊥ − K‖

K⊥ (cos θ1 + cos θ2) − cos
πk

L + 1

]

=
L∑

k=1

ln

[(
βc

β
− 1

)(
1 + 2

J ‖

J⊥

)
+

(
1 − cos

πk

L + 1

)
+ J ‖

J⊥ (2 − cos θ1 − cos θ2)

]
(C28)

and we have used Eq. (3.6).
The expression in Eq. (C27) can be evaluated in several ways. Let us briefly sketch one of them. By doing so, we will also

obtain an expression for the free energy that has not been derived before and which is valid not only for large values, but for any
positive value of L.

Using the identity in Eq. (C13), one can show that

S0

(
βc

β
,
J ‖

J⊥ ,L

∣∣∣∣θ1,θ2

)
= −L ln 2 + ln

[
sinh(1 + L)δ

sinh δ

]
, (C29)

where δ is defined in Eq. (3.19). For the contribution of the field-independent term to the transverse Casimir force β	F
(0,⊥)
Cas [see

Eq. (3.16)], from Eqs. (C27) and (C29) one derives Eq. (3.18) given in the main text. To derive the scaling form of 	F
(0,⊥)
Cas , we
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have to consider the regime L � 1. Obviously, the Casimir force will be exponentially small if δ is finite. To avoid that, one
needs δ → 0 so that (L + 1)δ = O(1). When δ goes to zero, however, both (βc/β − 1)(1 + 2J ‖/J⊥) → 0 and θ1,θ2 → 0. Then,
from Eq. (3.19), one obtains

δ2 = 2

(
βc

β
− 1

)(
1 + 2

J ‖

J⊥

)
+ J ‖

J⊥
(
θ2

1 + θ2
2

)
. (C30)

Passing to polar coordinates, from Eq. (3.18) one obtains, up to exponentially small in L corrections,

β	F
(0,⊥)
Cas = −1

2

∫ ∞

δmin

x2{coth[(1 + L)x] − 1} dx

2π
, (C31)

where

δmin =
√

2

(
βc

β
− 1

)(
1 + 2

J ‖

J⊥

)
. (C32)

Noting that

xt = Lδmin, (C33)

using that

coth x = 1 + 2
∞∑

k=1

e−2kx, (C34)

and performing the integration in Eq. (C31), one derives Eqs. (3.20) and (3.21) given in the main text. From Eq. (C31) and taking
into account the definition (C33), one immediately concludes that X

(0,⊥)
Cas (xt ) is a monotonically increasing function of xt .
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2887 (1999).
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