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Heat transport along a chain of coupled quantum harmonic oscillators
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I study the heat transport properties of a chain of coupled quantum harmonic oscillators in contact at its ends
with two heat reservoirs at distinct temperatures. My approach is based on the use of an evolution equation for the
density operator which is a canonical quantization of the classical Fokker-Planck-Kramers equation. I set up the
evolution equation for the covariances and obtain the stationary covariances at the stationary states from which
I determine the thermal conductance in closed form when the interparticle interaction is small. The conductance
is finite in the thermodynamic limit implying an infinite thermal conductivity.
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Fifty years ago, Rieder, Lebowitz, and Lieb [1] introduced
and exactly solved a microscopic model for thermal conduc-
tion, that consisted of a chain of coupled classic harmonic os-
cillators with its ends in contact with heat reservoirs at distinct
temperatures. Using this model they provided a rigorous proof
of the well-known result that the thermal conductance, the
ratio between the heat current and the temperature difference,
is finite regardless of the chain length [2]. This result amounts
to say that Fourier’s law does not hold because the conductivity,
which is the product of the conductance and the chain length,
becomes infinite when the length increases without bounds.
The reason for the occurrence of a finite conductance is that
the excitations in ordered systems with harmonic interactions
travel ballistically. To get the Fourier’s law, new ingredients
should be added to the harmonic model in order to transform
the ballistic into a diffusive motion. Such ingredients include
anharmonic potentials [3–8], self-consistent reservoirs [9–12],
energy conserving noise [13–15], and others [16–20].

In the model studied by Rieder, Lebowitz, and Lieb [1],
the oscillators were under the action of conservative forces
except the first and the last which, in addition, were subject
to dissipating-fluctuating forces representing the contact with
heat reservoirs. They are composed by a dissipative force,
proportional to the velocity, and a Gaussian white noise with
zero mean and variance proportional to the temperature. The
equations of motion are understood as Langevin equations, and
the equation governing the time evolution of the probability
density is a Fokker-Planck-Kramers (FPK) equation [21–24].

Here, I study a quantum version of the model studied
by Rieder, Lebowit, and Lieb [1]. I have exactly calculated
the thermal conductance in the regime of small interparticle
interaction and reached a similar result that the conductance is
finite regardless of the length of the chain. However, as should
be expected the conductance is not independent of temperature,
as is the case of the classical version. It vanishes in the limit
of zero temperature and saturates at the classical value at high
temperatures. My approach is based on a quantum version of
the FPK equation coming from a canonical quantization of the
ordinary FPK equation, recently introduced [25], and differs
from other approaches regarding the treatment of quantum
dissipation [26–36]. These approaches include the use of
quantum Langevin equations [26,30,31], and the use of the
rotating wave approximation and Lindblad master equation
to describe the contact with heat reservoirs [32,34]. These
approaches as well as mine, when applied to the harmonic

chain, predict a finite conductance regardless of the chain
length [26,34]. It worth mentioning that the approach I use
leads to a proper thermalization in the sense that the Gibbs
equilibrium state is the stationary solution of the quantum FPK
equation when the reservoirs have the same temperatures [25].

The model I consider is a chain of L particles of equal
masses interacting through a harmonic potential. The quantum
Hamiltonian of the system is given by

H = 1

2m

L∑
i=1

p2
i + k0

2

L∑
i=1

q2
i − k1

L−1∑
i=1

qiqi+1, (1)

where m is the mass of the particles, k0 is the spring constant,
and k1 is the interparticle interacting parameter. The position
qi and momentum pi obey the usual commutation relation,
[qi,pj ] = ih̄δij . To describe the contact of the system with heat
reservoirs I use the quantum Fokker-Planck-Kramers (FPK)
equation [25] with the first particle of the chain in contact with
a heat reservoir A at temperature TA and the last with a reservoir
B at temperature TB . The quantum FPK equation reads [25]

ih̄
∂ρ

∂t
= [H,ρ] − [q1,J1] − [qL,JL], (2)

where ρ is the density matrix, and J1 and JL are given by

Ji = −γ

2
(ρgi + g

†
i ρ) − γm

ih̄βi

[qi,ρ], (3)

where γ is the dissipation parameter and βi = 1/kBTi , with
T1 = TA and TL = TB . The operator gi is given by

gi = − m

ih̄βi

(eβiHqie
−βiH − qi). (4)

When the temperatures are the same, the Gibbs density
ρ0 = (1/Z)e−βH is the stationary equilibrium solution of the
quantum FPK equation (2) because it makes each one of the
Ji to vanish and [H,ρ0] = 0.

The operator gi can be written in a form involving nested
commutators

gi = pi + βi

2!
[H,pi] + β2

i

3!
[H,[H,pi]]

+ β3
i

4!
[H,[H,[H,pi]]] + · · · . (5)

Taking into account the bilinear form of H and that the
coordinates are not coupled to the momenta, I notice that
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the odd terms in this expansion are linear combinations of the
momenta only, and that the even terms are linear combinations
of the coordinates only. From these properties, it follows that
gi is a linear combination of the positions and momenta:

gi =
L∑

j=1

(aijpj + ibij qj ), (6)

where the coefficients aij and bij depend on the temperature Ti

and on the parameters of the Hamiltonian. In addition, using
the fact that the odd terms are Hermitian and that the even
terms are anti-Hermitian it follows that the coefficient of pj is
real and the coefficient of qj is pure imaginary so that aij and
bij are real.

Next, I wish to write down evolution equations for the
averages of quantities of interest in my analysis. The evolution
equation for a certain average 〈f 〉 = Tr{fρ} of an operator f

can be obtained from the quantum FPK equation (2) and it is
given by

ih̄
d

dt
〈f 〉 = 〈[f,H ]〉 − Tr[f,q1]J1 − Tr[f,qL]JL, (7)

Tr[f,qi]Ji = −γ

2
〈gi[f,qi]〉 − γ

2
〈[f,qi]g

†
i 〉

− γm

ih̄βi

〈[[f,qi],qi]〉. (8)

From this formula I get at once

d

dt
〈H〉 = �1 + �L, (9)

where �i = (1/m)TrpiJi is the energy flux from reservoir i

to the chain.
Using formula (7) I get the evolution equation for the cor-

relations among the coordinates and momenta, xij = 〈qiqj 〉,
yij = 〈pipj 〉, and zij = 〈qipj 〉:

d

dt
xij = 1

m
(zij + z̃ij ), (10)

d

dt
zij = −

L∑
k=1

xikGkj + 1

m
yij − γ

2

L∑
k=1

ajk(z̃ki + zik), (11)

d

dt
yij = −

L∑
k=1

(Gikzkj + z̃ikGkj ) + 2γmδij

(
δj1

β1
+ δjL

βL

)

− γ

L∑
k=1

(ajkyki + aikykj ) + γh̄

2
(bji + bij ), (12)

where z̃ij = 〈piqj 〉, and Gij are the elements of a tridiagonal
matrix G, with Gii = k0, and Gi,i+1 = Gi+1,i = −k1. In these
equations, I am setting the coefficients aij and bij to vanish
unless i = 1 or i = L. I see that Eqs. (10)–(12) make up a
closed set of equations for the correlations xij , yij , and zij by
recognizing that z̃j i = zij − ih̄δij .

In the stationary state, �L = −�1 and � = �L may
thus be understood as the heat flux from reservoir B to
reservoir A through the chain. Using Eqs. (10) and (12), I can
show that z21 = z32 = · · · = zL,L−1, that zji = −zij , and that
� = (k1/m)zi+1,i , a relation that will be used to determine the
conductance.

To simplify the evolution equations, I will subtract the
equilibrium solution, which I denote by xe

ij , ye
ij , and ze

ij .
By equilibrium solution I mean the stationary solution of
Eqs. (10)–(12) for the case when both temperatures of the
reservoirs are the same and equal to T = (T1 + TL)/2. In
equilibrium ze

ij = z̃e
ij = 0 if i �= j and ze

ii = −z̃e
ii = ih̄/2. The

correlations xe
ij and ye

ij are given by

L∑
k=1

xe
ikGkj = 1

m
ye

ij , (13)

L∑
k=1

(
Ajky

e
ki + Aiky

e
kj

) = h̄

2
(Bji + Bij ) + 2m

β
δij (δj1 + δjL),

(14)

where β = 1/kBT , and Aik and Bik are the values of aij and
bij that one obtains by replacing both β1 and βL by β. The
quantities Aij and Bij are nonzero only when i = 1 or i = L

in which case they hold the property ALj = A1,L+1−j and
BLj = B1,L+1−j .

I define the deviations Xij�T = xij − xe
ij , Yij�T = yij −

ye
ij , Zij�T = zij − ze

ij , and Z̃ij�T = z̃ij − z̃e
ij from the

equilibrium solution, where �T = TL − T1. I remark that
Z̃ij = Zji . I wish, in the following, to write down evolution
equations for the variables Xij , Yij , and Zij for small values
of �T . In this regime the evolution equation reads

d

dt
Xij = 1

m
(Zij + Z̃ij ), (15)

d

dt
Zij = −

L∑
k=1

XikGkj + 1

m
Yij − γ

2

L∑
k=1

Ajk(Z̃ki + Zik),

(16)

d

dt
Yij = −

L∑
k=1

(GikZkj + Z̃ikGkj ) + γmkBδij ( − δj1 + δjL)

− γ

L∑
k=1

(AjkYki + AikYkj ) − γ (Cji + Cij ), (17)

where

Cij�T =
L∑

k=1

(aik − Aik)ye
kj − h̄

2
(bij − Bij ), (18)

The quantities Cij are nonzero only when i = 1 or i = L in
which case they hold the property CLj = −C1,L+1−j .

These equations are written in matrix form as

d

dt
X = 1

m
(Z + Z†), (19)

d

dt
Z = −XG + 1

m
Y − γZA†, (20)

d

dt
Y = −(GZ + Z†G) + γD − (YA† + AY ) − γ (C† + C),

(21)

where the matrix D has only two nonzero elements, which are
D11 = −mkB and DLL = mkB . It should be noted that all the
entries of X, Y , and Z are real and that X and Y are symmetric
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matrices. All entries of matrices G, A, and C are also real and
G is symmetric. The matrices A and C have nonzero values
only on the first and the last row.

In the stationary state I am left with the equations

Z = −Z†, (22)

Y = m(XG + γZA†), (23)

Y = m(GX − γAZ), (24)

γD − γ (YA† + AY ) − γ (C + C†) = GZ − ZG. (25)

In the classical limit, C vanishes and A becomes a matrix
whose only nonzero entries are A11 = 1 and ALL = 1, and
I recover the equations obtained by Rieder, Lebowitz, and
Lieb [1].

My next step is to seek the solution of Eqs. (22)–(25).
To this end I follow the reasoning put forward by Rieder,
Lebowitz, and Lieb [1]. I start by observing that the left-hand
side of Eq. (25) is a bordered matrix, that is, a matrix whose
nonvanishing entries are found only in the first and last rows
and columns. Therefore, the right-hand side GZ − ZG should
also be bordered. Using the definition of G and the relation
Zji = −Zij , that comes from Eq. (22) and the property that Zij

is real, it follows that Z is an antisymmetric Toeplitz matrix,
that is, a matrix of the type

Zij =
⎧⎨
⎩

ϕj−i , i < j,

0, i = j,

−ϕi−j , i > j.

(26)

From Eqs. (23) and (24), I get the following relation
between X and Z,

XG − GX = −γ (AZ + ZA†). (27)

The right-hand side of this equation is again a bordered matrix
and so is the matrix XG − GX. Since X is required to be
symmetric, a solution for X is an antisymmetric Hankel matrix,
that is, a matrix of the following form:

Xij =
⎧⎨
⎩

ψi+j−1, i + j < L + 1,

0, i + j = L + 1,

−ψ2L+1−i−j , i + j > L + 1.

(28)

Replacing Eq. (28) into Eq. (27), I find ψi in terms of ϕi ,

k1

γ
ψ� = −

L∑
j=1

η�,j−1Ajϕ|�−j+1|, (29)

1 � � < L, where Aj stands for A1j and η�,j = −1,0,1
according to whether j < �, j = �, j > �, respectively.

From Eqs. (23) and (24), it is straightforward to show that
Y is also an antisymmetric Hankel matrix, that is, a matrix of
the following form:

Yij =
⎧⎨
⎩

θi+j−1, i + j < L + 1,

0, i + j = L + 1,

−θ2L+1−i−j , i + j > L + 1,

(30)

and that θ� is related to ψ� by

θ� = m(k0 ψ� − k1ψ�+1 − k1ψ�−1), (31)

1 � � < L, where ψ0 = 0 and ψL = 0.

Since ψ� is related to ϕ� by expression (29), then Eq. (31)
gives θ� in terms of ϕ�. To get a closed equation for ϕ� I use
Eq. (25) to obtain another relation between ϕ� and θ�, namely,

k1

γ
ϕ� = −m

2
kBδ�1 −

L∑
j=1

η�,L+1−jAjθL−|L+1−�−j | − C�,

(32)
1 � � < L, where C� stands for C1�. Therefore, Eqs. (29), (31),
and (32) constitute the desired closed equations for the
variables ϕ�. To solve them I need to know A� and B� because
C� is related to these quantities by

C� = −1

2

L∑
k=1

dAk

dT
ye

k� + h̄

4

dB�

dT
, (33)

which follows from Eq. (18), where B� stands for B1�. I recall
that A� and B� depend on T and are the values of a1� and b1�

obtaining by setting T1 equal to T .
Explicit solutions of Eqs. (29), (31), and (32) are very

cumbersome to find, but closed solutions can be found when
the interparticle interaction is small. Thus, from now on I will
confine myself to the case where the interparticle interacting
parameter k1 is small. To this end, I first notice that the
quantities A� and B� are of the order k�−1

1 and so is C�, a result
that follows from expansion (5). Thus, from Eqs. (29), (31),
and (32) it follows that ϕ�, θ�, and ψ� are of order greater or
equal to k1, except θ1 and ψ1, which are

θ1 = − 1

2A1
(mkB + 2C1), ψ1 = 1

mk0
θ1. (34)

Using Eq. (29), I see that ϕ1 is of the order k1 and given by

ϕ1 = k1

γA1
ψ1. (35)

The conductance K is defined as the ratio K = �/�T in
the limit �T → 0. To determine K , I recall that, in the station-
ary state, the heat flux � = (k1/m)zi+1,i = (k1/m)Zi+1,i�T

so that the conductance is K = (k1/m)Zi+1,i = −(k1/m)ϕ1,
leading to the following expression for the conductance:

K = k2
1

2m2k0γA2
1

(mkB + 2C1). (36)

In this formula the value of C1 is

C1 = −1

2

dA1

dT
ye

11 + h̄

4

dB1

dT
. (37)

Using formula (5), I obtain an explicit expression for A1 and
B1, which for k1 = 0 reads

A1 = sinh βh̄ω

β h̄ω
, B1 = m(cosh βh̄ω − 1)

βh̄
, (38)

where ω = √
k0/m. When k1 = 0, ye

11 = mE where

E = h̄ω

(
1

eβh̄ω − 1
+ 1

2

)
. (39)

A straightforward algebra leads us to the result

K = K0

A1kB

dE

dT
, K0 = kB

k2
1

2mγk0
. (40)
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In the classical limit, E = kBT and A1 = 1 so that K = K0.
Thus K0 is the classical conductance, a result obtained by
Rieder, Lebowitz, and Lieb [1], in the regime of small k1. An
explicit form for K is

K = K0(βh̄ω)3

2 sinh βh̄ω(cosh βh̄ω − 1)
. (41)

As regards the behavior with temperature, this result
is qualitatively similar to the ones obtained by other ap-
proaches [31,34,36]. At high temperatures all these approaches
give the classical conductance obtained in Ref. [1], and vanish
when T → 0. However, the behavior at low temperature
is distinct. My results give the behavior β3e−2β h̄ω for the
conductance whereas Ref. [31], for instance, gives the behavior
β1/2e−β h̄ω.

In conclusion, I have used a quantum FPK equation to
describe the contact of a chain of coupled quantum harmonic
oscillators with heat reservoirs at distinct temperatures. Start-
ing from the quantum FPK equation, I have set up evolution
equations for the covariances and solved them in the stationary
regime to get the thermal conductance. An exact closed
form for the conductance was obtained for small values of
the interparticle interacting parameter. The conductance was
found to be finite regardless of the chain length, implying an

infinite conductivity and thus the absence of Fourier’s law. This
is a consequence of the ballistic motion of phonons that occurs
in a system with harmonic interactions where the phonons do
not interact.

The quantum FPK equation I use holds two important
properties with relevant consequences to my analysis. In
equilibrium, that is, when the heat baths have the same
temperatures, its stationary state is the Gibbs state. Second, it
is a canonical quantization of the ordinary FPK equation [25]
and, as a consequence it turns into this equation, in the classical
limit. Thus, in the classical limit my approach becomes
identical to that of Rieder, Lebowitz, and Lieb [1]. I remark
that my quantum approach differs from other approaches used
to study the thermal transport such as the use of quantum
Langevin equations with dissipation proportional do velocity
or the use of Lindblad dissipators. Although the quantum
FPK equation I used here has not been derived from a full
quantum system that includes the reservoirs, I think that the
canonical quantization might give support for the validity of
the quantum FPK equation, although this procedure does not
give an unambiguous prescription for obtaining a quantum
version of a classical equation [25]. The present calculation
of the conductance, on the other hand, might give indirectly
the desired support if one understands that the conductance
obtained here is a reasonable result.
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