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Quantum corrections of the truncated Wigner approximation applied to an exciton transport model
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We modify the path integral representation of exciton transport in open quantum systems such that an exact
description of the quantum fluctuations around the classical evolution of the system is possible. As a consequence,
the time evolution of the system observables is obtained by calculating the average of a stochastic difference
equation which is weighted with a product of pseudoprobability density functions. From the exact equation of
motion one can clearly identify the terms that are also present if we apply the truncated Wigner approximation.
This description of the problem is used as a basis for the derivation of a new approximation, whose validity goes
beyond the truncated Wigner approximation. To demonstrate this we apply the formalism to a donor-acceptor
transport model.
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I. INTRODUCTION

The exciton transport in large networks that are coupled
to some environment is still a topic that attracts attention
because of the experimental results from the last decade.
Ultrafast nonlinear spectroscopy used to probe the energy
transfer in Fenna-Matthews-Olson complexes has revealed
strong vibrational coherences of multiple pigments that persist
at much larger times scales than initially expected [1–3].
This has opened a discussion on the question whether or not
these coherences have a significant impact on the efficiency of
transport processes.

To study theoretically possible quantum effects that are re-
sponsible for efficient transport properties of a given network,
one has to pay special attention to the way how the effect
of the environment on the system is modeled. The chosen
description has to be simple enough to lead to an efficient
and fast scheme for the simulation of different realizations of
the network, and it has to be able to take into account the
most important effects of the environment on the system. For
example, one can construct a time local equation for the system
density matrix where the effects of the environment, like
dephasing, are described by Lindblad operators. To take into
account the non-Markovian effects arising from the interaction
between the system and the environment we have to model
the latter as an infinitely large set of harmonic oscillators
that are linearly coupled to the system. These new degrees
of freedom can be integrated out exactly from the problem,
which makes the effective action of the system nonquadratic
in the system fields and also time nonlocal. This description of
the problem requires the use of advanced numerical methods
like the hierarchical equations of motion (HEOM) technique
[4–9], the quasiadiabatic propagator path integral method
[10–12], the multilayer multiconfiguration time-dependent
Hartree approach [13], the density matrix renormalization
group method [14], and other methods [15–17], which in most
cases are numerically expensive.

We are interested in approximate methods, where one can
find a good compromise between the accuracy of the results
and the applied numerical effort. One of the methods, whose
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complexity scales linearly with the size of the network and
thus can be preferred for the case of working with large
networks, is the truncated Wigner approximation (TWA). In
this approximation one neglects some of the nonquadratic
terms in the effective action. This approximation is often
applied to describe the dynamics of ultracold atomic gases
[18–25] and to explain some experimental results [26]. Its
validity for closed systems at short time scales was studied in
Ref. [27]. Its ability to reproduce the non-Gaussian statistics of
the single-mode anharmonic oscillator was shown in Ref. [28],
and its applicability to the calculation of multitime correlation
functions was studied in Ref. [29]. Relying on these results the
application of the approach to open quantum systems was also
made in Ref. [30], assuming that the effect of the environment,
expressed mainly in the form of additional noise, will wash out
all quantum scattering processes which occur at long times.

In the following, a different two-step approximation that
extends beyond the TWA will be derived for the special
case of working with a Frenkel exciton Hamiltonian. In the
first step, similarly to the TWA, some of the variables in
the corresponding path integral representation of the problem
will be analytically integrated out, and the integration of the
remaining set of variables in the path integral will be equivalent
to solving an equation of motion of these variables. We will do
the analytic integration without neglecting any terms from the
action, but the price that we have to pay is the introduction of a
set of pseudoprobability density functions in the path integral
representation of the problem. From the obtained equations
of motion we can clearly identify the contributions that were
also present in the TWA as well as the new terms. Since this
representation of the problem is numerically expensive, in the
second step we adopt a numerically applicable approximation
that extends beyond the TWA for the case of preparing the
system initially in the single exciton manifold. We will refer to
it as the corrected truncated Wigner approximation (CTWA).
The ability of both approximations to reproduce the exact
system dynamics will be studied, and we will see that both
approximations reproduce exactly the short time behavior of
the system. In the limit of weak couplings the CTWA can also
extend this range to longer time scales.

The paper is structured as follows. In Sec. II A we introduce
the system of interest and its path integral representation, in
Sec. II B the Wigner formalism is briefly described, and in
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Sec. II C a mapping procedure is presented, which makes the
action local in time at the cost of introducing integrals over
new variables. This step is necessary if we want to integrate
out exactly the fields of the path integral representation of
the system. In Sec. II D the TWA is briefly explained, and
the corresponding stochastic equation for the semiclassical
description of our problem is derived. It will be used later
for comparison with the equation obtained from CTWA. An
exact stochastic equation, which takes all terms into account
that have been neglected in the TWA, is derived in Sec. III,
and a numerically applicable approximation of this equation
is derived in Sec. IV. The accuracy of the new approximation
is tested in Sec. V for a donor-acceptor transport model. The
paper concludes with a summary in Sec. VI.

II. THEORY

A. Model system

We consider a system (S) composed ofN sites, each of them
being linearly coupled to a bath (B) of harmonic oscillators.
The corresponding Hamiltonian is given by

Ĥ = ĤS + ĤB,SB, (1)

ĤS =
N∑

n,n′=1

hnn′ â
†
nân′ , (2)

ĤB,SB =
N∑

n=1

∑
k

[ωnkb̂
†
nkb̂nk + λnk(b̂†nk + b̂nk)â†

nân], (3)

where â
†
n,b̂

†
nk create an excitation at the nth site of energy hnn

or in the kth bath mode of energy ωnk that is coupled to the
nth site. The initial state of the total system is of the form

ρ̂tot = ρ̂S ⊗ ρ̂
eq

B , (4)

ρ̂
eq

B =
N∏

n=1

∏
k

exp[−βωnkb̂
†
nkb̂nk]/N, (5)

where ρ̂S and ρ̂
eq

B are the density matrix of the system and
the equilibrium density matrix of the bath, β = 1/(kBT ), T

is the temperature, and N is a normalization constant. We
assume that the initial state of the system ρ̂S lies in the
single exciton subspace. Since the Hamiltonian (1) conserves
the total number of excitations, it reduces to the Frenkel
exciton Hamiltonian [31]. Since we work in the single exciton
subspace we have the freedom to choose the operators â

†
j ,âj

to be bosonic or fermionic. In the following we assume that
they are bosonic.

We are interested in the path integral representation of
the Keldysh partition function of the problem [32]. After
analytically integrating out the bath degrees of freedom the
expression has the following form:

Z =
∫

D[a]eiSS

N∏
n=1

eiSn
B,SB , (6)

where iSS originates from the system Hamiltonian ĤS and
iSn

B,SB describes the effect of the nth bath on the system. They

are given by [4–7,33,34]

iSS =
N∑

n,n′=1

i

∫ t

0
dτ a∗T

n (τ )(iδnn′∂τ − hnn′)σzan′ (τ ), (7)

an(t) = [af
n (t),ab

n(t)
]T

, (8)

iSn
B,SB = − 1

π

∫ t

0
dτ

∫ τ

0
dτ ′n×

n (τ )n×
n (τ ′)Fn(τ − τ ′)

+ i

π

∫ t

0
dτ

∫ τ

0
dτ ′n×

n (τ )no
n(τ ′)Dn(τ − τ ′), (9)

n×
n = af ∗

n af
n − ab∗

n ab
n, (10)

no
n = af ∗

n af
n + ab∗

n ab
n, (11)

where a
f
n and ab

n are the fields lying on the forward and
backward part of the Keldysh contour and σz is the Pauli z

matrix. The noise (F) and dissipation (D) kernels are given by

Fn(t) =
∫

dωJn(ω) coth[ω/(2T )] cos(ωt), (12)

Dn(t) =
∫

dωJn(ω) sin(ωt), (13)

Jn(ω) =
∑

k

πλ2
nkδ(ω − ωnk), (14)

where Jn(ω) is the spectral density.

B. Wigner formalism

We can express the expectation value of some system
operator Ô in the following path integral form:

trS[Ôρ̂(t)] =
∫

D[ψ,η]OW (ψ∗
t ,ψ t )e

iSρW (ψ∗
0,ψ0), (15)

D[ψ,η] =
∏
τ

N∏
n=1

d�ψn,τ d�ψn,τ d�ηn,τ d�ηn,τ

π2
, (16)

where ψn and ηn are the quantum and classical fields which
are obtained from the variable transformation

af/b
n = ψn ± 1

2ηn (17)

and S = SS +∑n Sn
B,SB . The iSn

B,SB term is defined in (9)
where n×

n = ψ∗
nηn + η∗

nψn, no
n = 2|ψn|2 + 1

2 |ηn|2, and iSS is
given by

iSS = i

∫
dτ [ηT (τ )(−i∂τ − h∗)ψ∗(τ )

+ η∗T (τ )(i∂τ − h)ψ(τ )], (18)

f (t) = [f1(t) · · · fN (t)]T , f ∈ {ψ,η}, (19)

where the elements hnn′ of the matrix h are given in (2).
Equation (18) can be obtained from iSS , defined in (7), by
applying the variable transformation given in (17) and then
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using the identity∫ t

0
dτψ∗T (τ )∂τη(τ )

=−
∫ t

0
dτηT (τ )∂τψ

∗(τ ) + ψ∗T (τ )η(τ )|t0, (20)

and neglecting the boundary terms. The Wigner distribution
function ρW and Weyl symbol of the operator OW are defined
as follows:

ρW (ψ∗,ψ) =
N∏

n=1

∫
d�ηn d�ηn

2π2
e− 1

4 |ηn|2−|ψn|2+ 1
2 (ψ∗

n ηn−η∗
nψn)

×
〈
ψ + 1

2
η

∣∣∣∣ρ̂S

∣∣∣∣ψ − 1

2
η

〉
, (21)

OW (ψ,ψ∗) =
N∏

n=1

∫
d�ηn d�ηn

2π

× e− 1
2 |ηn|2

〈
ψ − 1

2
η

∣∣∣∣Ô
∣∣∣∣ψ + 1

2
η

〉
, (22)

where the operator Ô is in its normal ordered form and
|ψ ± 1

2η〉 is a coherent state with the property ân|ψ ± 1
2η〉 =

(ψn ± 1
2ηn)|ψ ± 1

2η〉 and 〈ψ |ψ ′〉 = exp[
∑N

n=1 ψ∗
nψ ′

n]. The
same expression can be obtained if we represent the operator
Ô in terms of symmetrized polynomials of â

†
n and of ân

and then carry out the replacement (â†
n,ân) → (ψ∗

n ,ψn). The
Wigner transform ρW of the density matrix is, in general,
a pseudoprobability density function; i.e., it is normalized to
one, but it can take negative values. For the practical calculation
of the path integral one can replace it with the following
expression:

ρW (ψ∗,ψ) = N (ρW )sgn(ρW ,ψ∗,ψ)ρabs
W (ψ∗,ψ), (23)

ρabs
W (ψ∗,ψ) = |ρW (ψ∗,ψ)|/N(ρW ), (24)

N (ρW ) =
N∏

n=1

∫
d�ψn d�ψn|ρW (ψ∗,ψ)|, (25)

sgn(ρW ,ψ∗,ψ) =
{

1 if ρW (ψ∗,ψ) � 0
−1 if ρW (ψ∗,ψ) < 0 . (26)

In this case ρabs
W is a real probability density function. The

derivation of Eqs. (15), (16), (18), (21), and (22) is shown in
Ref. [27].

If we neglect the contribution iSB,SB from the environment,
we can integrate out the η variables by use of the equation∫ ∞

−∞

dϕ

π
ei2ϕf = δ(f ), f ∈ R (27)

for ϕ ∈ {�η,�η}. If we keep the ψn,0 variables fixed, the set of
the Dirac delta function will define a unique path for the time
evolution of the ψn,τ (τ > 0) variables. The path is described
by the following equation:

dψ(t) = −ihψ(t) dt. (28)

A single contribution to the observable tr[Ôρ̂(t)] is given by

OW (ψ∗(t),ψ(t))N (ρW )sgn(ρW ,ψ∗
0,ψ0). (29)

To calculate the expectation value of tr[Ôρ̂(t)] we have to
sample ψn,0 from ρabs

W and calculate the mean value of (29). To
take into account the effect of the environment, i.e., of iSB,SB ,
we have to apply to it additional transformations which will
be explained in the next subsection.

C. New mapping of the time nonlocal parts of the action
to time local expressions

We will map the time nonlocal part of the action to a time
local expression at the cost of introducing integrals over an
additional set of variables which is a special realization of the
idea proposed in Ref. [35]. To apply this mapping we assume
that the noise (F) and dissipation kernel (D) of the action
can always be represented as a sum of exponentially decaying
functions:

1

π
D(t) =

∑
l∈L

αD
l eλl t , (30)

1

π
F(t) =

∑
l∈L

αF
l eλl t +

∑
l∈L̃

αF
l eλl t , �[λl] < 0, (31)

where all αD
l ,αF

l constants are nonzero. It is important that

the set of exponentially decaying functions in D is entirely
included in the corresponding set of exponentially decaying
functions in F . This condition is automatically fulfilled if
we assume that the spectral density is of the form J (ω) =
�(ω)J ′(ω) with J ′(ω) an odd function and with simple poles
which do not lie on the real axis. Then by use of the residual
theorem one can show that the set of poles in the upper half
plane of J ′(ω) is equal to {−iλl}l∈L and the set of poles of
coth(ω/(2T )) is equal to {−iλl}l∈L̃.

The mapping of iSn
B,SB given in (9) to a time-local action

iSn,T L
B,SB is defined as follows (we will denote the time arguments

of the variables as subscripts):

exp
[
iSn

B,SB

] =
∫

D[xn]D[φn]D[ϕn] exp
[
iS

n,T L
B,SB

]
ρn

�

(
φn

0

)
,

(32)

iS
n,T L
B,SB =

∑
τ

i2ϕnT
τ

(−φn
τ+�t + φn

τ + �tAnφn
τ + �tvnno

n,τ

+ √
�tBnxn

τ

)+ i
∑

τ

�tn×
n,τε

nT φn
τ , (33)

∫
D[ϕn] =

∏
τ

Mn∏
m=1

∫ ∞

−∞

dϕn
m,τ

π
, (34)

∫
D[φn] =

∏
τ

Mn∏
m=1

∫ ∞

−∞
dφn

m,τ , (35)

∫
D[xn] =

∏
τ

Mn∏
m=1

∫ ∞

−∞
dxn

m,τ fX

(
xn

m,τ

)
, (36)
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fX(x) = 1√
2π

e− 1
2 x2

,

Bn = diag
[
bn

1 , . . . ,b
n
Mn

]
, bn

1 , . . . ,b
n
Mn

∈ R�0, (37)

An ∈ RMn×Mn , ϕn
τ ,φ

n
τ ,v

n,xn,εn ∈ RMn ,

The integer Mn is equal or larger than the number of elements

in L ∪ L̃, and the An matrix is chosen such that the set of its
eigenvalues coincides with {λl}l∈L∪L̃

(some eigenvalues may
appear more than once). The initial distribution function of the
φ fields is given by

ρn
�(φn) = exp

[− 1
2φnT (�n)−1φn

]
√

(2π )Mndet(�n)
, (38)

�n =
∫ ∞

0
dτ exp[Anτ ]BnBnT exp[AnT τ ]. (39)

The covariance matrix �n is well defined since all eigenvalues
of A have a negative real part. The exact values of vn, εn, Bn,
An are determined after integrating out the xn, φn, ϕn variables
in (32) and comparing the result with (9). Since the number of
free variables is larger than the number of equations that have
to be fulfilled, we have some freedom in the choice of vn, εn,
Bn, An. All details about the proof of (32) and (33) are given
in Appendix A, where we have assumed that the algebraric
multiplicity of every eigenvalue of the An matrix is equal to
one. In this case the values of vn, εn, Bn, An are chosen such
that the equation

εnT eAntvn = 1

π
Dn(t) (40)

is fulfilled. In addition, the constants have to be chosen such
that the part of the expression

m(t,t ′) t>t ′=
∫ t ′

0
dτεnT eAn(t−τ )BnBnT eAnT (t ′−τ )εn (41)

that depends on the difference (t − t ′) is equal to 1
π
Fn(t − t ′).

In the following we will also add the constraint that vn
m = 0 if

bn
m = 0, which is not a necessary condition for (32) to hold,

but it will be needed to show (54) and (55).
The ansatz that we have used in (32) and (33) originates

from the idea that different Hamiltonian operators of the
environment can produce the same effective action iSB,SB after
integrating out the environmental degrees of freedom. One of
the best known examples is the replacement of the Hamiltonian
of each of the N environments in (3) with the Hamiltonian of
a single harmonic oscillator (nuclear mode) that is coupled to
one of the sites of the system and to a Markovian bath which
is also composed of noninteracting harmonic oscillators [36].
If we integrate out the bath degrees of freedom from the path
integral expression of the problem but keep the nuclear modes,
then the contribution of the environment plus the nuclear mode
will have the same form as the right-hand side of (32). The φ

(ϕ) variables will correspond to the real or imaginary part of the
classical (quantum) variables of the nuclear mode. Similarly
to the η variables in (18), the ϕ variables can be integrated
out analytically by the use of (27), and the set of Dirac delta
functions will define a path for the time evolution of φn

t . The
x variables will be integrated by the use of Monte Carlo

methods, which effectively will make the equations for the
φ variables stochastic. The noise in these equations originates
from the Markovianity of the bath to which the nuclear mode
was coupled. Since the dimension of the new ϕn

t , φn
t , xn

t in (33)
can be larger than two, we can just assume that each site of
the system is coupled to more than one nuclear modes, where
the nuclear modes can be coupled to the same or to different
Markovian environments.

Finally, we have to mention that ρn
�(φ) can be interpreted

as the probability density function, where all nuclear modes
are in equilibrium with the rest of the environment for the case
that they are not coupled to the system. To demonstrate this
we can decouple the nuclear modes from the system in the
interval [−tR,0] (−tR < 0) by setting εn = vn = 0 in (33) and
let them evolve until they reach a steady state at t = 0. The
equation of motion for the φn

m,τ variables which is derived after
integrating out the ϕn

m,τ variables by using (27) is given by

φn
t+�t = φn

t + �tAnφn
t + √

�tBxn
t . (42)

The solution of this equation at t = 0 is given by

φn
0 = eAntRφn

−tR
+

∑
0�τ�−tR

e−AnτB
√

�txn
τ

→
∑
0�τ

e−AnτB
√

�txn
τ , (43)

where in the second line we have taken the limit −tR → −∞.
In the first (second) line the sums over τ is from −tR (−∞) to
0 by taking steps of length �t . By interpreting every xn

m,t as a
realization of a normally distributed random variable Xn

m,t ∼
N (0,1) it follows that the steady state solution is also a random
variable with zero mean and variance equal to

〈
φn

0φ
n∗T
0

〉 =∑
0�τ

e−AnτBnBnT e−AnT τ
�t, (44)

where we have used that 〈Xn
t XnT

t ′ 〉 = δt,t ′1. The last expression
is equal to the definition of the covariance matrix of the
multivariate probability density function ρn

� in (38), which
proves our statement.

D. Truncated Wigner approximation

We will conclude this section by giving the equations of
motion for the ψn,τ , φn

m,τ variables, which are obtained by
applying the TWA. For the current problem this approximation
is equivalent to neglecting the 1

2 |ηn|2 terms in no
n, defined in

(11), which appear in every Sn,T L
B,SB contribution to the action.

We can integrate out the ηn, ϕn
m,τ terms by the use of (27). If

we keep the variables xn
m,τ , φn

m,0, ψn,0 fixed, the set of Dirac
delta functions defines a unique path for the time evolution of
the ψn,τ and φn

m,τ variables, which is given by

ψ t+�t = ψ t − ih̃(t)ψ t�t, (45)

φn
t+�t = φn

t + Anφn
t �t + 2|ψn,t |2vn

�t + Bnxn
t

√
�t, (46)

h̃(t) = h − diag
[
ε1T φ1

t , . . . ,ε
NT φN

t

]
. (47)
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This is the Euler-Maruyama discretization of the following set
of stochastic equations:

dψ(t) = −ih̃(t)ψ(t) dt, (48)

dφn(t) = Anφn(t) dt + vn2|ψn(t)|2 dt + BndWn(t), (49)

Wn(t) = [Wn
1 (t), . . . ,Wn

Mn
(t)
]T

, (50)

where the set {Wn
m(t)} (n ∈ {1, . . . ,N }, m ∈ {1, . . . ,Mn}) is a

set of independent Wiener processes, which have the property
dWn

m(t)dWn′
m′(t) = dtδnn′δmm′ . To calculate the expectation

value of tr[Ôρ̂(t)] we have to sample the variables xn
m,τ from a

normal distribution N (0,1) and the variables φn
m,0, ψn,0 from

ρn
�, ρabs

W , defined in (38) and (24), and calculate the mean value
of (29).

III. STOCHASTIC EQUATION WITH
ALL QUANTUM CORRECTIONS

In this section we will analytically integrate all ϕ and η

variables from (15) without neglecting any terms in the action.
The idea is to make all terms in iSn

B,SB (n ∈ {1, . . . ,N })
to be linear in (ϕ,�η,�η) and also completely imaginary,
which will allow us to integrate them out via (27). To do this
we will introduce first a set of probability density functions
fR|X(r|x),f�(θ ):

f�(θ ) =
{

1/(2π ) if θ ∈ [0,2π ]
0 if θ /∈ [0,2π ] , (51)

fR|X(r|x) =
{∫∞

0 dρρre− 1
2 (ρ4+2ρ2x)J0(ρr) if r � 0

0 if r < 0
,

(52)

J0(x) =
∫ 2π

0

dε

2π
exp[−ix sin(ε)], (53)

where J0(x) is the Bessel function of first kind. They are
defined such that the following equation is true for every n ∈
{1, . . . ,N }:∫

D[xn]D[φn]D[ϕn] exp
[
iSn,T L

B,SB

]
=
∫

D[xn]D[φn]D[ϕn]D[θn]D[rn] exp
[
iS̃n,T L

B,SB

]
, (54)

iS̃n,T L
B,SB =

∑
τ

i2ϕnT
τ

(− φn
τ+�t + φn

τ + �tAnφn
τ

+ �tvn2|ψn,τ |2 + √
�tB̃nxn

τ

)+
∑

τ

i�tn×
n,τε

nT φn
τ

+
∑

τ

i2�

⎡
⎢⎢⎢⎣η∗

n,τ

Mn∑
m = 1
bn

m > 0

(∣∣vn
m

∣∣
2bn

m

)1/2

�χn
m,τ

⎤
⎥⎥⎥⎦. (55)

The sum in the last line of (55) is taken only over those
m ∈ {1, . . . ,Mn}, where bn

m > 0. The new differentials and

FIG. 1. Pseudo-probability density function fR|X(r|x) for
x = −1 (black solid), x = 0 (red dashed), x = −1 (blue dotted), and
x = 2 (magenta dash dotted). Inset: First moment of the probability
density function.

variables are defined as follows:

D[θn] =
∏
τ

Mn∏
m=1

dθn
m,τ f�

(
θn
m,τ

)
, (56)

D[rn] =
∏
τ

Mn∏
m=1

drn
m,τ fR|X

(
rn
m,τ

∣∣xn
m,τ

)
, (57)

�χn
m,t = (�t)1/4rn

m,t e
iθn

m,t /2, (58)

B̃n = diag
[− sgn

(
vn

1

)
bn

1 , . . . , − sgn
(
vn
Mn

)
bn
Mn

]
. (59)

The proof of (54) is given in Appendix B. Here we will only
point out that the right-hand side of (54) differs from the TWA,
applied to the left-hand side of the same equation, only by the
�χ term in iS̃

n,T L
B,SB . If we neglect the �χ term in the last line

of (55), then we can integrate out the θn
m,t , rn

m,t variables in the
path integral on the right-hand side of (54) since nothing will
depend on them. In addition, via the transformation xn

m,τ →
−sgn(vn

m)xn
m,τ at the right-hand side of (54), the D[xn] term

does not change, but the
√

�tB̃nxn
τ term in (55) transforms to√

�tBnxn
τ which proves our statement.

We have to note that fR|X is a pseudoprobability density
function, as shown in Fig. 1, and it can be replaced by the
following expression:

fR|X(r|x) = N (fR|X,x)sgn(fR|X,r,x)f abs
R|X(r|x), (60)

f abs
R|X(r|x) = |fR|X(r|x)|/N(fR|X,x), (61)

N (fR|X,x) =
∫

dr|fR|X(r|x)|, (62)

sgn(fR|X,r,x) =
{

1 if fR|X(r|x) � 0
−1 if fR|X(r|x) < 0 . (63)

With the formula (27) we can integrate out all ϕn
m,τ , �ηn,τ ,

�ηn,τ variables from the path integral representation of the
expectation value of the operator Ô. If we keep the variables
xn

m,τ , rn
m,τ , θn

m,τ , φn
m,0, ψn,0 fixed, the set of Dirac delta functions
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defines the following equation for the time evolution of
ψτ , φn

τ :

ψ t+�t = ψ t − ih̃(t)ψ t�t +
N∑

n=1

Mn∑
m=1

κnm
�χn

m,t , (64)

φn
t+�t = φn

t + Anφn
t �t + 2|ψn,t |2vn

�t + B̃nxn
t

√
�t, (65)

κnm =
⎡
⎣0 . . .

(∣∣vn
m

∣∣
2bn

m

)1/2

. . . 0

⎤
⎦

T

∈ RN , (66)

where only the nth element of the κnm vector is nonzero. The
last sum in (64) is taken only over those (n,m), where bn

m > 0.
Equations (45) and (46), obtained from the TWA, differ from
(64) and (65) only by the Bn matrix, which is replaced by
B̃n and by the absence of the term proportional to �χ . To
calculate the expectation value of the operator Ô we sample
the variables xn

m,τ , θn
m,τ , rn

m,τ , φn
m,0, ψn,0 from the probability

density functions fX, f�, f abs
R|X, ρn

�, ρabs
W given in (52), (51),

(61), (38), and (24) and calculate the mean value of

OW (ψ∗
0,ψ0)N (ρW )sgn(ρW ,ψ∗,ψ)

×
∏
τ

N∏
n=1

Mn∏
m=1

N
(
fR|X,xn

m,τ

)
sgn
(
fR|X,rn

m,τ ,x
n
m,τ

)
. (67)

Since all normalization constants N (fR|X,xn
m,τ ) are always

larger than one, it follows that their product will grow
exponentially in time. This growth has to be compensated
by the exponential decay of OW and/or by the alternating
sign of the product of all sign functions of every sampling
of the random variables. In both cases this will require an
exponential growth of the number of trajectories to obtain a
good approximation of the expectation value. An additional
problem comes from the �χ term in (64), because it is
proportional to (�t)1/4 and this requires the use of very small
time steps to obtain an accurate trajectory. Although being
practically inapplicable, this new representation of the problem
is a good starting point for the derivation of corrections that
go beyond the truncated Wigner approximation.

IV. CORRECTIONS OF THE TWA

To obtain an approximation that can be applied to the
calculation of practical problems, we have to find a way to
eliminate the pseudoprobability density function fR|X from
the path integral representation of tr[Ôρ̂(t)]. To do this we
take into account the fact that we are interested only in the
time evolution of the different elements of the density matrix.
Since the system lies in the single exciton subspace, the density
matrix and its elements are given by

ρ̂S =
∑
nn′

ρnn′ â†
n|0〉〈0|ân′ , (68)

ρnn′ = trS[â†
n′ ânρ̂S(t)]. (69)

The Weyl symbol of the â
†
n′ ân operator is equal to

OW (t) = ψn(t)ψ∗
n′(t) − δnn′/2. (70)

An equation of motion for ψn(t)ψ∗
n′(t) can be obtained if we

take the equation for ψ from (64) and derive from it the
equation for ψ∗T . Then we take the product of both equations
such that on the left-hand side of the equation we obtain the
matrix ψψ∗T . In the new equation we replace all polynomials
in �χ with their average over θ and r . Up to the fourth moment
the only nonvanishing expectation values are∫

dr dθfR|X(r|x)f�(θ )�χ�χ∗ = √
�tx, (71)∫

dr dθfR|X(r|x)f�(θ )(�χ�χ∗)2 = 2�t(x2 − 1). (72)

The last result can be explained by the properties of the f�

function and the phase exp[iθn
m,τ ], which leaves only those

expectation values to be nonzero, where every �χ is multiplied
with its complex conjugate. In this case the expression does
not depend on the θ variable. After taking the average over
all rn

m,τ , θn
m,τ variables, the equation of motion for the matrix

ψψ∗T has the following form:

ψ t+�tψ
∗T
t+�t = [1 − i�th̃(t)]ψ tψ

∗T
t [1 + i�th̃(t)]

+
N∑

n=1

Mn∑
m=1

κnmκnm∗T xn
m,t

√
�t. (73)

If we take the limit �t → 0 and neglect the terms proportional
to �ts (s > 1), the equation is equal to the Euler-Maruyama
discretization of the following stochastic equation:

d(ψψ∗T )(t) = [−ih̃(t),(ψψ∗T )(t)] dt

+
N∑

n=1

Mn∑
m=1

κnmκnm∗T dWn
m(t), (74)

dφn(t) = Anφn(t) dt + vn2(ψψ∗T )nn(t) dt + B̃ndWn(t),

(75)

where Wn(t) is defined in (50). A single realization of the
observable is obtained by sampling φn

m,0, ψn,0 from ρn
�,

ρabs
W and calculating the mean value of (29). An alternative

way to derive (74) and the possibility to calculate multitime
correlation functions within this approximation is given in
Appendix D.

If we neglect the second line of (74), we obtain again the
TWA, since (ψψ∗T )(t) has a solution of the form

(ψψ∗T )(t) = (T e−i
∫ t

0 h̃(τ ) dτ )(ψψ∗T )(0)(T †ei
∫ t

0 h̃(τ ) dτ ), (76)

which factorizes into a product of the solutions for ψ and ψ∗
from (48).

If we use the solution of (75), which is equal to (A3) after
replacing no(τ ) with 2(ψψ∗T )nn(τ ), in the definition of h̃(t) =
h − diag[ε1T φ1(t), . . . ,εNT φN (t)], then (74) transforms into
a differential equation with a memory kernel. This memory
kernel plays a crucial role for the effect of the new �χ -
dependent term on the evolution of the system. If the memory
term is absent, then the noise generated from the �χ terms will
not have any effect on the ψψ∗T matrix on average.

To end we mention that (74) preserves the trace of the ψψ∗T

matrix on average (and also the trace of ρ = 〈ψψ†〉 − 1/2).
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Since κnmκnm† is a diagonal matrix one can show by induction
that

tr
[
(ψψ∗T )(t)

] = tr[ψ0ψ
∗T
0 ] +

N∑
n=1

Mn∑
m=1

(∣∣vn
m

∣∣
2bn

m

)2∑
τ

√
�txn

m,τ ,

(77)

which is zero on average.

V. EXAMPLES

We consider the example of having a system ofN = 2 sites,
each of them being linearly coupled to an independent bath of
harmonic oscillators. The corresponding spectral densities will
be the same and are given by

J (ω) = J ′(ω)�(ω), (78)

J ′(ω) = 2a1ω
3 + 2[a1(γ 2 ∓ �2) + 2a2γ�]ω

[γ 2 ± �2 − ω2]2 + 4γ 2ω2
, (79)

where � is the Heaviside step function. Since J ′(ω) is odd,
we can use the residual theorem to calculate the noise and
dissipation kernels of the action iSn

B,SB (n = 1,2):

1

π
D(t) = [a1C(�t) + a2S(�t)]e−γ t , (80)

1

π
F(t) = 2T (a1fS + a2fA)C(�t)e−γ t

+ 2T (a2fS ∓ a1fA)S(�t)e−γ t

+
∞∑
l=1

2T iJ ′(iνl)e
−νl t , (81)

(C,S) =
{

(cos , sin)

(cosh , sinh)
, (82)

fS = γ

[
1

γ 2 ± �2
+

∞∑
l=1

2
γ 2 ± �2 − ν2

l(
γ 2 ± �2 − ν2

l

)2 ± 4ν2
l �

2

]
, (83)

fA = �

[
1

γ 2 ± �2
+

∞∑
l=1

2
γ 2 ± �2 + ν2

l(
γ 2 ± �2 − ν2

l

)2 ± 4ν2
l �

2

]
,

νl = 2πlT , �,γ,a1,a2 ∈ R, γ,� > 0. (84)

The (C(�t),S(�t)) functions are replaced with their upper
and lower definition, when we use the upper and lower sign of
±,∓ in the definition of J ′(ω). If we use the lower definition
of (C(t),S(t)), we have the additional constraint that γ > �.
Depending on the situation we will use the a′

1, a′
2 instead of

a1, a2. Both pairs of variables are given by

a1 = γ 2 ± �2

γ
a′

1, a2 = γ 2 ± �2

�
a′

2 (85)

and are related to the reorganization energy as follows:

∑
k

λ2
nk

ωnk

= a′
1 + a′

2, n ∈ {1, . . . ,N }. (86)

For simplicity we approximate coth( ω
2T

) ≈ 2T
ω

and neglect all
sums over the l index in (81), (83), and (84), which is justified

at high temperatures. In this case both functions F and D
can be decomposed as a sum of two exponentially decaying
functions with the exponents

λ1,2 =
{−γ ± i� for (C,S) = (cos , sin)

−γ ± � for (C,S) = (cosh , sinh)
. (87)

The time nonlocal part of the action iSn
B,SB , generated from

every one of the reservoirs, can be mapped to a time local
action in the same way as described in Sec. II C. Additional
information about the choice of An,εn,vn,Bn used in (32) and
(33) can be found in Appendix C.

We will assume that both spectral densities are equal, and
we will consider the two cases where a′

1 = 0 or � = 0. Both
spectral densities now have the following form:

J ′(ω) =
⎧⎨
⎩

a′
2

4(γ 2±�2)γω

(γ 2±�2−ω2)2+4γ 2ω2,
a′

1 = 0

a′
1

2γω

γ 2+ω2 , � = 0
. (88)

All parameters of the system will be given in units of the
difference between the energy levels of the donor and the
acceptor � = h11 − h22. The coupling between both sites is
set to h12/� = 0.4, and the temperature of the reservoirs is set
to T/� = 2, unless it is not mentioned explicitly. We assume
that the excitation is initially localized at the first site, which
produces the following Wigner distribution function:

ρW (ψ∗,ψ) =
N∏

n=1

ρn
W (ψ∗

n ,ψn), (89)

ρn
W (ψ∗

n ,ψn) =
{

2
π
e−2|ψn|2 (4ψ∗

nψn − 1) if n = 1
2
π
e−2|ψn|2 if n �= 1

. (90)

The pseudoprobability density function ρ1
W can be represented

as a product of ρ
1,abs
W , sgn(ρ1

W ,ψ∗
1 ,ψ1), N (ρ1

W ) in the same way
as explained in Sec. II B.

Information about the quality of the proposed approxi-
mation can be obtained from Figs. 2 and 3, where we have
compared our results with those from the TWA and with

FIG. 2. Population P1 of the first site for � = a′
2 = 0. Exact

solution (black dashed), TWA (red thick) and CTWA (blue thin).
Inset: Long-time behavior of the same observable.
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FIG. 3. Population P1 of the first site for a′
2/� = 0.1, a′

1/� = 0.
Left column: �/� = 0.1. Right column: γ /� = 1. Exact solution
(black dashed), TWA (red thick), and CTWA (blue thin). Inset: Long-
time behavior of the same observable.

the results obtained by the use of the HEOM method, which
will be referred to as the exact results. In all figures we plot
the population P1 of the first site. To understand why our
approximation works better in some regimes, we will look at
the elements of diag[ε1T φ1(t),ε2T φ2(t)] that are contained in
h̃(t), defined in (47). We can replace φn(t) with the solution of
(75), which is obtained from (A3) after replacing no(τ ) with
2|ψ(τ )|2. It follows that the diagonal matrix plays a role of
a memory term, whose elements are given by (the n index is
omitted)

εT φ(t) = εT

[
eAtφ(0) +

∫ t

0
eA(t−τ )v2|ψ(τ )|2 dτ

+
∫ t

0
eA(t−τ )BdW (τ )

]
(91)

= εT eAtφ(0) + 2a′
∫ t

0
g(t − τ )|ψ(τ )|2 dτ

+
√

a′
∫ t

0
g(t − τ )μdW1(τ ), (92)

where a′, μ, and g(t) are given by

a′ =
{
a′

2 a′
1 = 0

a′
1 � = 0

, (93)

μ =
{√

8T γ/(γ 2 ± �2) a′
1 = 0√

4T γ/γ 2 � = 0
, (94)

g(t) =
{
e−γ tS(�t)(γ 2 ± �2)/� a′

1 = 0

e−γ tγ � = 0
. (95)

The second term of (92) is obtained by making use of
the fact that the vectors v,ε are defined such that (40)
is fulfilled. The equivalence D(t)/π = a′g(t) can be seen
by a direct substitution of (85) and (80) into (91). The

proof of εT eAtBdW (t) = (a′)1/2g(t)μ,dW1(t) is given in
Appendix C.

We are mainly interested in the contributions to (92)
containing g(t) since they are responsible for the impact of
the κκ∗T -dependent terms on the time evolution of the system.
From the property

∫∞
0 g(τ ) dτ = 1 it follows that for the two

different spectral densities given in (88), the strength of the
memory kernel g(t) is the same, but the way the previous
values of ψ(t) and W (t) are taken into account is different.

The common feature of all cases, where the approximation
is accurate at large time scales, is that the weight of the g(t)
function is uniformly distributed over large time scales and
it does not change sign. The measure that defines if a time
interval is sufficiently large is determined by the time scale
τS = 1/hmax, where hmax is the maximum absolute value of the
matrix representation of the commutator H×

S : X �→ [h,X].
For our system Hamiltonian it follows that τS = 1/�.

If we consider the case where � = 0 for the spectral
densities of both environments, then the condition that g(t)
is uniformly distributed over a large time interval is equivalent
to τS � 1/γ ⇔ � � γ . This can be seen in Fig. 2, where an
increase of γ /� from 0.1 to 1 decreases the quality of the
approximation at large time scales (t� = 100).

If we consider the case a′
1 = 0 and (C,S) = (cos , sin) for

the spectral functions of both environments, then the condition
for g(t) is equivalent to hmax > γ > �, where the second
inequality comes from the restriction that g(t) does not have to
change sign over the τS time scale. The change of the quality of
the approximation by changing γ,� of both spectral densities
can be seen in Fig. 3. In the first (second) column of the figure
we see how an increase of γ (�) leads to a decrease of the
quality of the approximation because the condition hmax > γ

(γ > �) is violated.
The common feature of all figures is that our approximation

reproduces more accurate results at large time scales than the
TWA does as long as the condition for the form of the memory
kernel g(t) is fulfilled and the system bath coupling a′ is
sufficiently small. At larger couplings as well as for parameters
of the environment that violate the condition for the memory
kernel the quality of the approximation decreases, as is shown
in the second column of Fig. 2. Similarly to the TWA, the time
range of validity of our approximation increases by an increase
of the temperature.

To test the new approximation at low temperatures we have
considered again the case a′

1 = 0, (C,S) = (cos , sin). The time
evolution of the population of the donor site is plotted in
Fig. 4 for the same six cases as those considered in Fig. 3
but with temperature decreased from T/� = 2 to T/� = 0.2.
We see that the CTWA still behaves better than the TWA, but,
as expected, both approximations fail to describe the short
time behavior of the system accurately. The main reason is
that the relative weight between the temperature-dependent
noise kernel F(t) of the action that can always be taken
exactly into account by the use of stochastic methods, and the
temperature-independent dissipation kernelD(t) whose effects
are always approximated in the TWA and CTWA, decrease.
In this case the noise produced by F(t) is not strong enough
to overcompensate the effects from the dissipation kernel after
applying the CTWA.
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FIG. 4. Population P1 of the first site for a′
2/� = 0.1, a′

1/� = 0.
Left column: �/� = 0.1. Right column: γ /� = 1. Exact solution
(black dashed), TWA (red thick), and CTWA (blue thin). The
temperature is decreased from T/� = 2 (Fig. 3) to T/� = 0.2.

VI. SUMMARY

In this paper we have derived an alternative method to
describe the exciton transport in open quantum systems.
Instead of trying to derive an exact equation of motion for
the reduced density matrix of the system, ρ̂S , we have used
the fact that ρ̂S lies completely in the single exciton subspace,
which allowed us to represent the time evolution of every
nonzero element of ρ̂S as the expectation value of a system
operator, as shown in (68) and (69). This difference led also to
a change of the requirements for the form of the effective
action of the system that is obtained after applying some
stochastic unraveling approach to it. Instead of having to
derive a time-local action at the cost of introducing integrals
over new variables that can later be interpreted as Gaussian
random variables and trying to obtain a time-local stochastic
equation of motion for ρ̂S [35,37–39], we have derived an
action that is completely real and linear in the quantum fields
at the cost of introducing integrals over new variables that
are weighted with pseudoprobability density functions. Even
though in this case one can derive an exact equation of
motion for the classical variables, this method is numerically
expensive. The rapid increase of the number of trajectories
that are needed for the calculation of some observable origins
from the new pseudoprobability density functions, which can
modify the weight and the total sign of every contribution to
the observable.

To overcome this problem we have derived an approxi-
mation of the equation of motion of the classical variables,

where only some moments of the new variables weighted
with the corresponding pseudoprobability density functions
appear. We have shown that the quality of the approximation
in the weak coupling limit depends on the form of the
dissipation kernel of the Feynman-Vernon influence functional
describing the effect of the environment on the system. If this
kernel dissipates slowly in time without changing its sign,
the corrections to the TWA give exact results even at large
time scales (t/τS � 1). This makes our approach applicable in
situations, where the slow decay of the dissipation kernels does
not allow the application of the Markovian approximations to
the environment.

The method still remains simple enough to apply it to large
systems. For a system composed of N sites, where each of
them is linearly coupled to a separate environment, we can
describe the time evolution of the system density matrix by
a time local equation of an N × N matrix and N time local
equations of vectors, where every vector describes the effect
of one of the environments on the system. The dimension of
each of those vectors is equal to the number of exponentially
decaying functions, whose linear combination can describe
the noise and dissipation kernel part of the Feynman-Vernon
functional of the corresponding environment. In the limit of
large networks the complexity of the approach depends mainly
on the complexity of the time local equation of motion of the
N × N matrix. It follows that the numerical effort to calculate
a single trajectory of the observable is numerically as expensive
as the calculation of some Markovian master equation in
Lindblad form of the same system. So the increase of the
numerical effort in comparison to the master equation depends
on the number of trajectories of the observable which is
needed to obtain a good approximation of its mean value. This
number is of the order of 104–105 and is required to sample
correctly the initial state of the system which is described by
a pseudoprobability density function. This is the price that we
have to pay to take into account the non-Markovian effects of
the environment on the system.

ACKNOWLEDGMENTS

We acknowledge support from the European Union (EU)
through the Collaborative Project QuProCS (Grant Agreement
No. 641277).

APPENDIX A: PROOF OF THE MAPPING OF THE
ACTION TO A TIME LOCAL EXPRESSION

We have to show that

exp

⎡
⎣∑

τ

�t in×
τ

∑
τ ′<τ

�t

⎛
⎝ ∑

l∈L∪L̃

αF
l eλl (τ−τ ′)in×

τ ′ +
∑
l∈L

αD
l eλl (τ−τ ′)no

τ ′

⎞
⎠
⎤
⎦

=
∫

D[x]D[φ]D[ϕ] exp

[∑
τ

i2ϕT
τ

(−φτ+�t + φτ + �tAφτ + �tvno
τ + √

�tBxτ

)+
∑

τ

�tin×
τ εT φτ

]
ρ�(φ0), (A1)
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where ρ and � are defined in (38) and (39) and the number of
elements in L ∪ L̃ is M. To do this we integrate out all ϕ fields
by the use of (27). The equation of motion for the φ fields,
defined by the set of δ functions, and its solution are given by

dφ(t) = [Aφ(t) + vno(t)] dt + BdW (t), (A2)

φ(t) = eAtφ(0) +
∫ t

0
eA(t−τ )vno(τ ) dτ +

∫ t

0
eA(t−τ )B dW (τ ).

(A3)

We replace φτ in the last term of the second line of (A1)
with the solution in (A3). In the next step we integrate out the
xm,τ variables, which requires the replacement

∫
dW (τ ) =∑

τ

√
�txτ . This gives the following identity:

∫
D[x] exp

[
i

∫ t

0
dτ

∫ τ

0
dτ̃n×(τ )εT eA(τ−τ̃ )B dW (τ̃ )

]

= exp

{
−1

2

∑
m,τ̃

[√
�t

∫ t

τ̃

dτn×(τ )εT eA(τ−τ̃ )B

]2

m

}

= exp

[∫ t

0
dτ in×(τ )

∫ τ

0
dτ ′in×(τ ′)m(τ,τ ′)

]
. (A4)

where m ∈ {1, . . .M} and the function m(t,t ′) is defined as

m(t,t ′) t>t ′=
∫ t ′

0
dτεT eA(t−τ )BBT eAT (t ′−τ )ε. (A5)

The second line of (A1) transforms to

∫ M∏
m=1

dφm,0 exp

[
i

∫ t

0
dτn×(τ )εT eAτφ0

]
ρ(φ0)

× exp

[∫ t

0
dτ in×(τ )

∫ τ

0
dτ ′εT eA(τ−τ ′)vno(τ ′)

]

× exp

[∫ t

0
dτ in×(τ )

∫ τ

0
dτ ′m(τ,τ ′)in×(τ ′)

]
. (A6)

In the next step we have to decompose m(t,t ′) into a part
that does and a part that does not depend on (t − t ′), where
the first part has to be identified with the noise kernel of the
action. To do this we choose the matrix A such that the set
of its eigenvalues coincides with {λl}l∈L∪L̃. We assume that
each of the eigenvalues of A has an algebraric and geometric
multiplicity of one. It follows that there exists an invertible
matrix S and a diagonal matrix D (S,D ∈ RM×M) such that
S−1DS = A. By the use of the definitions

ε̃ = (S−1)T ε, (A7)

F = SBBT ST , (A8)

D̃(f (λ)) = diag[f (λ1), . . . ,f (λM)], (A9)

F̃kl(t) = −Fkl

eλkt

λk + λl

, k,l ∈ {1, . . . ,M}, (A10)

we can show that∫ t ′

0
dτ [D̃(eλ(t−τ ))FD̃(eλ(t ′−τ ))]kl

= −Fkl

eλk (t−t ′)

λk + λl

+ Fkl

eλkt+λl t
′

λk + λl

= −Fkl

eλk (t−t ′)

λk + λl

− Fkle
λkt+λl t

′
∫ ∞

0
dτe(λk+λl )τ

= F̃kl(t − t ′) −
∫ ∞

0
dτ [D̃(eλ(t+τ ))FD̃(eλ(t ′+τ ))]kl .

(A11)

This allows us to decompose m(t,t ′) as a sum of the following
functions:

m(t,t ′) = ε̃T F̃ (t,t ′)ε̃ −
∫ ∞

0
dτεT eA(t+τ )BBT eAT (t ′+τ )ε

= ε̃T F̃ (t,t ′)ε̃ − εT eAt�eAT t ′ε. (A12)

After integrating out the φ0 fields, the first line of (A6) modifies
to

exp

[
−
∫ t

0
dτ

∫ τ

0
dτ ′n×(τ )n×(τ ′)εT eAτ�eAT τ ′

ε

]
, (A13)

which cancels with the second term of (A12). It follows that
(A6) transforms to

exp

[∫ t

0
dτ in×(τ )

∫ τ

0
dτ ′ε̃F̃ (τ − τ ′)ε̃in×(τ ′)

]

× exp

[∫ t

0
dτ in×(τ )

∫ τ

0
dτ ′εT eA(τ−τ ′)vno(τ ′)

]
. (A14)

A direct comparison of the last equation with (A1) and use of
the fact that the eigenvalues of A are nondegenerate leads to
the following equation for v,ε,b1, . . . ,bM:

αD
l = ε̃l(Sv)l , (A15)

αF
l =

∑
k

ε̃l

Flk

−(λl + λk)
ε̃k l ∈ {1, . . . ,M}. (A16)

APPENDIX B: PROOF OF THE LINEARIZATION OF THE
ACTION IN THE QUANTUM VARIABLES

To show that (54) is fulfilled, we have to integrate out the
xn

m,τ variables in the right-hand side of the equation. If we
isolate only the x terms and the terms that are nonlinear in η

from this expression, we will obtain the following identity for
every n ∈ {1, . . . ,N }:∫

D[xn] exp

[∑
τ

i2ϕnT
τ

(
�tvn |ηn,τ |2

2
+ √

�tBnxn
τ

)]

=
∏
τ

Mn∏
m=1

exp

[
−1

2
�t4
(
bn

m

)2(
ϕn

m,τ

)2 + i�tvn
m|ηn,τ |2ϕn

m,τ

]
.

(B1)

We will present a set of transformations, that have to be applied
to every (n,m,τ ) contribution to the last expression. For better
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legibility we will omit these indices. We introduce the initially
unknown function f (x,y,z), which has to fulfill the following
equation:

exp
[− 1

2αϕ2 ± iβϕ�η2 ± iβϕ�η2
]

=
∫

dx dy dzf (x,y,z) exp[iϕx + i�ηy + i�ηz],

α = �t4b2, β = �t |v|, (B2)

where the integrals over x,y,z are from −∞ to ∞. The
function f (x,y,z) can be obtained by an inverse Fourier
transformation:

f (x,y,z) =
∫

dϕd�ηd�η

(2π )3
exp[−iϕx − i�ηy − i�ηz]

× exp
[− 1

2αϕ2 ± iβϕ�η2 ± iβϕ�η2]. (B3)

We have to point out that α and β are positive con-
stants, which is a necessary condition to perform the fol-
lowing transformations. We can integrate out ϕ and then
apply the following variable transformations: (�η,�η) →
(�ηβ−1/2α1/4,�ηβ−1/2α1/4), (�η,�η) → (ρ cos(ε),ρ sin(ε))
with ρ = |η|. By the use of the relation y cos(ε) + z sin(ε) =√

y2 + z2 sin(ε + δ), where δ = arcsin(y/
√

y2 + z2), we can
integrate out the ε variable. The function f (x,y,z) is then equal
to

f (x,y,z) = exp
[− 1

2
x2

α

]
√

2πα

∫ ∞

0
dρρJ0(ρ

√
y2 + z2)

× 1

2πβα−1/2
exp

[
− 1

2

(
ρ4 ∓ 2ρ

x

α1/2

)]
.

(B4)

We insert the result back in (B2) and apply the follow-
ing variable transformations: (x,y,z) → (xα1/2,yβ1/2α−1/4,

zβ1/2α−1/4) and (y,z) → (r cos(θ ),r sin(θ )). The right-hand
side of (B2) is then equal to∫

dx dθ drfX(x)f�(θ )fR|X(r|x)

× exp

[
∓ iϕxα1/2 + i2�

(
η∗ r

2
eiθβ1/2α−1/4

)]
, (B5)

which completes the proof of (54). By comparing the left side
of (B2) and (B5) we see that a change of the sign of the iϕxα1/2

expression does not turn (B5) into its complex conjugate as
it is the case for the left side of (B2). This is related to the
fact, that only specific combinations of random variables have
a nonzero expectation value.

APPENDIX C: DETAILS OF THE APPLICATION
OF THE MAPPING PROCEDURE

To apply the mapping described in Sec. II C, where the
noise and dissipation kernels of iSn

B,SB are given by (80) and
(81) and the sum over l in (81), (83), and (84) is neglected, we
use the matrix (the n superscript will be omitted)

A =
[

0 (γ 2 ± �2)1/2

−(γ 2 ± �2)1/2 −2γ

]
, (C1)

which has the same eigenvalues λ1,2 as in (87). The equations
for the coefficients of the vectors v,ε ∈ R2 and for the diagonal
elements of the matrix B = diag[b1,b2] that were derived in
Appendix A are equivalent to the following set of equations:

(ε1v1 − ε2v2)γ + (ε1v2 − ε2v1)(γ 2 ± �2)1/2 = a2�, (C2)

ε1v1 + ε2v2 = a1, (C3)

(b2ε2)2 + (b1ε1)2 = 4T [γ (a1fS + a2fA) − �(a2fS ∓ a1fA)]

= 4T a1, (C4)

(ε1b2)2(γ 2 ± �2) + [2γ (ε1b1) − (ε2b1)(γ 2 ± �2)1/2]2

= 4T [γ (a1fS + a2fA) + �(a2fS ∓ a1fA)](γ 2 ± �2)

= 4T [(γ 2 ± �2)a1 + 2γ�a2]. (C5)

The first two equations can be derived from (40) by using

eAt = e−γ t

�
[γ S(�t)σz + �C(�t)1 + i

√
γ 2 ± �2S(�t)σy].

The last two equations originate from the constraint that the
part of m(t,t ′) in (41) depending on the difference of the two
arguments is equal to F(t − t ′), which is given in (81). In
the last line of (C4) and (C5) we have used the assumption
that we work at high temperatures, and we have neglected all
sums over l in (81), (83), and (84).

For the case a′
a = 0 = a1 we can solve the four equations

in the high-temperature limit by setting ε1 = b2 = v2 = 0,
and for the case � = 0 we can set b2 = v2 = 0. A direct
calculation shows that εT eAtBdW (t) = (a′)1/2g(t)μdW1(t)
where a′,g(t),μ are defined in (93), (94), and (95).

The initial distribution of the φn
m,0-variables, described by

ρn
�(φn

0), is given in (38) where the covariance matrix �n,
defined in (39), takes the following form (the n index is
omitted):

� =

⎡
⎢⎣

b2
1+b2

2
4γ

+ b2
1γ

γ 2±�2 − b2
1

2
√

γ 2±�2

− b2
1

2
√

γ 2±�2

b2
1+b2

2
4γ

⎤
⎥⎦. (C6)

APPENDIX D: ALTERNATIVE DERIVATION OF THE
CTWA AND CALCULATION OF MULTITIME

CORRELATION FUNCTIONS

For the following discussion it will be useful to include the
terms

∫
dτ [−η∗T (τ )ν(τ ) + ηT (τ )ν∗(τ )],

ν(t) = [ν1(t), . . . ,νN (t)]T (D1)

in iS +∑n iSn
B,SB , which will modify Eq. (64) by adding

−ν t�t on its right-hand side. We can use the formal solution
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of this equation:

ψ(t) = ψT WA(t) + ψQC(t) + ψν(t),

ψT WA(t) = T̂ exp

[
−i

∫ t

0
h̃(s) ds

]
ψ(0),

ψQC(t) =
N∑

n=1

Mn∑
m=1

T̂

∫ t

0
exp

[
−i

∫ t

τ

h̃(s) ds

]
κnmdχn

m(τ ),

ψν(t) =−T̂

∫ t

0
exp

[
−i

∫ t

τ

h̃(s) ds

]
ν(τ ) dτ,

∫ t

t ′
f (τ ) dχn

m(τ ) = lim
�t→0

∑
t ′�τ�t

f (τ )�χn
m,τ (D2)

and construct ψ(t)ψ∗T (t) for the case ν(t) = ν∗T (t) = 0. We can take the average over all rn
m,τ , θn

m,τ variables(denoted by 〈. . .〉r,θ )
and neglect the mixed terms ψT WA(t)ψ∗T

QC(t), ψQC(t)ψ∗T
T WA(t). Then we can apply the following self-consistent approximation:

〈ψ(t)ψ∗T (t)〉r,θ = T̂ exp

[
−i

∫ t

0
h̃(s) ds

]
ψ(0)ψ∗T (0)T̂ † exp

[
i

∫ t

0
h̃(s) ds

]

+
∑
n,n′

∑
m,m′

∫ t

0

∫ t

0
T̂ exp

[
−i

∫ t

τ

h̃(s) ds

]
κnmκn′m′∗T T̂ † exp

[
i

∫ t

τ ′
h̃(s) ds

]〈
dχn

m(τ )dχn′
m′(τ ′)

〉
r,θ

= T̂ exp

[
−i

∫ t

0
h̃(s) ds

]
ψ(0)ψ∗T (0)T̂ † exp

[
i

∫ t

0
h̃(s) ds

]

+
N∑

n=1

Mn∑
m

∫ t

0
T̂ exp

[
−i

∫ t

τ

h̃(s) ds

]
κnmκn′m′∗T T̂ † exp

[
i

∫ t

τ

h̃(s) ds

]
dWn

m(τ ), (D3)

where we have used (71) to show the relation〈
dχn

m(τ )dχ∗n′
m′ (τ ′)

〉
r,θ

δnn′δmm′δ(τ − τ ′) dWn
m(τ ).

The h̃ matrix is defined in the same way as in (47) with the
difference that the φ terms are obtained from (49) by replacing
|ψn,t |2 term with the nn component of 〈ψ(τ )ψ∗T (τ )〉r,θ from
(D3). The differential of (D3) is then equal to (74).

In the end we will briefly discuss the possibility to to use
this approach to calculate multitime correlation functions. As
example we will calculate the nonlinear response function
(t3 > t2 > t1)

tr[â×
n3

(t3)â†×
n2

(t2)â†×
n1

(t1)â×
n0

(t0)ρ̂tot]

=
∫

D[ψ,η]ψ∗
n3,t3

η∗
n2,t2

η∗
n1,t1

η∗
n0,t0

eiSρW (ψ∗
0,ψ

∗
0), (D4)

where â×
nj

(t)• = [ânj
(t),•] and â∗

nj
(t) is an operator in the

Heisenberg picture. To calculate (D4) we can use the idea
proposed in Ref. [40]. We include again (D1) in the definition
of the action and choose the ν(t), ν∗(t) to be equal to

ν(t) =
2∑

j=0

δ(t − tj )(�t)yνnj
,

ν∗(t) =
2∑

j=0

δ(t − tj )(�t)yν∗
nj

, y ∈ R+

and η∗
n2,t2

η∗
n1,t1

η∗
n0,t0

is replaced with

F (ν∗
n2

,ν∗
n2

)F (ν∗
n1

,ν∗
n1

)F ∗(ν∗
n0

,ν∗
n0

)(�t)−3y,

where F is defined such that

0 =
∫

F (ν∗,ν) dν∗ dν =
∫

F (ν∗,ν)ν∗ dν∗ dν, (D5)

1 =
∫

F (ν∗,ν)ν dν∗ dν. (D6)

The F function can again be represented as a product of a real
probability density function, a normalization factor, and a sign
function, and the integration over the ν∗

nj
, ν∗

nj
variables can be

carried in exactly the same way as the integration over ψ0, ψ∗
0.

A direct expansion of eiS in powers of νj , ν∗
j shows that in the

limit �t → 0 the new and the old expression are equal. Our
task now is to calculate the average of ψ t over all rn

m,τ , θn
m,τ

variables. To do this we can use the formal solution (D2) for
ψ and neglect 〈ψQC(t)〉r,θ since 〈dχn

m,τ 〉r,θ = 0. The |ψn(τ )|2
term that appears in the diagonal elements of the h̃(t) matrix
can be replaced with the nn term of 〈ψ(τ )ψ∗T (τ )〉r,θ defined
in (D3). If we calculate the differential of this approximation,
we will obtain the following equation (the 〈. . .〉r,θ brackets are
neglected):

ψ t+�t = ψ t − ih̃(t)ψ t�t −
2∑

j=0

δt,tj (�t)yνnj
. (D7)

The only difference between the last equation and the corre-
sponding TWA lies in the definition of the memory term in the
diagonal elements of h̃(t).
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