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Generalized balance equations for charged particle transport via localized and delocalized states:
Mobility, generalized Einstein relations, and fractional transport
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A generalized phase-space kinetic Boltzmann equation for highly nonequilibrium charged particle transport
via localized and delocalized states is used to develop continuity, momentum, and energy balance equations,
accounting explicitly for scattering, trapping and detrapping, and recombination loss processes. Analytic
expressions detail the effect of these microscopic processes on mobility and diffusivity. Generalized Einstein
relations (GER) are developed that enable the anisotropic nature of diffusion to be determined in terms of the
measured field dependence of the mobility. Interesting phenomena such as negative differential conductivity
and recombination heating and cooling are shown to arise from recombination loss processes and the localized
and delocalized nature of transport. Fractional transport emerges naturally within this framework through the
appropriate choice of divergent mean waiting time distributions for localized states, and fractional generalizations
of the GER and mobility are presented. Signature impacts on time-of-flight current transients of recombination
loss processes via both localized and delocalized states are presented.
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I. INTRODUCTION

Dispersive transport is characterized by a mean squared
displacement that scales sublinearly with time [1]. Physically,
this fundamentally slower transport can arise due to the
presence of trapped (localized) states, causing the temporary
immobilization of particles [2]. Some examples include
charge carrier trapping in local imperfections of organic
semiconductors [2,3], electron trapping in bubble states within
liquid neon and liquid helium [4–6], ion trapping in liquid
xenon [7–10], positronium trapping in bubbles [11–13],
and positron annihilation on induced clusters [14]. Trapped
states also exist in organic-inorganic metal-halide perovskites
and influence the delocalized nature of transport in these
materials [15]. The combined localized and delocalized nature
of charged transport occurring in many materials warrants
the development of a new transport theory to treat and
explore the problem, and this represents the theme of our
program.

In our previous work [16] we explored a generalized
phase-space kinetic model for charged particle transport that
considered separate collisional, trapping and detrapping, and
recombination loss processes. This model takes the form
of a generalized Boltzmann equation with operators that
describe each process. Rather than performing a direct solution
of Boltzmann’s equation, as considered in [16], in this
paper we embrace a more physical insight and explore the
relationships between the measured macroscopic transport
properties and the underlying microscopic processes (as
determined by the appropriate collision frequencies). This
is a philosophy that has been adopted in swarm physics,
and now is routinely applied in a variety of fields including
low-temperature plasma physics [17–21], positron physics
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[22–24], liquid particle detectors [25,26], and radiation
damage [27–29].

For gaseous systems, or those where transport occurs
through delocalized states, there exists a wealth of literature
that explores relationships between experimentally measur-
able transport properties and links the underlying microscopic
physics to the macroscopic through simple analytic expres-
sions. In fact, transport properties were initially used as the
means to indirectly measure scattering cross sections and their
energy dependence. In this paper, we aim to generalize many
existing results for such systems and explore the impact of
localized (trapped) states and loss/recombinations on (i) the
mobility; (ii) the Wannier energy relation [30], which relates
the mean energy of the charged particles to the mobility; and
(iii) the Einstein relations [31,32], which relate the mobility to
the diffusivity and enable the quantification of the anisotropic
nature of diffusion. Using these we postulate the existence of a
number of new phenomena, including trap-induced particle
heating and cooling and trap-induced negative differential
conductivity (NDC), the origin of which differs significantly
from that in which transport is delocalized. Criteria on the
various collision, trapping, and loss frequencies are presented
for the occurrence of such phenomena.

In Sec. II of this paper we present a generalized Boltzmann
equation with energy-dependent process rates for collisions,
trapping, and recombination. We explore the signature impact
of recombination loss processes in both the delocalized
and localized states on the time-of-flight current transients
in Sec. III. In Sec. IV, balance equations are formed for
particle continuity, momentum, and energy, via the appropriate
moments of the generalized Boltzmann equation, which are
also used to develop expressions for mobility, mean energy,
and diffusivity. Phenomena such as heating and cooling, NDC,
and generalized Einstein relations (GER) are explored in
Secs. V–VI. In Sec. VII, the fractional transport equivalents
of the above are considered including fractional GER, while
in Sec. VIII we present conclusions and outline some possible
avenues for future work.
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FIG. 1. Phase-space diagram illustrating the collision, trapping,
detrapping, and recombination processes [16].

II. EXTENDED PHASE-SPACE MODEL

In this section, we consider a generalization of the ki-
netic model presented in Eq. (1) from [16] that describes
the processes of collisions, trapping, and recombination, as
depicted in Fig. 1. Specifically, we make processes selective
of particle energy ε ≡ 1

2mv2. This results in a free particle
phase-space distribution function f (t,r,v), defined by the
generalized Boltzmann equation(

∂

∂t
+ v · ∂

∂r
+ eE

m
· ∂

∂v

)
f (t,r,v)

= −νcoll(ε)f (t,r,v) + n(t,r)〈νcoll(ε)〉w̃coll(v)

−νtrap(ε)f (t,r,v) + �(t) ∗ [n(t,r)〈νtrap(ε)〉]w̃detrap(v)

−ν
(free)
loss (ε)f (t,r,v), (1)

which describes particles of charge e and mass m in the pres-
ence of an applied electric field E. Here, the energy-dependent
process rates for collisions, trapping, and recombination losses
are, respectively, denoted νcoll(ε), νtrap(ε), and ν

(free)
loss (ε), ∗

denotes a time convolution, and 〈·〉 denotes an average over
velocity space:

〈ψ(v)〉 ≡ 1

n(t,r)

∫
dv f (t,r,v)ψ(v), (2)

where the free particle number density is defined n(t,r) ≡∫
dvf (t,r,v). Collisions are described above by the

Bhatnagar-Gross-Krook (BGK) collision operator [33], while
trapping and detrapping are described by a BGK-type model
with a delay for the duration of each localized state [34].
This delay is sampled from the effective waiting time distribu-
tion [16]

�(t) ≡ e−ν
(trap)
loss tφ(t), (3)

defined in terms of a distribution of trapping times φ(t) and
weighted by an exponential decay term that describes the
recombination of trapped particles at the rate ν

(trap)
loss [16]. Note

that, unlike the free particle process rates, this recombination
rate is not a function of energy as trapped particles are localized
in space.

The processes of scattering and detrapping are taken to
be isotropic and to occur according to Maxwellian velocity
distributions. Specifically, we introduce

w̃coll(v) ≡ νcoll(ε)w(αcoll,v)∫
dvνcoll(ε)w(αcoll,v)

, (4)

w̃detrap(v) ≡ νtrap(ε)w(αdetrap,v)∫
dvνtrap(ε)w(αdetrap,v)

, (5)

where the Maxwellian velocity distribution of temperature T

is defined

w(α,v) ≡
(

α2

2π

) 3
2

exp

(
−α2v2

2

)
, (6)

α2 ≡ m

kBT
, (7)

where kB is the Boltzmann constant.
As stated, this model is very general and requires the precise

specification of atomic and molecular details to properly define
the process frequencies. In practice, this is usually achieved by
using cross-section data in the relationship ν(ε) ≡ n0vσ (ε),
where n0 is the number density of the background medium
and σ (ε) is the cross section corresponding to the process of
frequency ν(ε).

Similar to the description of free particles by Eq. (1),
trapped particles can be described by a distribution function
in configuration space ntrap(t,r), defined by the continuity
equation

∂

∂t
ntrap(t,r) = [1 − �(t)∗][n(t,r)〈νtrap(ε)〉]

−ν
(trap)
loss ntrap(t,r). (8)

Lastly, the number of particles lost to recombination can also
be counted:

d

dt
N

(free)
loss (t) = 〈〈

ν
(free)
loss (ε)

〉〉
N (t), (9)

d

dt
N

(trap)
loss (t) = ν

(trap)
loss Ntrap(t), (10)

where 〈〈·〉〉 denotes an average over phase space

〈〈ψ〉〉 ≡ 1

N (t)

∫
dr

∫
dv f (t,r,v)ψ, (11)

and free and trapped particle numbers are, respectively, defined

N (t) ≡
∫

dr n(t,r), (12)

Ntrap(t) ≡
∫

dr ntrap(t,r). (13)
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III. TIME-OF-FLIGHT CURRENT TRANSIENTS

In practice, charged particle transport properties can be
quantified using a time-of-flight experiment, where the transit
time through a material for a pulse of charge carriers is
found by measuring the corresponding current. In this section,
we explore the impact that recombination losses of both
delocalized and localized particles have on time-of-flight
current transients. We consider the analytical current in a
time-of-flight experiment for a material of thickness L situated
between two plane-parallel electrodes. As this geometry is
one-dimensional, the charge carrier number density n(t,x) is
defined by the generalized diffusion equation derived in [16],
which is rewritten here:{

∂

∂t
+ νtrap[1 − �(t)∗] + ν

(free)
loss

}
n + W

∂n

∂x
− D

∂2n

∂x2
= 0,

(14)

where W is the drift velocity and D is the diffusion coefficient.
This diffusion equation can be derived directly from the
generalized Boltzmann equation (1), where the constant
process frequencies can be interpreted as velocity averages of
the energy-dependent frequencies introduced in the previous
section, ν ≡ 〈ν(ε)〉 . From the number density, the current
in a time-of-flight experiment can be found as the spatially
averaged flux [35]:

j (t) = e
∂

∂t

∫ L

0

(
x

L
− 1

)
n(t,x)dx. (15)

For an impulse initial condition, n(0,x) = N (0)δ(x − x0), and
perfectly absorbing boundaries, n(t,0) = n(t,L) = 0, we can
proceed as in [34] to write this current in Laplace space:

j (p) = eN (0)
W

Lp̃

{
1 − e−λx0

[
e−βx0

+ sinh (βx0)

sinh (βL)
(eλL − e−βL)

]}
, (16)

where

p̃ ≡ p + νtrap[1 − �(p)] + ν
(free)
loss , (17)

λ ≡ W

2D
, (18)

β ≡
√

p̃

D
+ λ2, (19)

and the Laplace transform of time, t → p, is denoted
f (p) ≡ Lf (t) ≡ ∫ ∞

0 dt e−ptf (t). Note that the trapped carrier
recombination rate arises here through the term �(p) ≡
φ(p + ν

(trap)
loss ).

We consider the explicit effect that free and trapped particle
recombination rates have on the current transient in a time-
of-flight experiment in Fig. 2 by plotting Eq. (16) for the
current, keeping the effects of mobility (drift velocity) and
diffusion constant. A system of units is chosen that uses the
material thickness L and the trap-free transit time, defined as
ttr ≡ L/W . In this system of units, the drift velocity is equal
to unity. We specify the diffusion coefficient to be Dttr/L

2 =
0.02, the initial impulse is set to occur at x0/L = 1/3, and the
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FIG. 2. The impact of free and trapped particle recombination on
current transients for an ideal time-of-flight experiment as modeled
by Eq. (16). Nondimensionalization has been performed using the
material thickness L, trap-free transit time ttr ≡ L/W , and initial
current j (0) = eN (0)/ttr. For these plots we define the diffusion
coefficient Dttr/L

2 = 0.02, the initial impulse location x0/L = 1/3,
and the trapping rate νtrapttr = 102. We choose an exponential
distribution of trapping times, φ(t) = νdetrape−νdetrapt, with the mean
trapping time chosen as (νdetrapttr)

−1 = 0.03.

trapping rate is made large so that trap-based effects can occur
within the transit time, νtrapttr = 102. For trapping times, an
exponential distribution is considered, φ(t) = νdetrape−νdetrapt ,
with a mean trapping time of (νdetrapttr)−1 = 0.03.

In Fig. 2, the recombination-free current transient is
included in black as a reference. This transient has a number of
notable regimes. At early times, the current is still close to unity
as no processes have had a chance to affect it greatly. What then
follows is a decrease in current as free charge carriers enter
traps. This decrease is temporary, however, and eventually the
current plateaus as a transient equilibrium arises between free
and trapped particles. The value of the current at this plateau is
numerically equal to the proportion of free particles at the
equilibrium, νdetrap/(νdetrap + νtrap) = 0.25 ≈ 10−0.6. Finally,
the last of the free particles extract, causing the remaining filled
traps to gradually exhaust and the system to leave equilibrium.
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Figure 2(a) considers an increasing free particle recombi-
nation rate, ν(free)

loss , without any trapped particle recombination,
ν

(trap)
loss = 0. It can be seen that the free particle losses start

decreasing the current at roughly the characteristic time for

free particle recombination, (ν(free)
loss ttr)

−1
. Because free particles

are being lost, an equilibrium is not established as in the
recombination-free case. However, detrapping events do still
cause a slowing in the descent of the current.

Figure 2(b) considers an increasing trapped particle recom-
bination rate, ν

(trap)
loss , without any free particle recombination,

ν
(free)
loss = 0. Trap-based recombination can only affect the

current via detrapping events and so we do not see a decrease
in the current until at least the characteristic time for trapping,
(νtrapttr)−1 = 10−2. Similar to Fig. 2(a), an equilibrium cannot
be established here due to the constant loss of trapped
particles. Unlike Fig. 2(a), however, detrapping events have
a diminishing contribution to the current as increasing trap-
based recombination also increases the probability that trapped
particles recombine instead of detrapping.

In practice, time-of-flight current transients will be mea-
sured in experiments. These current traces will be fitted to
solutions of the generalized diffusion equation (14), which
enable the transport coefficients (drift velocity W, diffusion
coefficient D), various rates ν, and waiting time distribution φ

to be determined empirically. In the remainder of this paper,
we are focused on understanding the relationship between
the various microscopic scattering and trapping processes
(as determined by the relevant scattering, trapping, and loss
collision frequencies and their dependence on energy, and
waiting time distributions) and the transport coefficients and
properties. Furthermore, we will explore relationships between
the transport coefficients and properties, e.g., the Wannier
energy relation, which links the mean energy and the mobility,
and the generalized Einstein relations, which link mobility and
diffusivity.

IV. BALANCE EQUATIONS

A knowledge of the full free particle phase-space dis-
tribution, f (t,r,v), defined by the generalized Boltzmann
equation (1), is often not required to analyze and interpret
experiment. A computationally economical and more physi-
cally appealing alternative is to solve for average quantities
directly, through solution of the appropriate fluid or velocity
moment equations. In what follows, we form these moment
equations by evaluating velocity averages of the phase-space
distribution function, thus grounding them physically through
the generalized Boltzmann equation.

From the Boltzmann equation (1), we show most generally
that the average of a velocity functional ψ(v) satisfies the
differential equation

∂

∂t
n〈ψ〉 + ∂

∂r
· n〈vψ〉 − eE

m
· n

〈
∂ψ

∂v

〉
= −n〈ψνcoll(ε)〉 + n〈νcoll(ε)〉〈ψ〉coll

− n〈ψνtrap(ε)〉 + �(t) ∗ (n〈νtrap(ε)〉)〈ψ〉detrap

− n
〈
ψν

(free)
loss (ε)

〉
, (20)

where the velocity average 〈·〉 is defined by Eq. (2), while 〈·〉coll
and 〈·〉detrap are defined as

〈ψ(v)〉coll ≡
∫

dvψ(v)w̃coll(v), (21)

〈ψ(v)〉detrap ≡
∫

dvψ(v)w̃detrap(v). (22)

By choosing ψ(v) = 1, ψ(v) = mv, and ψ(v) = ε ≡ 1
2mv2,

respective balance equations for free particle continuity,
momentum, and energy result:

∂

∂t
n + ∂

∂r
· n〈v〉 = −n〈νtrap(ε)〉 + �(t) ∗ (n〈νtrap(ε)〉)

−n
〈
ν

(free)
loss (ε)

〉
, (23)

∂

∂t
n〈mv〉 + ∂

∂r
· n〈mvv〉 − eEn

= −n〈mvνcoll(ε)〉 − n〈mvνtrap(ε)〉
− n

〈
mvν

(free)
loss (ε)

〉
, (24)

∂

∂t
n〈ε〉 + ∂

∂r
· n〈εv〉 − eE · n〈v〉

= −n〈ενcoll(ε)〉 + n〈νcoll(ε)〉〈ε〉coll

− n〈ενtrap(ε)〉 + �(t) ∗ (n〈νtrap(ε)〉)〈ε〉detrap

− n
〈
εν

(free)
loss (ε)

〉
. (25)

The latter two equations can be written explicitly as differential
equations in the average momentum and energy by expanding
time derivatives and applying the continuity equation (23):

n
∂

∂t
〈mv〉 + ∂

∂r
· n〈mvv〉 − 〈mv〉 ∂

∂r
· n〈v〉 − eEn

= −n〈mvνcoll(ε)〉 − n〈mvνtrap(ε)〉
+ n〈mv〉〈νtrap(ε)〉 − 〈mv〉�(t) ∗ (n〈νtrap(ε)〉)
− n

〈
mvν

(free)
loss (ε)

〉 + n〈mv〉〈ν(free)
loss (ε)

〉
, (26)

n
∂

∂t
〈ε〉 + ∂

∂r
· n〈εv〉 − 〈ε〉 ∂

∂r
· n〈v〉 − eE · n〈v〉

= −n〈ενcoll(ε)〉 + n〈νcoll(ε)〉〈ε〉coll − n〈ενtrap(ε)〉
+ n〈ε〉〈νtrap(ε)〉 − (〈ε〉 − 〈ε〉detrap)�(t) ∗ (n〈νtrap(ε)〉)
− n

〈
εν

(free)
loss (ε)

〉 + n〈ε〉〈ν(free)
loss (ε)

〉
. (27)

Solution of these balance equations requires some approx-
imation in the evaluation of the averages of the collision
frequencies. In what follows we solve these balance equations
using momentum transfer theory [32] to develop expressions
for the mobility, diffusion, and mean energy in terms of the
underlying microscopic frequencies for collisions, trapping,
and losses. Application of these relationships yields some in-
teresting phenomena including NDC and heating and cooling,
as well as conditions on the relevant frequencies for such
phenomena to occur.
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V. MOBILITY AND THE WANNIER ENERGY RELATION:
HEATING AND COOLING AND NDC

In this section, we are interested in physical properties in the
weak-gradient hydrodynamic regime. In this limit, properties
that are intensive (independent of particle number) become
time invariant and spatial gradients vanish [18], resulting
in simplified momentum and energy balance equations that
provide expressions for the applied acceleration and power
input by the field:

eE
m

= 〈vνcoll(ε)〉(0)

+〈vνtrap(ε)〉(0) − (1 − R)W〈νtrap(ε)〉(0)

+ 〈
vν

(free)
loss (ε)

〉(0) − W
〈
ν

(free)
loss (ε)

〉(0)
, (28)

eE · W = 〈ενcoll(ε)〉(0) − 〈νcoll(ε)〉(0)〈ε〉coll + 〈ενtrap(ε)〉(0)

− ε〈νtrap(ε)〉(0) + R〈νtrap(ε)〉(0)(ε − 〈ε〉detrap)

+ 〈
εν

(free)
loss (ε)

〉(0) − ε
〈
ν

(free)
loss (ε)

〉(0)
, (29)

where the superscript “(0)” denotes that quantities are in the
steady, spatially uniform state. Here, the moments for drift
velocity and mean energy have been, respectively, defined

W ≡ 〈v〉(0), (30)

ε ≡ 〈ε〉(0), (31)

and we have introduced the quantity R as the steady-state ratio
of the number of particles leaving traps to those entering traps:

R ≡
(

�(t) ∗ n(t,r)

n(t,r)

)(0)

≡ lim
t→∞

�(t) ∗ N (t)

N (t)
. (32)

In the following subsections, we make these balance equations
more useful by using momentum transfer theory to approxi-
mate the velocity averages of the form 〈ν(ε)〉, 〈vν(ε)〉, and
〈εν(ε)〉. The simplified balance equations that result provide
expressions for particle mobility and mean energy which in
turn can be used to quantify heating and cooling and to
explore NDC.

A. Momentum transfer theory

Momentum transfer theory [32] enables a systematic
procedure for evaluating the average rates detailed above. In
this procedure, process rates, ν(ε), are expanded about some
representative energy, which we take to be the mean energy, ε:

ν(ε) =
∑
i�0

ν(i)(ε)

i!
(ε − ε)i , (33)

where the superscript “(i)” denotes the ith energy derivative.
This expansion can then be truncated to the desired order of
accuracy. By truncating to just the initial constant term, we
have zeroth-order momentum transfer theory, which provides
a mobility and a Wannier energy relation that is sufficient for
exploring NDC and energy-independent heating and cooling.
For heating and cooling that varies with energy, we must
truncate the above expansion linearly and use first-order
momentum transfer theory.

1. Zeroth-order momentum transfer theory

Truncating the energy expansion, Eq. (33), to the constant
term gives the zeroth-order momentum transfer theory approx-
imation

〈ψ(v)ν(ε)〉 ≈ 〈ψ(v)〉ν(ε). (34)

This approximation yields results that are functionally equiv-
alent to what arises for the case of constant process rates, as
considered in [16], but with some functional dependence on
the representative energy ε. Substituting this approximation
into the momentum and energy balance equations (24) and
(25) yields

eE
m

= Wνeff(ε), (35)

eE · W =
[
ε − 3

2
kBTeff(ε)

]
νeff(ε), (36)

where we have introduced an effective frequency

νeff(ε) ≡ νcoll(ε) + Rνtrap(ε), (37)

and an energy-dependent effective temperature, written as a
weighted sum of the two Maxwellian source temperatures

Teff(ε) ≡ ωcoll(ε)Tcoll + ωdetrap(ε)Tdetrap, (38)

with energy-dependent weights defined

ωcoll(ε) ≡ νcoll(ε)

νcoll(ε) + Rνtrap(ε)
, (39)

ωtrap(ε) ≡ Rνtrap(ε)

νcoll(ε) + Rνtrap(ε)
. (40)

It should be noted that, as free particle recombination and
trapping rates are constant here, the limit definition of R in
Eq. (32) can be evaluated to provide the alternative implicit
definition [16]:

R ≡
∫ ∞

0
dt �(t)e[ν(free)

loss (ε)+νtrap(ε)(1−R)]t . (41)

This implicit definition can be solved analytically for R only
for certain choices of the effective waiting time distribution
�(t). A table of such R values for a variety of corresponding
�(t) is presented in Appendix A of [16].

The zeroth-order momentum balance equation (35) pro-
vides the drift velocity in terms of the electric field E:

W ≡ KE, (42)

where the constant of proportionality K defines the charged
particle mobility:

K ≡ e

mνeff(ε)
. (43)

We observe that the mobility is inversely proportional to
both collision and trapping process rates through the effective
frequency defined in Eq. (37). This result is expected as both
the scattering and detrapping processes occur isotropically.
Evidently, precisely how mobility varies with energy depends
entirely on the energy dependence of the process frequencies.

Using both the momentum and energy balance equations
(35) and (36), we can also find the Wannier energy relation for
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the average energy:

ε = 3

2
kBTeff(ε) + mW 2. (44)

We can confirm that when there is no trapping, νtrap(ε) = 0, the
mobility and Wannier energy relation reduce to the classical
results valid for dilute gaseous systems [18]:

K = e

mνcoll(ε)
, (45)

ε = 3

2
kBTcoll + mW 2. (46)

The zeroth-order mobility and Wannier energy relation derived
here are used to describe energy-independent heating and
cooling in Secs. V B 1 and V B 2 as well as NDC in Sec. V C.

2. First-order momentum transfer theory

Including an additional term in the energy expansion,
Eq. (33), gives the first-order momentum transfer theory
approximation

〈ψ(v)ν(ε)〉 ≈ 〈ψ(v)〉ν(ε) + 〈ψ(v)(ε − ε)〉ν ′(ε), (47)

where ν ′(ε) denotes the energy derivative of ν(ε). Substitution
into the momentum and energy balance equations (24) and
(25) yields

eE
m

= Wνeff(ε) + cov(v,ε)ν ′
total(ε), (48)

eE · W =
[
ε − 3

2
kBTeff(ε)

]
νeff(ε) + var(ε)ν ′

total(ε)

−
3
2 (kBTcoll)2ν ′

coll(ε)

1 + (
3
2kBTcoll − ε

) ν ′
coll(ε)

νcoll(ε)

−
3
2 (kBTdetrap)2Rν ′

trap(ε)

1 + (
3
2kBTdetrap − ε

) ν ′
trap(ε)

νtrap(ε)

, (49)

where we define νtotal(ε) ≡ νcoll(ε) + νtrap(ε) + ν
(free)
loss (ε), and

higher-order velocity moments have been introduced in the
form of the velocity-energy covariance

cov(v,ε) ≡ 〈(v − W)(ε − ε)〉(0) ≡ ξ − εW, (50)

where ξ ≡ 〈εv〉(0) is the energy flux, and the energy variance

var(ε) ≡ 〈(ε − ε)2〉(0) ≡ 〈ε2〉(0) − ε2. (51)

These higher-order velocity moments can be approximated
using zeroth-order momentum transfer theory, as is done in the
Appendix, to yield approximations expressed solely in terms
of the lower-order velocity moments W and ε. For example,
the velocity-energy covariance can be approximated with

cov(v,ε) ≈ 2
3 (ε + 2mW 2)W. (52)

Using this approximation in conjunction with the first-order
momentum balance equation (48), we find the mobility, as
defined by Eq. (42):

K ≈ e

m
[
νeff(ε) + 2

3

(
ε + 2mW 2

)
ν ′

total(ε)
] . (53)

This is of the same functional form as the zeroth-order
mobility, Eq. (43), but with a modification to the effective
frequency in the denominator. Note that the mobility now
depends explicitly on the drift velocity, through the 2mW 2

term. Terms such as this are sometimes omitted in the literature
as their contribution is minimal when light particles are being
considered [18].

As for zeroth-order momentum transfer theory, a Wannier
energy relation can be formed by combining both momentum
and energy balance equations (48) and (49):

ε = 3

2
kBTeff(ε) + mW 2

− ν ′
total(ε)

νeff(ε)
cov(ε,ε − mW · v)

+
3
2 (kBTcoll)2 ν ′

coll(ε)
νeff (ε)

1 + (
3
2kBTcoll − ε

) ν ′
coll(ε)

νcoll(ε)

+
3
2 (kBTdetrap)2 Rν ′

trap(ε)
νeff (ε)

1 + (
3
2kBTdetrap − ε

) ν ′
trap(ε)

νtrap(ε)

. (54)

This first-order Wannier energy relation is written in terms of
higher-order velocity moments via the covariance

cov(ε,ε − mW · v) ≡ var(ε) − mW · cov(v,ε). (55)

As before, the results in the Appendix allow for this covariance
to also be written approximately in terms of lower-order
velocity moments:

cov(ε,ε − mW · v)

≈ 2
3

(
ε − 1

2mW 2)2 + 17
6 (mW 2)2

+ 5
3ωcoll(ε)ωtrap(ε)

[
3
2kB(Tcoll − Tdetrap)

]2
. (56)

This expression can be used to write the first-order Wannier en-
ergy relation (54) in an approximate closed form, independent
of higher-order velocity moments.

Comparing the above first-order momentum transfer theory
results for mobility and average energy, Eqs. (53) and (54), to
their zeroth-order counterparts, Eqs. (43) and (44), provides an
estimate of the error incurred by the zeroth-order momentum
transfer theory approximation.

In Sec. V B 3, we use the first-order mobility and Wannier
energy relation derived here to describe heating and cooling
that is due to the energy dependence of physical processes.

B. Heating and cooling

In this subsection, we determine the effect that each of the
physical processes described by the generalized Boltzmann
equation (1) has on the average particle energy, that is,
whether there is an increase or decrease in the average energy
corresponding to a respective heating or cooling of the particles
as a result of collisions, trapping, or recombination.

1. Collisional and trap-based heating and cooling

To consider the effect of collisions on the average energy,
we consider the case of constant process rates where the
average energy is given by the zeroth-order Wannier energy
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relation (44). For collisions that are infrequent relative to
trapping, i.e., νcoll < Rνtrap, the average energy can be written
approximately to first order in νcoll/Rνtrap:

ε ≈ ε0 + 2

(
3

2
kBTHC − ε0

)
νcoll

Rνtrap
, (57)

where the subscript “0” denotes the collisionless case, i.e.,
νcoll = 0:

ε0 = 3
2kBTdetrap + mW 2

0 , (58)

W0 = eE
mRνtrap

, (59)

and THC is a threshold temperature which defines the transition
between collisional heating and cooling:

THC ≡ Tcoll + Tdetrap

2
. (60)

In the event that ε0 = 3
2kBTHC, the first-order term in the

expansion above vanishes and we must instead consider the
second-order approximation:

ε ≈ ε0 + mW 2
0

(
νcoll

Rνtrap

)2

. (61)

The expansions (57) and (61) show that the introduction of
collisions causes cooling only if the initial average energy
ε0 exceeds the threshold energy proportional to the tempera-
ture THC:

ε0 > 3
2kBTHC, (62)

with collisional heating occurring otherwise.
These conditions can also be shown to be applicable to

trap-based heating and cooling, in which case ε0 would denote
the trap-free mean energy with νtrap = 0.

2. Energy-indiscriminate recombination heating and cooling

We now explore the possibility of recombination heating
and cooling by once again considering constant process rates.
It is usually expected that constant loss rates, which act
indiscriminate of energy, result in a decrease in particle number
that affects extensive properties but leaves intensive properties,
like the average energy, unchanged [18]. Although it is true
that the recombination considered here is not selective of
particle energy, the separate recombination rates for free and
trapped particles means that recombination is selective of
whether particles are trapped or not. Indeed, the average energy
can be shown to be a function of the difference in these
recombination rates, �νloss ≡ ν

(free)
loss − ν

(trap)
loss , only becoming

independent when recombination acts uniformly across all
particles, i.e., ν

(free)
loss = ν

(trap)
loss . The recombination dependence

appears in the average energy through the quantity R, the
definition of which in Eq. (41) is rewritten here explicitly in
terms of �νloss:

R ≡
∫ ∞

0
dt φ(t)e[�νloss+νtrap(1−R)]t . (63)

The original definition of R was given by Eq. (32) as the
steady-state ratio between the number of particles leaving and

entering traps. Without recombination, this ratio is unity as
an equilibrium arises between free and trapped particles [16].
Even with recombination, this ratio should remain at unity
so long as the number of free and trapped particles reduces
equally due to recombination, �νloss = 0.

We explore the effect of R on heating and cooling by
performing a small �νloss expansion:

R ≈ 1 + �νloss

νdetrap + νtrap
, (64)

where the detrapping rate has been introduced:

ν−1
detrap ≡

∫ ∞

0
dt φ(t)t. (65)

Proceeding to perform a small �νloss expansion of the average
energy, in part by using the above expansion of R, gives the
average energy to first order:

ε ≈ ε0 + 2

(
3

2
kBTHC − ε0

)
νtrap

νcoll + νtrap

�νloss

νdetrap + νtrap
, (66)

where the subscript “0” denotes the case of uniform recombi-
nation, �νloss = 0:

ε0 = 3
2kBTeff,0 + mW 2

0 , (67)

W0 = eE
m(νcoll + νtrap)

, (68)

Teff,0 = νcollTcoll + νtrapTdetrap

νcoll + νtrap
, (69)

and the threshold temperature in this case is defined as

THC ≡ Teff,0 + Tdetrap

2
. (70)

In the event that ε0 = 3
2kBTHC, we have instead the second-

order approximation for average energy:

ε ≈ ε0 + mW 2
0

(
νtrap

νcoll + νtrap

�νloss

νdetrap + νtrap

)2

. (71)

From the small �νloss expansions (66) and (71), we see that
if there is a relative loss of free particles, ν

(free)
loss > ν

(trap)
loss , then

recombination cooling can occur if those free particles are
sufficiently energetic prior to being lost:

ε0 > 3
2kBTHC. (72)

Conversely, if there is a relative gain of free particles, ν(free)
loss <

ν
(trap)
loss , then recombination cooling can occur if those free

particles are sufficiently cold to begin with:

ε0 < 3
2kBTHC. (73)

Overall, for distinct free and trapped particle recombination
rates such that ν

(free)
loss 
= ν

(trap)
loss , the condition for recombination

cooling can be summarized as(
ε0 − 3

2kBTHC
)
�νloss > 0, (74)

with recombination heating occurring otherwise.
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3. Energy-selective recombination heating and cooling

In the event that no traps are present, νtrap = 0, or where
recombination acts uniformly across all free and trapped
particles, ν(free)

loss = ν
(trap)
loss , heating and cooling cannot occur due

to the trap-selective recombination described previously. In
this case, heating or cooling can only occur if recombination
acts selectively based on the energy of the free particles. To
show this, we will consider the first-order Wannier energy
relation (54) with constant collision and trapping rates and
constant free particle recombination rate energy derivative
ν

(free)′
loss . Performing a small ν(free)′

loss /νeff expansion of this average
energy gives, to first order,

ε ≈ ε0 −
{

2

3

(
ε0 + 1

2
mW 2

0

)2

+ 11

2

(
mW 2

0

)2

+ 5

3
ωcollωtrap

[
3

2
kB(Tcoll − Tdetrap)

]2}
ν

(free)′
loss

νeff
, (75)

where the subscript “0” denotes no energy dependence in the
free particle recombination rate, ν

(free)′
loss = 0:

ε0 = 3

2
kBTeff + mW 2

0 , (76)

W0 = eE
mνeff

. (77)

As is expected, the expansion (75) suggests that recombination
cooling occurs when recombination is selective of higher
energy particles:

ν
(free)′
loss > 0, (78)

with recombination heating occurring when it is selective of
lower energy particles. This confirms for this model the well-
known phenomena of attachment heating and cooling [18].

C. Negative differential conductivity

NDC occurs when an increase in field strength causes a
decrease in the drift velocity [32]:

dW

dE
< 0. (79)

The field rate of change of drift velocity can be found directly
from the zeroth-order Wannier energy relation (44) as

dW

dE
= 1

2mW

[
1 − 3

2
kBT ′

eff(ε)

]
dε

dE
, (80)

which provides the condition for the occurrence of NDC:

3
2kBT ′

eff(ε) > 1. (81)

The NDC condition assumes that the mean energy increases
monotonically with the field:

dε

dE
> 0. (82)

This is equivalent to restricting the effective frequency νeff(ε)
so as to avoid runaway and ensure that an equilibrium is
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FIG. 3. Plots of drift velocity, Eq. (42), and mean energy, Eq. (44),
against electric field for a situation in which negative differential
conductivity arises. All quantities have been nondimensionalized with
respect to the mean energy without a field applied, ε� ≡ 3

2 kBTeff (ε�).
Specifically, we have chosen to nondimensionalize using W� ≡√

ε�

m
and E� ≡ mνeff (ε�)

e
W�. For this figure, we consider a constant

collision frequency, νcoll(ε) = 1, and a trapping frequency that ap-
proximates a step function, Rνtrap(ε) = 1

2 {1 + tanh [5(ε − εthresh)]} ≈
H (ε − εthresh), turning on at the threshold energy εthresh = 6. In
addition, Maxwellian temperatures have been chosen such that
kBTcoll = 1 and kBTdetrap = 5.

reached [36]:

d

dε

(
νeff(ε)

√
ε − 3

2
kBTeff(ε)

)
> 0. (83)

Note that the occurrence of NDC depends solely on how the
effective temperature varies with energy. This energy rate
of change is proportional to the difference in Maxwellian
temperatures:

T ′
eff(ε) = (Tcoll − Tdetrap)ω′

coll(ε) = (Tdetrap − Tcoll)ω
′
trap(ε).

(84)

Hence, in comparison with Eq. (81), we see that NDC here
cannot occur when both scattering and detrapping sources are
of equal temperature or when the relative collision or trapping
rates, ωcoll(ε) and ωtrap(ε), do not vary rapidly enough with
mean energy.

Figure 3 plots both the drift velocity W and mean energy
ε as functions of the applied electric field E for a situation
in which NDC arises. Previous studies [32,37] found that,
for inelastic processes, the signature of NDC is a rapidly
increasing mean energy. Interestingly, the opposite is true in
the example considered for our model, with the mean energy
plateauing when NDC occurs. This contrast can be understood
by considering the frequency that defines the mobility in
each case. For NDC to occur, this frequency must increase
sufficiently quickly with applied field. In the referenced studies
this frequency increases over a range of energies, causing
the mean energy to increase rapidly through this range when
NDC occurs. However, in our example in Fig. 3, the effective
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frequency increases rapidly at a particular energy, causing the
mean energy to plateau at this energy during the NDC regime.

VI. DIFFUSION: GENERALIZED EINSTEIN RELATIONS
AND ANISOTROPY

In this section, we form a generalization of the classical
Einstein relation between diffusivity D and temperature T
tensors [38]:

D
K

= kBT
e

, (85)

for the phase-space model described by Eq. (1). To do this, we
make use of Fick’s law:

〈v〉 ≈ W − D · 1

n

∂n

∂r
. (86)

The use of Fick’s law here is justified in [16], where it is shown
that velocity averages can be written in the weak-gradient
hydrodynamic regime as a density gradient expansion:

〈ψ〉 = 〈ψ〉(0) + 〈ψ〉(1) · 1

n

∂n

∂r
+ 〈ψ〉(2) :

1

n

∂2n

∂r∂r
+ · · · .

(87)

To find an expression for the diffusion coefficient, we must
apply density gradient expansions to all average quantities in
the momentum and energy balance equations (24) and (25).
For the mean energy we have, to first spatial order [16],

〈ε〉 ≈ ε + γ · 1

n

∂n

∂r
, (88)

where γ is the energy gradient parameter. Using the density
gradient expansions of average velocity and energy, Eqs. (86)
and (88), we can determine the following density gradient
expansions valid for an arbitrary frequency ν(ε):

〈ν(ε)〉 ≈ ν(ε) + ν ′(ε)γ · 1

n

∂n

∂r
, (89)

〈vν(ε)〉 ≈ Wν(ε) + [ν ′(ε)γ W − ν(ε)D] · 1

n

∂n

∂r
, (90)

〈εν(ε)〉 ≈ εν(ε) + [ν(ε) + εν ′(ε)]γ · 1

n

∂n

∂r
. (91)

Lastly, we also perform the density gradient expansion of the
concentration of particles leaving traps:

�(t) ∗ n(t,r) ≈ Rn + R(1) · ∂n

∂r
, (92)

where R is defined by Eq. (41) as the steady-state ratio between
the number of particles leaving and entering traps, and R(1) is a
vector that has a component due to the energy dependence of R

and an intrinsic component present even for constant process
rates, as was found in Eq. (75) of [16]:

R(1) ≡ R′(ε)γ + Rτ

1 + νtrap(ε)Rτ
W, (93)

where we define an average time

τ ≡ 1

R

∫ ∞

0
dt �(t)e[ν(free)

loss (ε)+νtrap(ε)(1−R)]t t, (94)

which coincides with the mean trapping time when the free
and trapped particle recombination rates coincide, ν

(free)
loss (ε) =

ν
(trap)
loss .

The weak-gradient hydrodynamic regime balance equa-
tions can now be considered to first spatial order by applying
all of the above density gradient expansions. Doing so and
equating first-order terms yields

kBT
m

= νeff(ε)D − ν ′
eff(ε)γ W − νtrap(ε)Rτ

1 + νtrap(ε)Rτ
WW,

(95)

− Q
νeff(ε)

=
[

1 − 3

2
kBT ′

eff(ε)

]
γ + 2mW · D

+3

2
kB(Tcoll − Tdetrap)ωcoll(ε)ωdetrap(ε)

Rτ

1 + νtrap(ε)Rτ
W,

(96)

where the temperature T and heat flux Q are defined in terms
of the peculiar velocity V ≡ v − W as

kBT ≡ m〈VV〉(0), (97)

Q ≡ 1
2m〈V 2V〉(0). (98)

By writing the above system of equations in terms of
components of diffusivity and temperature perpendicular and
parallel to the field,

D ≡ D⊥(I − ÊÊ) + D‖ÊÊ, (99)

T ≡ T⊥(I − ÊÊ) + T‖ÊÊ, (100)

and solving for each component of diffusivity separately yields
the generalized Einstein relations

D⊥ = kBT⊥
mνeff(ε)

, (101)

D‖ =
kBT‖ + mW 2 νtrap(ε)Rτ

1+νtrap(ε)Rτ
− [

Q

W
+ 3

2kB(Tcoll − Tdetrap) νcoll(ε)
νeff (ε)

νtrap(ε)Rτ

1+νtrap(ε)Rτ

]
mW 2

1− 3
2 kBT ′

eff (ε)
ν ′

eff (ε)
νeff (ε)

mνeff(ε)
(
1 + 2mW 2

1− 3
2 kBT ′

eff (ε)
ν ′

eff (ε)
νeff (ε)

) . (102)

Using the zeroth-order mobility and Wannier energy relation
derived in Sec. V A 1, we find the identity

d ln K
d ln E

1 + d ln K
d ln E

≡ − 2mW 2

1 − 3
2kBT ′

eff(ε)

ν ′
eff(ε)

νeff(ε)
, (103)

which allows the above generalized Einstein relations to be
written in terms of the field dependence of the mobility K:

D⊥
K

= kBT⊥
e

, (104)
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D‖
K

=
kBT‖ + mW 2 νtrap(ε)Rτ

1+νtrap(ε)Rτ

e

[
1 + (1 + �)

d ln K

d ln E

]
,

(105)

where

� ≡
Q + 3

2kB(Tcoll − Tdetrap)W νcoll(ε)
νeff (ε)

νtrap(ε)Rτ

1+νtrap(ε)Rτ

2kBT‖W + 2mW 3 νtrap(ε)Rτ

1+νtrap(ε)Rτ

. (106)

We can see that the perpendicular generalized Einstein relation
coincides with the classical Einstein relation (85) and that
the parallel one deviates from it, highlighting the anisotropic
nature of diffusion. In the case where there is no trapping,
νtrap(ε) = 0, the above parallel Einstein relation reduces to

D‖
K

= kBT‖
e

[
1 + (1 + �)

d ln K

d ln E

]
, (107)

with

� ≡ Q

2kBT‖W
, (108)

which coincides with the well-known gas-phase results
[31,32]. The deviation of this collision-only generalized
Einstein relation (107) from the classical Einstein relation (85)
is due entirely to the energy dependence of the process rates.
Interestingly, this is not the case when trapping is considered,
as choosing constant process rates for the generalized Einstein
relation (105) results in a parallel diffusion coefficient that still
has some enhancement:

D‖
K

=
kBT‖ + mW 2 νtrapRτ

1+νtrapRτ

e
. (109)

This anisotropy is to be expected as, rather than moving with
the applied field, some particles become localized in traps only
to detrap later to contribute to the spread of free particles.

VII. CONSEQUENCES OF FRACTIONAL TRANSPORT

In our previous works [16,34] it was shown that, for
certain choices of the trapping time distribution φ(t), the
phase-space model defined in Sec. II can be described by a
diffusion equation with a time derivative of noninteger order.
Specifically, given an effective trapping time distribution with
a heavy tail of the form

�(t) ∼ t−(1+α), (110)

where 0 < α < 1, the phase-space model (1) can be described
by a Caputo time-fractional diffusion equation of order α

[16]. Here, the quantity α describes how severe traps are,
with smaller values of α corresponding to longer-lived traps.
Long-lived traps, as described by trapping time distributions
of the form of Eq. (110), are necessary for fractional transport
to occur. Indeed, such heavy-tailed distributions have a mean
trapping time that diverges:∫ ∞

0
dt �(t)t −→ ∞. (111)

However, it should be noted that to ensure transport
is fractional there must be no trap-based recombination,
ν

(trap)
loss = 0, as such losses would cause trapped states to end

prematurely and cause the above mean trapping time to
converge.

In this section, we explore consequences of fractional
transport on the results derived in the earlier sections.

A. Time-of-flight current transients for fractional transport

Plotting the current in a time-of-flight experiment versus
time takes on a signature form when transport is dispersive.
That is, two power-law regimes arise the exponents of which
sum to −2. Specifically, for a trapping time distribution
of the asymptotic form of Eq. (110), these exponents are
−(1 − α) and −(1 + α) [2]. This signature has been observed
experimentally in a variety of physical systems, including
charge-carrier transport in amorphous semiconductors [2,39]
and electron transport in liquid neon [6].

As was done in Fig. 2 for normal transport, Fig. 4 explores
the effect that varying free and trapped particle recombination
rates has on time-of-flight current transients by plotting the
current given by Eq. (16) for dispersive transport. For this, we
have chosen to use the heavy-tailed trapping time distribution
derived in [34]:

φ(t) = αν0(ν0t)
−α−1γ (α + 1,ν0t), (112)

where γ (a,z) ≡ ∫ z

0 dζ ζ a−1e−ζ is the lower incomplete
Gamma function and ν0 is a frequency characterizing the
rate of escape from traps. In this case, the trap severity has
a physical interpretation as the ratio α ≡ T/Tc, where T is
the temperature and Tc is a characteristic temperature that
describes the width of the density of states. In Fig. 4 we
use the same system of units as Fig. 2 and all the same
relevant parameters, except for the trapping frequency which
we increase to νtrapttr = 104. The new parameters that we must
specify here are chosen as α = 1/2 and ν0ttr = 5 × 105.

In Fig. 4, the recombination-free current transient is
included in black as a reference. The most notable aspects
of this curve are the two power-law regimes indicative of
dispersive transport. The first power-law regime is analogous
to the plateau in Fig. 2, as we have trapping and detrapping
simultaneously and contrarily affecting the current. However,
unlike Fig. 2, detrapping is such a rare event that we never reach
a transient equilibrium and the current decreases overall. The
second power-law regime is analogous to the rapid drop in
current seen in Fig. 2 after almost all free particles have been
extracted. Here we actually have a slower decrease in current
as, unlike Fig. 2, traps are so long lived that detrapping events
continue to contribute to the current, even at very late times.

Figure 4(a) considers an increasing free particle recombi-
nation rate, ν

(free)
loss . Notably, as the free particle recombination

rate increases, the first power-law regime vanishes. In effect,
the large recombination rate of free particles causes an earlier
emergence of the second power-law regime that occurs when
most free particles have been extracted. Thus, it is also possible
to conclude the existence of dispersive transport from a
time-of-flight current transient with a single power-law regime
at late times.

Figure 4(b) considers an increasing trapped particle re-
combination rate, ν

(trap)
loss . This subplot illustrates the necessity

of there to be no trap-based recombination for transport to
be dispersive, as even a small amount of trapped particle
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FIG. 4. The impact of free and trapped particle recombination on
current transients for an ideal time-of-flight experiment as modeled by
Eq. (16) for the case of dispersive transport. Nondimensionalization
has been performed using the material thickness L, trap-free transit
time ttr ≡ L/W , and initial current j (0) = eN (0)/ttr. For these
plots we define the diffusion coefficient Dttr/L

2 = 0.02, the initial
impulse location x0/L = 1/3, and the trapping rate νtrapttr = 104. For
dispersive transport to occur we have chosen to describe trapping
times by the heavy-tailed distribution (112) with a trap severity of
α = 1/2. This corresponds specifically to the distribution φ(t) =
1
2t

(
√

π

2
erf

√
ν0 t√

ν0 t
− e−ν0 t ), where we have chosen ν0ttr = 5 × 105. The

exponents of the power-law regimes are indicated with arrows. Such
regimes, especially at late times, can be indicative of dispersive
transport.

losses causes the second power-law regime to vanish. We
observe that the first power-law regime does not always vanish
completely and so it is important to note that the presence of a
single power-law regime at intermediate times does not imply
dispersive transport.

B. Ratio of particle detrapping to trapping, R,
for fractional transport

All of the results of the earlier sections depend in some
way on the steady-state ratio between particles leaving and
entering traps, R, defined explicitly in Eq. (32) or implicitly

as given by the integral in Eq. (41). Unfortunately, the latter
integral definition is not expected to converge when fractional
transport is considered due to the asymptotic power-law form
(110) of the effective waiting time distribution. In this case,
we have the alternative definition

R ≡ 1 + �νloss

νtrap
, (113)

valid irrespective of the chosen heavy-tailed trapping time
distribution. This definition provides an extension to the list of
R values in Appendix A of [16] for fractional transport.

C. Fractional Einstein relations

The generalized Einstein relation (105) for diffusivity in
the direction of the field can be simplified when transport is
fractional in nature. Here, as the mean trapping time diverges,
the average time τ defined by Eq. (94) also diverges, resulting
in the fractional Einstein relation

D‖
K

= kBT‖ + mW 2

e

[
1 + (1 + �)

d ln K

d ln E

]
, (114)

with

� ≡
Q + 3

2kB(Tcoll − Tdetrap)W νcoll(ε)
νeff (ε)

2kBT‖W + 2mW 3
. (115)

This fractional Einstein relation is valid for any trapping time
distribution with the asymptotic power-law form of Eq. (110).

VIII. CONCLUSION

We have explored a generalized phase-space model that
considers collision, trapping, detrapping, and recombination
processes, all of which act selectively according to particle
energy. We form balance equations (23)–(25) describing the
conservation and transport of particle number, momentum, and
energy, and use these balance equations to form expressions
for the particle mobility, Eqs. (43) and (53), and for the average
particle energy in the form of Wannier energy relations (44) and
(54). These Wannier energy relations were then used to provide
conditions for particle heating or cooling due to collisions
or trapping, Eq. (62), and recombination, Eqs. (74) and
(78). Notably, recombination heating and cooling was found
to occur even when particles recombined indiscriminate of
energy, in contrast to the case where recombination occurs only
in the delocalized states. Transport via combined localized and
delocalized states was shown to produce negative differential
conductivity under certain conditions (81), and the impact
of scattering, trapping and detrapping, and recombination on
the anisotropic nature of diffusion was expressed through
the development of the generalized Einstein relations (104)
and (105). Lastly, fractional transport analogs of the afore-
mentioned results were explored by using a trapping time
distribution with a heavy tail of the form of Eq. (110).

For direct application of this model, it is necessary to
have reasonable inputs for the trapping frequency, νtrap, and
the trapping time distribution, φ(t). Some progress has been
made already for organic materials where the trapping time
distribution can be calculated from the density of existing
trapped states [34], and also for dense gases and liquids, where
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trapped states are formed by the electron itself and the trapping
time distribution is dependent on the scattering, fluctuation
profiles, and subsequent fluid bubble evolution [40]. Other
investigations of trapping also exist in the literature [41–43],
including free energy changes and solvation time scales, but
none of these directly produces an energy-dependent trapping
frequency or trapping time distribution. Presently, the focus of
our attention is on the ab initio calculation of energy-dependent
trapping frequencies and waiting time distributions in liquids
and dense gases, as well as the simulation of charge carrier
transport in two-dimensional organic devices, including those
with long-lived traps where transport is dispersive.
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APPENDIX: APPROXIMATING HIGHER-ORDER
VELOCITY MOMENTS

In Sec. V A 2, we use first-order momentum transfer theory
to obtain expressions for the drift velocity, Eq. (53), and
mean energy, Eq. (54), of charged particles defined by the
generalized Boltzmann equation (1). These velocity moments
are each expressed in terms of the higher-order velocity
moments of energy flux ξ ≡ 〈εv〉(0) and mean squared energy
〈ε2〉(0)

. Here, we use zeroth-order momentum transfer theory
to approximate these higher-order moments by using the
lower-order ones.

In our previous work [16], we consider constant process
rates in the Boltzmann equation (1). This is functionally equiv-
alent to the case of zeroth-order momentum transfer theory, as
defined in Eq. (34). In Eq. (80) of [16] we write the solution
of the Boltzmann equation as a Chapman-Enskog expansion
in Fourier-transformed velocity space. By considering the

first term of this expansion, we find an approximation to the
solution that is valid near the steady, spatially uniform state:

f (t,r,v) ≈ n(t,r)[ωcoll(ε)ŵ(αcoll,v) + ωtrap(ε)ŵ(αdetrap,v)],

(A1)

where the convex combination weights ω(ε) are defined in
terms of collision and trapping frequencies by Eqs. (39)
and (40). Here, the separate processes of collision scattering
and detrapping have resulted in a solution containing non-
Maxwellian velocity distributions of the form

ŵ(α,v) ≡ w(α,v)

√
π√

2αW
erfcx

(
1 − αv · αW√

2αW

)
, (A2)

where w(α,v) is the Maxwellian velocity distribution defined
by Eq. (4), W is the drift velocity from zeroth-order momentum
transfer theory, defined in Eq. (40), and the scaled complemen-
tary error function is defined as erfcx(z) ≡ 2√

π

∫ ∞
z

dζ ez2−ζ 2
.

As expected, taking velocity moments of this solution
(A1) reproduces the zeroth-order momentum transfer theory
expressions for drift velocity W, Eq. (43), and mean energy
ε, Eq. (44). In the same vein, we can find approximations
for higher-order velocity moments written in terms of these
lower-order moments, W and ε. For energy flux we find

ξ ≈ (
5
3ε + 4

3mW 2
)
W, (A3)

and for mean squared energy

〈ε2〉(0) ≈ 5
3

[
ωcoll(ε)ε2

coll + ωtrap(ε)ε2
detrap

] + 13
3 (mW 2)2,

(A4)

which is written in terms of the separate mean energies of
w̃(αcoll,v) and w̃(αdetrap,v), given, respectively, as

εcoll ≡ 3
2kBTcoll + mW 2, (A5)

εdetrap ≡ 3
2kBTdetrap + mW 2. (A6)
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