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Quantum entanglement and temperature fluctuations
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In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by
the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly
fluctuating environment within a weak interaction between the system and the environment. For this purpose,
we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study
entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and
anisotropic cases and explore the effect of different temperature fluctuations (χ2, log-normal, and F distributions).
Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher
temperatures than those predicted for the same system at thermal equilibrium.
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I. INTRODUCTION

Connections between information theory and statistical
mechanics have been recognized over more than 20 years: In-
formation theory provides rigorous justifications for statistical
mechanics, and techniques developed for statistical mechanics
are used broadly in information theory. Furthermore, both
fields share, as a centerpiece, important concepts, such as
entropy. Interestingly, this connection is also important in
quantum information theory where ideas of statistical mechan-
ics are applied in studying quantum information processes and
finding new quantum algorithms [1]. It is then quite natural
that quantum information research has incorporated some
recently introduced formalisms and ongoing developments
of statistical mechanics, such as nonextensive statistical
mechanics and generalized entropies [2–8]. The relationship
between quantum information theory and statistical physics
becomes even more inevitable in studying quantum informa-
tion processes, such as entanglement, in a realistic system at
finite temperatures, i.e., thermal entanglement [9–11]. For this
purpose, entanglement usually is studied between quantum
states at thermal equilibrium (thermal states). Entanglement of
thermal states is rather well understood. In particular, it is well
known that entanglement vanishes at a critical temperature,
exhibiting therefore a phase transition [10]. However, thermal
equilibrium is a property of closed systems, which is not
shared by open systems. As a step towards more realism,
entanglement in a system out of equilibrium, such as a system
coupled to two different temperature heat reservoirs, recently
has attracted a great deal of interest [12,13]. In such cases,
one has to go beyond equilibrium statistical mechanics and
explore statistical mechanics methods inherent to states out of
equilibrium. It is then natural to expect another bridge between
nonequilibrium quantum information processes and statistical
mechanics methods to approach nonequilibrium systems.

Statistical mechanics behind a system at thermal equilib-
rium is quite simple in the sense that the only parameters
required to describe the state of the system are its Hamiltonian
and the temperature of its environment. The statistics of such
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a system is then given by the Boltzmann form exp(−βE)—β

being the inverse temperature—stating that the probability
of a particular energy state decreases exponentially with
the energy. When dealing with a system which is not at
thermal equilibrium, the task is not that simple. For such a
system, in principle, the entire past history of perturbations
that the system has undergone is required to describe its
state. Calculating the steady state of a system driven out of
equilibrium is a highly nontrivial and actual matter [14–16],
and many approaches have been proposed first for classical
systems driven out of equilibrium and later for quantum
systems. Among those approaches, renormalization group
and density matrix renormalization group methods [17–19],
real-time methods [17,18], and field theoretic approaches [20]
have been considered. Nevertheless, to date, we have had very
few explicit calculations of nonequilibrium properties of open
many body quantum systems, and the study of a nonequi-
librium open system remains an open field. To overcome
the difficulty in dealing with a nonequilibrium system in a
steady state, some methods have been introduced that yield an
effective description of the system under some assumptions.
The goal is to describe a nonequilibrium system provided only
a few extra parameters over those required to describe the
same system at equilibrium. A possible way to do so is to
characterize the system by a superposition of several statistics
at different time scales. For instance and for our purposes,
to superimpose on the statistics of an equilibrium system a
distribution that describes variations of the environment, such
as temperature fluctuations (or equivalently, fluctuations of
β = 1/T ). Then, the long-term stationary state consists of a
superposition of Boltzmann distributions exp(−βE) that are
weighted with a probability density f (β) to observe a certain β.
Such an approach usually is referred to as superstatistics [21]
since it consists of a superposition of statistics. It also is related
to the concept of hyperensembles introduced by Crooks [22]
in which rather than a statistical ensemble, the nonequilibrium
system is described by means of a hyperensemble, i.e., an
ensemble of ensembles. Such an approach yields a good
effective description for a system in a slowly fluctuating
environment and is a suitable approximation for a continuously
varying temperature field that has a temporal correlation length
T , much larger than the relaxation time [21].
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So far, the formalism of superstatistics has been developed
classically and has known many improvements and mathe-
matical refinements [23,24]. Also, it has been shown to be a
useful tool in understanding a range of processes in different
nonequilibrium complex systems (see Ref. [25] and references
therein). Superstatistics turns out to be an appropriate tool
in dealing with systems in a nonequilibrium stationary state
thanks to the ability of the formalism to extract analytical
results and to generate distributions that exhibit non-Gaussian
behavior, such as power laws and stretched exponentials,
as observed in numerous systems [21,26,27]. An instructive
example is the case of Tsallis distributions that can be
generated within χ2-distributed inverse temperatures [21,26].
Note that such statistics, particularly Tsallis-type statistics,
has attracted a great deal of interest in recent literature,
being observed in numerous situations, such as distribution
of cold atoms in dissipative optical lattices [28], spin-glass
relaxation [29], or high energy collisional experiments [30].
Then, quite naturally, some effort has been made to understand
the implication of such statistics in quantum information
processes as entanglement, their interpretation being based
upon nonextensive statistical mechanics, that yields a one-
parameter generalization of usual thermal states. However, the
physical meaning of this parameter is still somehow obscure
although believed to be related to long-ranged interactions,
(multi)fractal structures, or nonergodicity. In the present
paper, we aim to adopt the alternative point of view given
by superstatistics that links this parameter to temperature
fluctuations. This approach presents the advantage to link the
deformation of the usual thermal states to an empirical fact,
namely, temperature fluctuations, which opens the door to an
experimental verification. Also, it yields statistics that slightly
differ from Tsallis statistics for which experimental evidence
can be found in the literature [31].

The aim of this paper is to revisit the formalism of
superstatistics within a quantum mechanical picture, having in
mind its application to quantum information processes out of
equilibrium. In the quantum regime, the quantum probability
model takes place in a Hilbert space H of a finite or infinite
dimension, and a state is represented by a positive semidefinite
linear mapping (a matrix ρ) from this space into itself with a
trace of unity. The superstatistical density matrix is then given
by a superposition of the usual thermal states weighted with a
probability density that describes temperature fluctuations of
the environment. It is admitted that, typically, the interaction
with the surroundings destroys quantum correlations in the
system. However, some exceptions exist: In some situations,
interactions with the environment can create extra quantum
correlations [32,33]. We are particularly interested here in
the effect that may have different environmental temperature
fluctuations on entanglement. To ensure the validity of our
approach, we assume first that there is sufficient time scale
separation between the time scale of the fluctuation and the
relaxation time: The temperature changes on a long time scale
T , much larger than the relaxation time. We also assume that
the interaction between the system and its environment is weak
to avoid nontrivial effects, such as the suppression of quantum
coherences in the system-bath interaction basis.

The paper is fashioned as follows: In the next section, we
will discuss the formalism of superstatistics in a full quantum

regime. In Sec. III, we will consider entanglement of thermal
superstates, i.e., states that can be described as a superposition
of thermal states in the case of the Heisenberg XY model.
We will consider both isotropic and anisotropic cases and
explore different types of superstatistics. In Sec. IV, we will
show, in the particular case of the Heisenberg model, how
to map superstatistical states onto a usual thermal state by
considering effective temperature-dependent energy states. In
the last section, we will discuss our results and present some
outlooks.

II. QUANTUM SUPERSTATISTICS

Consider a quantum system in thermal equilibrium within
a temperature T (inverse temperature β). The state of such a
system is given by

ρ = e−βH

Z
= 1

Z

∑
i

e−βEi |ψi〉〈ψi |, (1)

where the partition function Z plays a normalization role and
reads as Z = ∑

i e
−βEi . Such a state is called a thermal state.

Note that ρ is a semidefinite matrix from Hilbert space to
itself with Tr ρ = 1. Let us now go a step further and consider
that the temperature, or equivalently its inverse β , fluctuates
according to a distribution function f (β). Then, one has to
superimpose on the thermal state (1) the distribution f (β) that
describes fluctuation of the surroundings. The state then is
given by

ρ̃ = 1

Z̃

∫ ∞

0
dβ f (β)e−βH = 1

Z̃

∑
i

B̃(Ei)|ψi〉〈ψi |, (2)

where B̃(Ei) defines an effective Boltzmann factor that reads

B̃(E) =
∫ ∞

0
dβ f (β)e−βE. (3)

Z̃ is a generalized partition function that plays the same
normalization role and reads as Z̃ = ∑

i B̃(Ei). Indeed, we
have adopted here superstatistics of type A since the partition
function does not appear in the integral (2) but has been added
up for normalization purposes (see Ref. [21] for a discussion on
type-A and type-B superstatistics). Since for our purposes, we
are mainly interested in lattice systems, f (β) would be thought
of as describing fluctuations in time, i.e., β is uniform through
the whole phase space but varies in time. In principle, f (β)
could be any normalized distribution such that the integral (3)
is normalizable. One also can impose on f (β) to reduce to
the Dirac distribution δ(β − β0) in which case the effective
statistics (3) reduces to the usual statistics, and ρ̃ reduces to
ρ. Note that, in the quantum regime, we assume that, as the
usual thermal state, ρ̃ must be Hermitian (ρ̃ = ρ̃+) and positive
semidefinite, i.e, ∀ |ψ〉 ⊂ H, 〈ψ |ρ̃|ψ〉 � 0.

Among the distributions that satisfy the above properties,
the χ2 distribution (also called the � distribution) that appears
in many natural systems. The latter reads as

f (β) = 1

b�(c)

(
β

b

)c−1

e−β/b, (4)
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and leads to an effective Boltzmann factor that coincides with
the Tsallis statistics,

B̃(E) =
∫ ∞

0
dβ f (β)e−βE = eq(−βE), (5)

where

eq(x) = [1 + (1 − q)x]1/(1−q). (6)

β0 = bc is the average inverse temperature β0 = 1/T0 and c ≡
1/(q − 1). One also may consider the log-normal distribution,

f (β) = 1

βs
√

2π
exp

{−[log(β/m)]2

2s2

}
, (7)

or the F distribution,

f (β) = �[(v + w)/2]

�(v/2)�(w/2)

(
bv

w

)v/2
β(v/2)−1

[1 + (vb/w)β](v+w)/2
. (8)

The two latter distributions are also ubiquitous in many physi-
cal situations. However, in contrast to the χ2 distributions, the
log-normal and F distributions do not lead to analytical results,
but the statistics can be obtained numerically or estimated
analytically for a sufficiently small energy [21]. As first noticed
by Beck [25], by considering a generalized Hamiltonian, one
can map superstatistics onto a usual statistics. In fact, suppose
that one indexes the inverse temperatures by βj , one can
consider an exotic Hamiltonian H̄ such that

βjH = βH̄ . (9)

Since ordinary statistical mechanics is valid for arbitrary
energy levels, and so for the super-Hamiltonian H̄ , one may
now perform ordinary statistical mechanics for the super-
Hamiltonian H̄ , and the partition function of superstatistics
can be written as

Z̃ =
∑

j

(Tr e−βH̃ (j )
) 	

∫ ∞

0
dβ f (β)Tr e−βH , (10)

which preserves the same form of the usual partition function
within indexed energy levels H̄ (j ). If the temperature is
supposed to vary slowly, the sum over the temperature index
j can be replaced by an integral, and the superstatistical
definition of the partition function is recovered

Z̃ 	
∫ ∞

0
dβ f (β)Tr e−βH =

∫ ∞

0
dβ f (β)Z. (11)

III. ENTANGLEMENT OF THERMAL SUPERSTATES

In this section, we will study entanglement of states of the
form (2) to shed light on the effect of temperature fluctuations
on entanglement. We will adopt the concurrence as a measure
of entanglement. Let us consider a pair of qubits 1 and 2
within a density matrix ρ12 that can be either pure or mixed.
The concurrence corresponding to ρ12 reads as

C12 = max{λ1 − λ2 − λ3 − λ4,0}, (12)

where the quantities λ1 � λ2 � λ3 � λ4 are the square roots
of the eigenvalues of the operator,


12 = ρ12(σy ⊗ σy)ρ12∗ (σy ⊗ σy). (13)

The concurrence C12 varies from 0 to 1. A zero concurrence
corresponds to unentangled qubits, and C12 = 1 corresponds
to maximally entangled qubits. We study here thermal entan-
glement in the case of the XY model.

A. Isotropic XY model

Let us consider the two-qubit isotropic antiferromagnetic
XY model in a constant external magnetic field B, described
by the following Hamiltonian:

H = B

2

(
σ z

1 + σ z
2

) + J (σ+
1 σ−

2 + σ+
2 σ−

1 ). (14)

The eigenvalues and eigenvectors of H are given by

H |00〉 = −B|00〉, H |11〉 = B|11〉, H |�±〉 = ±J |�±〉,
(15)

where

|�±〉 = 1√
2

(|01〉 ± |10〉) (16)

are maximally entangled states. In the standard basis,

{|00〉,|01〉,|10〉,|11〉}, (17)

the superstatistical state (2) is given by

ρ̃ = 1

Z̃

⎛
⎜⎜⎝

B̃(B) 0 0 0
0 B̃(−J ) + B̃(J ) B̃(J ) − B̃(−J ) 0
0 B̃(J ) − B̃(−J ) B̃(−J ) + B̃(J ) 0
0 0 0 B̃(−B)

⎞
⎟⎟⎠,

(18)

where

Z̃ = B̃(−B) + B̃(B) + B̃(−J ) + B̃(J ) (19)

is the superstatistical partition function. From (18), one obtains
the following concurrence:

C̃ = max

{
B̃(−J ) + B̃(J ) − 2

B̃(−B) + B̃(B) + B̃(−J ) + B̃(J )
,0

}
. (20)

The latter is a function of J and B, just as the usual concur-
rence of the XY model but also is affected by temperature
fluctuations since the form of B̃(x) is determined by the
distribution f (β) throughout Eq. (3). A different f (β) leads to
a different concurrence. For instance, if f (β) corresponds to
a χ2 distribution, the concurrence has an analytical form that
reads as1

C̃q = max

{
sinhq(J/T ) − 1

coshq(J/T ) + coshq(B/T )
,0

}
, (21)

1Here, we present a nonextensive statistical mechanics approach to
the XY model. However, it is trivial that such an approach leads to the
concurrence (21) since it uses distributions given by χ 2 superstatistics
(see Ref. [35] for such an approach in the case of the two-site Hubbard
model).
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FIG. 1. Plot of the concurrence (20) with the average temperature
T0 for different superstatistics with B and J set equal to 1, and
q = 〈β2〉

〈β〉2 = 2 for all superstatistics. One easily can see that the critical
temperature is sensitive on the fluctuations.

where

coshq(x) = eq(x) + eq(x)

2
and

sinhq(x) = eq(x) − eq(−x)

2
(22)

are a generalization of the hyperbolic functions based upon the
Tsallis q exponential [34]. Other distributions (particularly
the log-normal and F distributions) lead to a concurrence
that can be calculated numerically or estimated in a limit of
small energies. The concurrence (20) is a generalization of
the concurrence of the XY model that takes into account the
effect of a fluctuating temperature. In the limit of there are
no fluctuations at all, i.e., f (β) = δ(β − β0), the concurrence
(20) reduces to the usual concurrence of the XY model [10],

C = max

{
sinh(J/T ) − 1

cosh(J/T ) + cosh(B/T )
,0

}
. (23)

Figure 1 shows the variation of the concurrence (20) with
the average temperature T0 = 1/β0 for different superstatistics

with q = 〈β2〉
〈β〉2 = 2. B and J are set equal to 1. The figure

shows that the concurrence is very sensitive to the temperature
fluctuations. Especially, the critical temperature beyond which
entanglement is not allowed (the temperature value for which
C̃ = 0) is highly sensitive to the type of fluctuation. In the
absence of fluctuations, the latter can be estimated at Tc 	 1.13
(see the figure). For different fluctuations, one has Tc 	
1.42 (χ2 distribution), Tc 	 1.52 (log-normal distribution),
and Tc 	 1.70 (F distribution). In fact, in the absence of
fluctuations, the concurrence (23) vanishes if sinh(J/T ) � 1,
and the critical temperature is given by

Tc = J

arcsin h(1)
	 1.1346J. (24)

In the more general case in which fluctuations exist, one has
to solve the equation B̃(−J ) + B̃(J ) = 2.

B. Anisotropic XY model

Consider the two-qubit anisotropic antiferromagnetic XY

model, described by the Hamiltonian,

Ha = J

2

[
(1 + γ )σx

1 σx
2 + (1 − γ )σy

1 σ
y

2

]
= J (σ+

1 σ−
2 + σ+

2 σ−
1 ) + Jγ (σ+

1 σ+
2 + σ−

2 σ−
1 ), (25)

where γ is the anisotropic parameter, i.e, γ = 0 corresponds
to the isotropic XY model without a magnetic field and
γ = 1 corresponds to the Ising model. The eigenvalues and
eigenvectors of Ha are given by

Ha|�±〉 = ±J |�±〉, Ha|�±〉 = ±Jγ |�±〉, (26)

where

|�±〉 = 1√
2

(|00〉 ± |11〉). (27)

It turns out that the four maximally entangled Bell states are
the eigenstates of Ha . The superstatistical state (2) for the
Hamiltonian Ha is given by

ρ̃ = 1

Z̃

⎛
⎜⎜⎝

B̃(−Jγ ) + B̃(Jγ ) 0 0 B̃(Jγ ) − B̃(−Jγ )
0 B̃(−J ) + B̃(J ) B̃(J ) − B̃(−J ) 0
0 B̃(J ) − B̃(−J ) B̃(−J ) + B̃(J ) 0
0 0 0 B̃(−Jγ ) + B̃(Jγ )

⎞
⎟⎟⎠, (28)

where

Z̃ = B̃(−J ) + B̃(J ) + B̃(−Jγ ) + B̃(Jγ ) (29)

is the superstatistical partition function. The square roots of
the eigenvalues of the operator 
12 are

B̃(±J )/Z̃ and B̃(±Jγ )/Z̃, (30)

and the concurrence (14) reads as

C̃ = max

{
B̃(−J ) − B̃(J ) − B̃(−Jγ ) − B̃(Jγ )

B̃(−J ) + B̃(J ) + B̃(−Jγ ) + B̃(Jγ )
,0

}
. (31)

The latter is a generalization of the concurrence obtained by
Wang [10] in the case of the anisotropic XY model that takes
into account temperature fluctuations. As in the previous case
of the isotropic model, the concurrence (31) has an analytic
expression in the case of χ2 superstatistics that reads

C̃q = max

{
sinhq(J/T ) − coshq(Jγ /T )

coshq(J/T ) + coshq(Jγ /T )
,0

}
, (32)

where sinhq(x) and coshq(x) are defined in Eq. (22). In fact,
Eq. (31) reduces to the concurrence obtained in the isotropic
case (20) for B = 0 when γ = 0. The critical temperature Tc
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FIG. 2. Plot of the concurrence (31) against J and Jγ with T0 = 0.8 and q = 〈β2〉
〈β〉2 = 2 for all superstatistics. The white region is the region

where entanglement is allowed. One easily can see that this region gets bigger for the considered temperature fluctuations.

is determined by the nonlinear equation,

B̃(−J ) − B̃(J ) − B̃(−Jγ ) − B̃(Jγ ) = 0. (33)

Figure 2 shows the variation of the concurrence (31) with J

and Jγ with an average temperature T0 = 0.8 and q = 〈β2〉
〈β〉2 = 2

for different superstatistics. One easily can see that the region
where entanglement is allowed (the white region) gets bigger
for all superstatistics within the chosen parameters.

IV. MAPPING SUPERSTATES ONTO A USUAL
THERMAL STATE

Let us now illustrate the procedure presented in Sec. II
in the particular case of the isotropic XY model to show
how the thermal superstate (18) can be mapped onto a usual
thermal state. We may formally consider a super-Hamiltonian
describing the entire system which at different instants has

effective energy levels Ēi simply by rewriting

β0H̄ = βjH, (34)

that leads to deformed energy levels which in this case
correspond to varying magnetic field B and interaction J ,

B̄(j ) = βjB

β0
, J̄ (j ) = βjJ

β0
. (35)

Then, since in this alternative view the temperature is no
longer a stochastic variable, one may perform ordinary
statistical mechanics with the deformed eigenvalues (35). The
partition function of the superthermal state can be written as

Z̃ =
∑

j

{exp(β0B̄
(j )) + exp(−β0B̄

(j )) + exp(β0J̄
(j ))

+ exp(−β0J̄
(j ))} (36)

= 1

2

∑
j

{cosh(β0B̄
(j )) + cosh(β0J̄

(j ))}, (37)
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which, abstracting from the sum over j , has the form of the usual partition function [10], and the thermal superstate reads as

ρ̃ = 1

Z̃

⎛
⎜⎜⎜⎜⎝

∑
j exp(−β0B̄

(j )) 0 0 0

0
∑

j cosh(β0J̄
(j )) −∑

j sinh(β0J̄
(j )) 0

0 −∑
j sinh(β0J̄

(j ))
∑

j cosh(β0J̄
(j )) 0

0 0 0
∑

j exp(β0B̄
(j ))

⎞
⎟⎟⎟⎟⎠, (38)

which leads to the concurrence,

C̃ = max

{ ∑
j sinh(J̄ (j )/T ) − 1∑

j [cosh(J̄ (j )/T ) + cosh(B̄(j )/T )]
,0

}
. (39)

The latter has the form of the usual concurrence of the XY

model [10]. It reduces to the concurrence (20), obtained
through the superstatistical approach, when the sum over j

is approximated by an integral,

∑
j

· · · →
∫ ∞

0
dβ f (β) · · · . (40)

V. CONCLUSION

In this paper, we have considered the formalism of
superstatistics as a possible tool to study entanglement in a
system out of equilibrium. Such an approach is expected to be a
suitable approximation for a continuously varying temperature
field that has a temporal correlation length, much larger than
the relaxation time, providing a weak interaction between the
system and the bath. Within these assumptions, the state of
the system can be described appropriately by a mixture of
different statistics. We have defined thermal superstates as
thermal states subject to a slowly varying temperature and
studied entanglement of such states in the case of the XY

model. Three types of temperature fluctuations, ubiquitous in
nature, have been considered, namely, χ2 (�), log-normal, and
F distributions. In the case of χ2 superstatistics, an analytical
expression for the concurrence has been derived that coincides
with the results of nonextensive statistical mechanics. Note
however that the picture given by superstatistics is different
since the deformation of the concurrence is based upon an
empirical fact, namely, temperature fluctuations. Our results

suggest that entanglement (measured here by the concurrence)
can be enhanced by particular temperature fluctuations and
can be prevented from vanishing at higher temperatures
than those predicted for the usual thermal states. This is
in agreement with numerous studies dealing with quantum
correlations in small multipartite open systems using different
approaches, such as non-Markovian master equations [36],
path-integral methods [37], or quantum Langevin equations
[38–40], which suggest that entanglement can be maintained
at higher average temperatures that would be possible if the
system were at thermal equilibrium. It suggests therefore that a
superstatistical approach is a good approximation and provides
a good effective description of such systems, despite its
simplicity. In fact, the superstatistical approach is completely
different than the aforementioned approaches since the state
of the system is not obtained through a microscopic study.
Superstatistics gives rather a picture of the nonequilibrium
state provided only a few extra parameters over those required
to describe the same system at equilibrium. The superstatistical
approach to thermal entanglement is used here, and thus, many
outlooks can be addressed. Superstatistics, in its quantum
picture as presented in this paper, can be useful to study
diverse nonequilibrium systems in a full quantum regime, and
comparison with different (more sophisticated) approaches or
with experimental data can elucidate the complete potential
and domain of the validity of this approach. Regarding
entanglement, one may consider different models (the Ising
model within a magnetic field, the Hubbard model, . . . , etc.)
and other measures of entanglement (mutual information,
entanglement of formation, . . . , etc.) and explore the effect
of temperature fluctuations over those studied in this paper.
A superstatistical approach to the process of teleportation,
subject to temperature fluctuations, seems also of some interest
and will be addressed in a future paper.
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