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Ising spin glasses in two dimensions: Universality and nonuniversality
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Following numerous earlier studies, extensive simulations and analyses were made on the continuous
interaction distribution Gaussian model and the discrete bimodal interaction distribution Ising spin glass (ISG)
models in two dimensions [Lundow and Campbell, Phys. Rev. E 93, 022119 (2016)]. Here we further analyze the
bimodal and Gaussian data together with data on two other continuous interaction distribution two-dimensional
ISG models, the uniform and the Laplacian models, and three other discrete interaction distribution models,
a diluted bimodal model, an “antidiluted” model, and a more exotic symmetric Poisson model. Comparisons
between the three continuous distribution models show that not only do they share the same exponent η ≡ 0 but
that to within the present numerical precision they share the same critical exponent ν also, and so lie in a single
universality class. On the other hand the critical exponents of the four discrete distribution models are not the
same as those of the continuous distributions, and the present data strongly indicate that they differ from one
discrete distribution model to another. This is evidence that discrete distribution ISG models in two dimensions
have nonzero values of the critical exponent η and do not lie in a single universality class.
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I. INTRODUCTION

The canonical dimension d = 2 Edwards-Anderson (EA)
model Ising spin glasses (ISGs) on square lattices with
either Gaussian or bimodal (±J ) nearest neighbor interaction
distributions have been the subject of numerous studies over
many years. Below we will refer in particular to our own
measurements on these two models [1]. There are analytic
arguments that these two archetype models [and by extension
all two-dimensional (2D) ISG models with other distributions]
have zero-temperature transitions [2,3].

After explaining the simulation and analysis techniques
used, we first present data on two other continuous distribution
models: the uniform and the Laplacian interaction distribution
models, comparing with the Gaussian model. For the Gaussian
model, where the interaction distribution is continuous and
the ground state for each individual sample is unique, there
is a general consensus concerning the thermodynamic limit
(ThL) critical exponents: η ≡ 0, ν = 3.52(2) [4–9]. We find
that not only is the anomalous dimension critical exponent
η ≡ 0 for each of these three models as it must be, but also
that the correlation length exponent is ν = 3.52(5) for all
three models to within the precision of the present numerical
data extrapolations. The data are thus compatible with all 2D
continuous interaction distribution models lying in a single
universality class.

For the 2D bimodal model the interaction distribution is
discrete and the ground state is highly degenerate. There
are two limiting regimes, with a size dependent crossover
temperature T ∗(L) [10], a T < T ∗(L) ground state plus gap
dominated regime and an effectively continuous energy level
regime T > T ∗(L). There have been consistent estimates over
decades from finite temperature correlation function mea-
surements: η = 0.4(1) [11], η = 0.28(4) [12], Monte Carlo
renormalization-group measurements η ≈ 0.20 [13], transfer
matrix calculations [14], numerical simulations η ≈ 0.20 [15],
η ≈ 0.138 [16], η > 0.20 [17], η = 0.20(2) [1], and T ≡ 0
ground state measurements η = 0.14(1) [18] and η = 0.22(1)

[19] showing anomalous dimension critical exponent estimates
η ≈ 0.20 in both regimes, indicating that the bimodal model is
not in the same universality class as the continuous distribution
models. However, it has also been claimed that the bimodal
model in the T > T ∗(L) regime is in the same universality
class as the Gaussian model, because for the bimodal model:
“fits... lead to values of η that are very small, between 0 and
0.1, strongly suggestive of η = 0” [10], and “the data are not
sufficiently precise to provide a precise determination of η,
being consistent with a small value η � 0.2, including η = 0”
[20,21]. Recently the much more categorical statement has
been made that “we can safely summarize our findings as
|η| < 0.02” [9].

We discuss the Binder cumulant and correlation length ratio
comparison approach [22] in the 2D context, as applied to the
continuous interaction distribution models and to the bimodal
model, and then the quotient approach used in Ref. [9] as
applied to the bimodal model. From both approaches we
deduce estimates for the bimodal ISG exponents in the T >

T ∗(L) regime which are fully compatible with our previous
conclusions Ref. [1] including η ≈ 0.20.

We then study three other discrete interaction distribution
models: a diluted bimodal ISG, an “antidiluted” bimodal
model, and a symmetric Poisson model. Using the approach
of Ref. [1] and the Binder cumulant and correlation length
ratio comparison approach we are led to conclude that each
discrete interaction model has a nonzero anomalous dimension
exponent η and lies in an individual universality class.

II. SIMULATIONS AND ANALYSIS

Simulations were carried out on square lattice Ising spin
glasses (ISGs) with near neighbor interactions, up to size
L = 128 and with N = 213 = 8192 independent samples at
each size. Each of the 2D ISG models orders only at zero
temperature. As in Ref. [1] where measurements were made
on the square lattice ISG models with Gaussian and bimodal
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interaction distributions, the samples were equilibrated using
the Houdayer method [15] with four replicas; all the simulation
techniques are identical to those already described in detail in
Ref. [1]. As far as could be judged by reading off the figures
shown in Ref. [9], all the raw Gaussian and bimodal data in
the [9] and [1] simulation sets are in full agreement with each
other to within the statistics. For the present data analysis, in
addition to using T as the temperature scaling variable, which
is a standard convention for models which order at zero temper-
ature, we use τb = 1/(1 + β2), where β = 1/T , as the scaling
variable (see Ref. [1]). This variable is appropriate for ISGs
with Tc = 0 because of the symmetry between positive and
negative interactions in the distributions, and because τb has
the limits τb = 0 at T = 0, and τb = 1 at infinite temperature
and so is well adapted to the Wegner scaling approach [23].
For consistency, when using this scaling variable we scale not
the bare second moment correlation length ξ (τb,L) but the
normalized correlation length ξ (τb,L)/β following a general
rule for ISGs in any dimension [24]. The normalized correla-
tion length [like the susceptibility χ (τb,L) and the normalized
Binder cumulant g(τb,L)L2], tends to 1 and not to 0 at infinite
temperature; in consequence the behavior of ξ (τb,L)/β over
the entire temperature range can be expressed to good precision
using only a few finite Wegner correction terms.

For any distribution, for samples of size L in the temperature
range where L � 7ξ (τb,L) all observables are practically
independent of L and so can be considered to be in the
thermodynamic limit (ThL) regime where observable values at
finite L are equal to the infinite-size limit values. This regime
can be readily identified by inspection of scaling plots.

In order to underline the validity of the analysis procedure
which was used for the bimodal and Gaussian ISG data in
Ref. [1] and which is again used below for the other ISG
models, in Appendix A we apply the same procedure to the
fully frustrated (FF) Villain model, a well understood 2D
Ising model with a strongly degenerate ground state which has
a zero temperature ferromagnetic ordering point and known
critical behavior.

III. 2D CONTINUOUS DISTRIBUTION ISG MODELS

The standard ISG Hamiltonian is H = −∑
ij Jij SiSj

with the near neighbor symmetric distributions normalized
to 〈J 2

ij 〉 = 1. The normalized inverse temperature is β =
(〈J 2

ij 〉/T 2)1/2. The Ising spins are situated on simple L × L

grids with periodic boundary conditions. The spin overlap
parameter is defined as usual by

q = 1

Ld

∑

i

SA
i SB

i , (1)

where A and B indicate two copies of the same system and the
sum is over all sites. The Laplacian interaction distribution
is P (J ) = √

2 exp(−√
2|J |), and the uniform interaction

distribution is P (J ) = 1/(2
√

3) for −√
3 < J <

√
3. As in

the Gaussian distribution, these distributions are continuous
in the region around J = 0; each sample has a unique ground
state and an anomalous dimension exponent η ≡ 0.

We first show in Figs. 1 and 2 y(β,L) =
∂ ln χ (β,L)/∂ ln ξ (β,L) against x(β,L) = 1/ξ (β,L) for

FIG. 1. The logarithmic derivative of the SG susceptibility by the
second moment correlation length ∂ ln χ (β,L)/∂ ln ξ (β,L) against
the inverse correlation length 1/ξ (β,L) for the Laplacian model.
L = 128, 96, 64, 48, 32 (left to right). Green continuous curve:
extrapolation.

these two models; the data can be compared with the data for
the Gaussian model already shown in Ref. [1], Fig. 3. As must
be the case for continuous distributions, the ThL envelope
for the derivative in each of these models is consistent
with an extrapolation to y(β,L) = 2.0 at zero temperature
x(β,L) = 0, corresponding to the critical exponent η = 0 in
each model.

In Fig. 3 we show the effective correlation length expo-
nents νb(β,L) = ∂ ln[ξ (β,L)/β]/∂ ln τ (β) as functions of τb

together for all sizes L and for all three continuous distribution
models. In Fig. 4 we show the effective susceptibility expo-
nents γb(β,L) = ∂ ln χ (β,L)/∂ ln τ (β) again for all L and for
all three models. We have carried out extrapolations using just
the same polynomial fit procedure as explained in detail in

FIG. 2. The derivative of the SG susceptibility by the second mo-
ment correlation length ∂ ln χ (β,L)/∂ ln ξ (β,L) against the inverse
correlation length 1/ξ (β,L) for the uniform model. L = 128, 96, 64,
48, 32 (left to right). Green continuous curve: extrapolation.
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FIG. 3. The logarithmic derivative of the normalized second
moment correlation length ∂ ln[ξ (τb)/β)]/∂ ln τb for the uniform (top
sets, green circles), Gaussian (middle sets, red squares), and Laplacian
(bottom sets, blue triangles), L = 128, 96, 64, 48, 32, 24, 8 (left
to right in each case). Dashed curves: fits. Arrows: exact infinite
temperature limits.

[1] and in the appendixes. The extrapolated zero temperature
critical exponent estimates are νb = 1.27(2) and γb = 3.52(5)
for all three models. For all models (continuous and discrete
interaction distributions) these critical exponents are related
to the correlation length ν and anomalous dimension η

critical exponents in the traditional T scaling convention
by νb = (ν − 1)/2 and γb = ν(2 − η)/2. The exact infinite-
temperature limits are νb = 2 − K/3 where K is the kurtosis
of the interaction distribution, and γb = 4 [1].

Thus all the critical exponent estimates for these three
nondegenerate ground state models are compatible with η = 0
and ν = 3.52(2). We conclude that all two-dimensional nonde-

FIG. 4. The logarithmic derivative of the spin glass susceptibility
∂ ln χ (τb)/∂ ln τb for the uniform (top sets, green circles), Gaussian
(middle sets, red squares), and Laplacian (bottom sets, blue triangles),
L = 128,96,64,48,32,24,8 (left to right in each case). Dashed curves:
fits. Arrow: exact infinite temperature limit for all distributions.

generate ground-state ISG models lie in a single universality
class; not only is η = 0 which must be true for this class
of models, but also all critical ν values appear to be identical
within the statistical and extrapolation errors. The strength and
sign of the corrections to scaling are, however, quite different
for the different models. Again, with the τb scaling convention,
the correlation lengths with the leading Wegner scaling
corrections assuming a leading correction exponent θ = 1 are

ξ (τb) = (0.69/β)τ−1.28
b [1 + 0.49τb + · · · ] (2)

for the Gaussian model,

ξ (τb) = (1.13/β)τ−1.28
b [1 − 0.04τb + · · · ] (3)

for the uniform model, and

ξ (τb) = (0.25/β)τ−1.28
b [1 + 2.5τb + · · · ] (4)

for the Laplacian model.
It can be noted that these data provide a validation of the

extrapolation procedure outlined in [1] and in the appendixes.
Although the corrections are very different in the three models,
the extrapolations to criticality lead to consistent exponent
values. A priori this implies that for other models where the
same extrapolation procedure leads to other critical exponent
estimates, these different values can be considered to be
reliable.

IV. CORRELATION LENGTH RATIO AND BINDER
CUMULANT SCALING

Universality in ISGs has been tested through comparing
plots of the Binder parameter g(β,L) against the second mo-
ment correlation length ratio ξ (β,L)/L for different models,
interpreted using finite-size scaling arguments (see for instance
Ref. [22]).

We will consider this type of scaling plot in the 2D context.
In this section we will use U4(β,L) = 3 − 2g(β,L) rather than
g(β,L) to facilitate comparisons with Ref. [9].

Quite generally the 2D correlation function (either a
spin-spin correlation function for ferromagnets or a spin
glass correlation function for ISGs) at distance r takes the
asymptotic form

G(β,r) ∼ r−η exp[−r/�(β)] (5)

with possible small r finite-size deviations, where �(β) is
the exponential or “true” correlation length (not the second
moment correlation length [25]). Dimensionless observables
Q(β,L) such as U4(β,L) or ξ (β,L)/L will each be given
by a general toroidal integral Q(β,L) = ∫ L

FQ(r)G(β,r)r2dr

where FQ(r) is the appropriate function for the variable, or a
ratio of integrals.

For any model with η = 0 so G(β,r) ∼ exp[−r/�(β)],
at given β and L the integrals are entirely determined by
�(β) and L so whatever the temperature variations of �(β)
for a particular model, plots of one dimensionless observable
Qa(β,L) against another dimensionless observable Qb(β,L)
will be universal, independent of the model and of L, in
agreement with the general ISG scaling rule [22]. As the 2D
models have Tc = 0 the universal curve for η = 0 models will
extend up to the critical zero temperature limit [U4(0,L) = 1,

ξ (0,L)/L = ∞] for all L.
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FIG. 5. Plot of the Binder cumulant U4(β,L) against ξ (β,L)/L
for the 2D Laplacian model from ξ (β,L)/L = 0 to ξ (β,L)/L = 0.7.
L = 48, 12, 6, 4 (top to bottom). For all L the curves will extend to
U4(β,L) = 1,ξ (β,L)/L = ∞ at T = 0.

The measurements on the η = 0 ISG models show that
for small to moderate L and ξ (β)/L < 0.3, the U4(β,L)
against ξ (β,L)/L curves are not quite independent of L,
Fig. 5. The small L deviations can be ascribed to the
presence of preasymptotic corrections to G(r). However, for
ξ (β)/L > 0.3, the U4(β,L) against ξ (β,L)/L scaling curves
for the Gaussian, uniform, and Laplacian η = 0 ISG models
become identical and independent of L to within the statistics,
Fig. 6. Only at very small sizes, L ≈ 4, are there still weak
finite-size deviations, which were seen also in Ref. [9] for the
Gaussian model. The present data show L = 4 deviations for

FIG. 6. Plot of the Binder cumulant U4(β,L) against ξ (β,L)/L
from ξ (β,L)/L = 0.6 to ξ (β,L)/L = 1.1. In the top curve, the 2D
L = 12 Gaussian model (green circles), the 2D L = 12 uniform
model (brown squares), and the 2D L = 12 Laplacian model (blue
triangles), all overlapping. Lower set: the bimodal model, L = 12 red
inverted triangles, L = 16 red triangles, L = 32 orange diamonds,
L = 48 black circles, L = 64 pink triangles. Critical point 2D Ising
ferromagnet: open square.

the uniform model which are very similar in strength to the
Gaussian deviations; the Laplacian model deviations are rather
weaker.

In any model where η is not zero, at criticality �(βc) = ∞
and the critical observables will be given by integrals with the
asymptotic correlation function G(βc,r) ∼ r−η. [As this func-
tion diverges at r = 0, it must take up an appropriate functional
form such as G(βc,r) = 1/(1 + rη) for small r , leading to
small L corrections.] The explicit infinite-size critical toroidal
integrals for the 2D Ising ferromagnet with η ≡ 1/4 were
calculated by Salas and Sokal [26], and gave ξ (βc,L)/L =
0.905 048 829 2(4) and U4(βc) = 1.167 92 . . .. For the 2D fully
frustrated model with η = 1/2, from simulations there is a
critical zero temperature end point at ξ (0,L)/L = 0.49(1),
U4(0,L) = 1.615(5) ([27] and see Appendix A), with weak
finite-size effects. Numerical toroidal integrations for critical
points could in principle be carried out for other η values. In
2D strip geometry at criticality ξ (βc,L)/L = 1/(πη) [28]. The
Ising, FF, and η = 0 values in square geometry correspond
approximately to ξ (βc,L)/L = 1/(4.4η), and we can take
this as a rough calibration for the estimation of the ISG η

values from end-point ξ (0,L)/L estimates. (Unfortunately all
other partially frustrated S = 1/2 2D Ising models have finite
ordering temperatures and η = 1/4 like the Ising model [29]
so they can give no further critical point information.)

For nonzero η ISG models with Tc = 0 one can expect
[U4(0,L),ξ (0,L)/L] end-point limits for each L, with a critical
zero-temperature end-point limit for infinite L whose location
will be determined uniquely by η.

In Fig. 6, [U4(0,L),ξ (0,L)/L] scaling plots are compared.
In addition to a part of the η = 0 ISG universal scaling curve
we show the 2D Ising ferromagnet Tc critical point, and scaling
data for the 2D bimodal ISG. The Ising ferromagnet η = 0.25
critical point happens to lie rather close to the universal η = 0
curve. For the bimodal ISG model, data for each L can
be seen to leave a common �(β) dominated regime curve
(which is similar to but distinct from the η = 0 universal
curve) before smoothly attaining a weakly L dependent end
point, corresponding to the T < T ∗(L) ground state regime.
The observation that for each L this behavior is smooth and
regular as the temperature tends to zero, with a final bunching
up of data points when the ground state regime is reached,
indicates that the effective η in the T > T ∗(L) regime and in
the (weakly L-dependent) T < T ∗(L) ground state regime are
essentially the same. In other words the state degeneracy and
hence η depends only mildly on temperature, right through
the T ∗(L) crossover. The series of end points for increasing
L will terminate at an infinite-L bimodal model end point
(see Ref. [17]) which is close to but beyond the ferromagnetic
Ising critical point, so consistent with a bimodal ISG η which
is lower than but close to η = 0.25. By inspection, the bimodal
ISG data are incompatible with a critical exponent η = 0.
The position of the infinite-L bimodal ISG end point will
be estimated below together with the positions for three other
discrete interaction distribution 2D ISG models, Fig. 16.

V. 2D BIMODAL ISG: QUOTIENT APPROACH

In Ref. [9] raw 2D Gaussian and bimodal ISG simulation
data broadly equivalent to Ref. [1] were generated; these
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were analyzed using a quotient approach, with the normalized
second moment correlation length x = ξ (T ,L)/L as the
scaling variable. It should be noted that the quotients in Ref. [9]
are at constant x not quotients at constant T as in for instance
Ref. [30]. Unfortunately no derivations are given in Ref. [9] for
any of the important quotient limit expressions which are cited.
Here we provide simple derivations for the quotient limits and
we discuss plots made up of data formatted following the
quotient approach.

Assume the basic Tc = 0 scaling expressions ξ (T ) ∼ T −ν

and χ (T ) ∼ T −(2−η)ν , valid near the large L, T → 0 critical
limit. At size L and temperature T , x(T ,L) = ξ (T ,L)/L ∼
T (x,L)−ν/L.

Then for size 2L at the same x and at temperature T ′′(x,2L),

x(T ′′,2L) = ξ (T ′′,2L)

2L
= T ′′(x,2L)−ν

2L

= T (x,L)−ν

L
(6)

with x(T ,L) = x(T ′′,2L); so T (x,L)−ν/T ′′(x,2L)−ν = 2,
i.e., the quotient QT as defined in Ref. [9] tends to

QT = T ′′(x,2L)

T (x,L)
= 2−1/ν (7)

in the large-L limit. This expression is identical to the limit
relation cited in Ref. [9], Eq. (7), implying that the limit
derivation procedure followed was the same as the present one.
Using this expression, the Gaussian QT (0) = 0.82 large-L
intercept reported in Ref. [9] is consistent with the accepted
literature value ν = 3.55(2) [4–8] for the Gaussian ISG critical
exponent.

Then

〈q2〉(T ,L) = χ (T ,L)

L2
= T −(2−η)ν

L2
. (8)

With x = ξ (L,T )/L, from above T (x,L)−ν = ξ (T ,L) =
Lx(T ,L), so

〈q2〉(x,L) = T (x,L)−ν(2−η)

L2
= (xL)(2−η)

L2

= L(x,T )−ηx2−η, (9)

i.e., the quotient Qq2 = 〈q2〉(x,2L)/〈q2〉(x,L) = 2−η in the
large-L limit. This is identical to the expression cited in
Ref. [9], Eq. (D3).

We can inspect Figs. 7 and 8 for the bimodal ISG quotients
with points compiled from the present numerical data; the
figures are presented in just the same form as Ref. [9], Fig. 7
upper and middle. As far as can be judged by reading off
the plots in Ref. [9], point-by-point agreement between the
present quotients and those of Ref. [9] is excellent (as could be
expected as the raw data should be essentially the same). The
natural extrapolations indicated in the present figures lead to
bimodal ISG critical infinite-L quotient intercept estimates
QT (0) = 0.865(10) and Qq2 (0) = 0.87(1). (No equivalent
extrapolations of the bimodal quotient data were made in
Ref. [9], but if these had been made the intercept estimates
would have been very similar to the present values.) From
the limit expressions above, these intercepts correspond to bi-
modal critical exponent estimates ν = 4.8(3) and η = 0.20(2),

FIG. 7. 2D bimodal quotient QT (x,L) for x = ξ (L)/L values
x = 0.1, 0.2, 0.3, 0.4, 0.5 (bottom to top). The horizontal axis is
(2L)−0.567 as in Ref. [9] [in this reference the axis is stated to be
(L)−0.567 which is incorrect].

estimates which are fully consistent with the bimodal expo-
nents estimated through a completely independent analysis
procedure in Ref. [1]. In particular the value estimated for η is
clearly nonzero.

Finally, in Ref. [9], Sec. VI and Appendix C, an observable
g(x,T ) is defined by g(x,T ) = 〈q2〉(x = 0.4,T )/〈q2〉(x,T )
averaged over T . [The factor [ûh(T )]2 depends only on T

and so cancels out in the ratio in Ref. [9] Fig. 3.] Note that
the 〈q2〉(x = 0.4,T ) and 〈q2〉(x,T ) in the definition of g(x,T )
correspond to the same T but at quite different L, say L(x,T )
and L′′(0.4,T ).

From the quotient discussion for Qq2 above and assuming
some fixed T : 〈q2〉(x,T ) = L(x,T )−ηx2−η and from the QT

discussion L(x,T ) = T (x,L)−ν/x(T ,L).

FIG. 8. 2D bimodal quotient Qq2 (x,L) for x = ξ (L)/L values
x = 0.1, 0.2, 0.3, 0.4, 0.5 (bottom to top). The horizontal axis is
(2L)−0.567 as in Ref. [9] [in this reference the axis is stated to be
(L)−0.567 which is incorrect].
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So

〈q2〉(x = 0.4,T ) = [

T (x,L′′)−ν/x(T ,L′′)︷ ︸︸ ︷
T (0.4,L′′)−ν/0.4]−η0.42−η

= [T (0.4,L′′)−ν]−η0.4η0.42−η

= [T (0.4,L′′)−ν]−η0.42 (10)

and

〈q2〉(x,T ) = [T (x,L)−ν/x(T ,L)]−ηx2−η

= [T (x,L)−ν]−ηxηx2−η

= [T (x,L)−ν]−ηx2. (11)

As T (0.4,L′′) = T (x,L),

g(x,T ) = 〈q2〉(0.4,T )

〈q2〉(x,T )
= 0.42x−2 = 0.16

x2
(12)

at small x whatever η. The log-log g(x,T ) against x data
plot shown in Ref. [9], Fig. 3, is entirely consistent with this
simple rule (including the prefactor 0.16) from x = 0.1 to
about x = 0.5 for both the Gaussian and the bimodal models.

The relation g(x) ∼ 1/x2−η cited (with no derivation) in
Ref. [9] is in disagreement with the present derivation, and
with the observed data shown in Ref. [9]. The conclusion in
Ref. [9] that |η| < 0.02 for the 2D bimodal ISG model, drawn
principally from g(x,T ) analyses, seems to have been based
on an incorrect expression and so is invalid.

To summarize, when the quotient analyses presented in
Ref. [9] with the limit derivations given above are applied to the
bimodal simulation data, estimates for the critical exponents
in the bimodal ISG model obtained by extrapolations of Q(T )
and Q(q2) to large L are consistent with those obtained
following the analysis procedure used in Ref. [1]. Both
bimodal exponents are quite different from the values for
the continuous distribution models. The g(x,T ) data analysis
provide no information on the critical exponents.

FIG. 9. The interaction distribution for the symmetric Poisson
ISG model.

FIG. 10. Diluted bimodal 2D ISG. Logarithmic derivative of the
specific heat ∂ ln Cv(β,L)/∂β against T . Full points: L = 32, 24, 16,
12, 6, 4 (green, black, pink, red, blue, cyan; top to bottom on the
right). Open points: bimodal 2D ISG L = 4 for comparison. Red
line: y(x) = −2.1 + 2x, blue (lower) line y(x) = −4 + 2x.

VI. DISCRETE INTERACTION DISTRIBUTION ISGS

Having studied the standard 2D bimodal model in [1], we
have now made equivalent measurements on three different
degenerate ground state models: a diluted bimodal model with
a fraction p = 0.125 of the interactions set randomly to zero (a
diluted bimodal model was already studied in Refs. [19,31]),
an antidiluted bimodal model where a fraction p = 0.2 of
the interactions are set randomly to strength ±2J and the
remaining fraction to ±J . Also we test a more complex
symmetric Poisson model with an interaction distribution
shown in Fig. 9; this model has probability λ|k| exp(−λ)/2 for
strength (k/4)J , when k �= 0, and probability exp(−λ) when
k = 0, with λ = (

√
65 − 1)/2.

These models have discrete interaction distributions and
so can be expected to have degenerate ground states; we do

FIG. 11. Antidiluted bimodal 2D ISG. Logarithmic derivative of
the specific heat ∂ ln Cv(β,L)/∂β against T . Full points: L = 24, 12,
8, 6, 4 (brown, red, black, blue, green; top to bottom on the right).
Red line: y(x) = −1.55 + 2x.
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FIG. 12. Symmetric Poisson 2D ISG. Logarithmic derivative of
the specific heat ∂ ln Cv(β,L)/∂β against T . Full points: L = 24, 12,
8, 6 (black, pink, red, blue; top to bottom on the right). Green line:
y(x) = −0.45 + 2x.

not, however, know the values of the ground state degeneracy.
Logarithmic derivatives of the specific heat data are shown in
Figs. 10–12 in the same format, ∂ ln Cv/∂β against T , as that
of the bimodal ISG model in [1] Fig. 4 and of the FF model,
Fig. 26 below. Again the discrete distribution data indicate
crossovers for all models, with a T < T ∗(L) ground state
plus gap regime specific heat of the form Cv ∼ βB exp(−Aβ)
having B ≈ 2. The effective gap parameter A ≈ 2.1 for the
diluted bimodal model, A ≈ 1.5 for the antidiluted bimodal
model, and A ≈ 0.5 for the symmetric Poisson model, so
significantly smaller than the gap A = 4 of both the FF
and pure bimodal models. Reference [31] showed data on
a perturbed FF model which were also interpreted as having
a gap A weaker than 4. We do not dispose of large L data to
low enough T to be able to establish the limiting infinite-size
T > T ∗(L) ThL form of Cv(T ) for these models.

FIG. 13. Symmetric Poisson 2D ISG. The normalized correlation
length ξ (T ,L)/L against T at low temperatures. L = 4, 6, 8, 12, 24
(top to bottom).

FIG. 14. Diluted bimodal 2D ISG. Low temperature Binder cu-
mulant U4(β,L) against the normalized correlation length ξ (β,L)/L
(L = 24 red squares, L = 12 black triangles, L = 8 blue diamonds).
For each L the data points terminate at a zero temperature end
point. For comparison, the universal continuous distribution curve is
represented by L = 12 Gaussian ISG data (upper set, green circles)
which extend to infinity.

In each of the discrete interaction models, the normalized
correlation length saturates at an end-point value at low
temperature for all L. As an example the data for the symmetric
Poisson model are shown in Fig. 13. Binder cumulant U4(β,L)
against normalized correlation length ξ (β,L)/L plots are
shown in Figs. 14 and 15 for the diluted bimodal and antidiluted
bimodal models. As for the bimodal model the data points lie
on a curve distinct from the continuous distribution universal
curve and tend to end points for each L at zero temperature,
behavior characteristic of a nonzero exponent η. The end-point
values of ξ (0,L)/L for all four discrete interaction models are

FIG. 15. Antidiluted bimodal 2D ISG. Low temperature Binder
cumulant U4(β,L) against the normalized correlation length
ξ (β,L)/L. (L = 12 red diamonds, L = 8 black triangles, L = 6 blue
squares.) For each L the data points terminate at a zero temperature
end point. For comparison, the universal continuous distribution curve
is represented by L = 12 Gaussian ISG data (upper set, green circles)
which extend to infinity.

042107-7



P. H. LUNDOW AND I. A. CAMPBELL PHYSICAL REVIEW E 95, 042107 (2017)

FIG. 16. Size dependent zero temperature end-point values of
ξ (β,L)/L for the four discrete interaction models: symmetric Poisson
model, antidiluted bimodal model, diluted bimodal model, and
bimodal model, from top to bottom.

shown plotted against 1/L in Fig. 16. The infinite-L end-point
values estimated by extrapolation are distinct, indicating that
the η values are distinct so the discrete interaction models are
all in different universality classes.

From the approximate calibration of the [ξ (L)/L]T =0

infinite-L end-point values in terms of η above, we can
give estimates η(T ≡ 0) ≈ 0.24, 0.21, 0.18, 0.14 respectively
for the bimodal, diluted, antidiluted, and symmetric Poisson
models. We can remark that the end-point values lie close
to but beyond the 2D Ising ferromagnet T = Tc critical
value, implying that the ISG η(T ≡ 0) values are all near
but somewhat below 0.25. The η(T ≡ 0) values are roughly
consistent with the η(T > T ∗(L),L → 0) estimates from the
extrapolation approach given below.

FIG. 17. Diluted bimodal 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln ξ (β,L) against 1/ξ (β,L) for L = 128, 96, 64, 48,
32 (black, pink, red, blue, green) left to right. The continuous (green)
curve is an extrapolated fit.

FIG. 18. Antidiluted bimodal 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln ξ (β,L) against 1/ξ (β,L) for L = 128, 96, 48, 32,
24, 16, 12 (left to right). The continuous (green) curve is an
extrapolated fit.

In Figs. 17–19 we show the y(β,L) =
∂ ln χ (β,L)/∂ ln ξ (β,L) against x(β,L) = 1/ξ (β,L) plots for
the diluted bimodal, the antidiluted bimodal and the symmetric
Poisson model. By mild extrapolation the intercepts can be
estimated to be y(x = 0) ≈ 1.845, 1.87, and 1.90, i.e.,
η(T > T ∗(L),L → 0) = 2 − y(x = 0) ≈ 0.155(10), 0.13(1),
and 0.10(1) for these models, weaker than the estimate
η(T > T ∗(L),L → 0) = 0.20(2) for the bimodal model
[1], but still far from zero. As in the bimodal ISG, there
are overshoots as functions of temperature for individual L

curves. (In Ref. [19], for a diluted bimodal model at zero
temperature the estimate obtained was η ≈ 0.20.)

In Figs. 20–22 we show the effective exponent νb(β,L) =
∂ ln[ξ (β,L)/β]/∂ ln τb for all sizes L for these models, and
in Figs. 23–25 we show the effective exponents γb(β,L) =
∂ ln χ (β,L)/∂ ln τb. We have carried out extrapolations using

FIG. 19. Symmetric Poisson 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln ξ (β,L) against 1/ξ (β,L) for L = 128, 96, 48, 32,
24, 16, 12, 8 (left to right).
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FIG. 20. Diluted bimodal 2D ISG. Logarithmic derivative
∂ ln[ξ (β,L)/β]/∂ ln τb against τb for L = 128, 96, 64, 48, 32, 24,
12 (left to right). The continuous (green) curve is an extrapolated
fit. The right hand side arrow indicates the exact infinite temperature
limit.

just the same polynomial fit procedure as explained in [1] and
in the appendixes in order to estimate the zero temperature
critical intercepts.

The extrapolated critical exponent estimates for the diluted
bimodal model, the antidiluted bimodal model, and the
symmetric Poisson model are νb = 1.40(2), 1.39(2), 1.30(2),
and γb = 3.65(5), 3.60(5), 3.46(2) respectively, as compared
with νb = 1.9(1), γb = 4.3(1) for the bimodal model [1].
These exponents are related to the correlation length critical
exponent ν in the traditional T scaling convention by νb =
(ν − 1)/2 and γb = ν(2 − η)/2 [1]. Thus the critical exponent
estimates for the degenerate ground state models are consis-
tent with η = 0.155(5), ν = 3.8(1), η = 0.13(1), ν = 3.7(2),
and η = 0.10(2), ν = 3.6(1) respectively, as compared with

FIG. 21. Antidiluted bimodal 2D ISG. Logarithmic derivative
∂ ln[ξ (β,L)/β]/∂ ln τb against τb for L = 128, 96, 48, 32, 24, 16,
12 (left to right). The continuous (green) curve is an extrapolated
fit. The right hand side arrow indicates the exact infinite temperature
limit.

FIG. 22. Symmetric Poisson 2D ISG. Logarithmic derivative
∂ ln[ξ (β,L)/β]/∂ ln τb against τb for L = 128, 96, 48, 32, 24, 16,
12, 8 (left to right). The continuous (green) curve is an extrapolated
fit. The right hand side arrow indicates the exact infinite temperature
limit.

η = 0.20(2), ν = 4.8(1) for the bimodal model [and η = 0,
ν = 3.55(2) for the continuous distribution models]. The
data for the bimodal model true correlation length at low
temperatures obtained by Merz and Chalker with a remarkable
network mapping technique, Ref. [32], Fig. 24, can be
extrapolated to a critical exponent value ν ≈ 4.6 which is
consistent with the simulation estimate for the bimodal value
ν in Ref. [1]. Although these values are similar to each other
they are all different and all are quite distinct from the bimodal
model estimates η = 0.20(2),ν = 4.8(3) [1].

VII. CONCLUSIONS

We show simulation data for three continuous and four
discrete interaction distribution 2D ISG models and for the 2D
fully frustrated Villain model (Appendix A). All these models

FIG. 23. Diluted bimodal 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln τb against τb for L = 128, 96, 48, 32, 24 (left to
right). The continuous (green) curve is an extrapolated fit. The right
hand side arrow indicates the exact infinite temperature limit.
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FIG. 24. Antidiluted bimodal 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln τb against τb for L = 128, 96, 48, 32, 24, 16, 12
(left to right). The continuous (green) curve is an extrapolated fit. The
right hand side arrow indicates the exact infinite temperature limit.

order only at zero temperature. The simulation techniques and
the analysis follow strictly those of Ref. [1] where results
for the canonical 2D ISG bimodal (discrete) and Gaussian
(continuous) interaction distribution models were reported.
We have made extensive simulation measurements up to size
L = 128 on each model, which have been analyzed using the
2D scaling parameter τb = 1/(1 + β2) as in [1] as well as the
traditional scaling parameter T .

In the class of ISG models with continuous interaction
distributions, in addition to the Gaussian distribution we have
studied the uniform interaction distribution and the Laplacian
interaction distribution. These models have nondegenerate
ground states and as a consequence an anomalous dimension

FIG. 25. Symmetric Poisson 2D ISG. Logarithmic derivative
∂ ln χ (β,L)/∂ ln τb against τb for L = 128, 96, 48, 32, 24, 16, 12,
8 (left to right). The continuous (green) curve is an extrapolated fit.
The right hand side arrow indicates the exact infinite temperature
limit.

exponent η ≡ 0. Except for very small sizes and high temper-
atures, for all η = 0 models and for all L, Binder parameter
U4(β,L) against normalized second moment correlation length
ξ (β,L)/L data lie on a single universal curve extending to the
zero temperature limit [U4(L) = 1,ξ (L)/L ≡ ∞].

The present numerical data show that estimates for the
critical second moment correlation length exponent for the
continuous interaction distributions are all compatible with
ν = 3.55(2) (expressed in terms of the T temperature scaling
convention), which is the accepted value for the Gaussian
distribution 2D ISG [4–8]. This result is consistent with all
continuous interaction distribution 2D ISGs forming a single
universality class.

The bimodal interaction 2D ISG, a diluted bimodal inter-
action 2D ISG, an antidiluted 2D ISG, a multipeak 2D ISG,
and the 2D FF model all order only at zero temperature, have
discrete interaction distributions, and have highly degenerate
ground states. For each model the specific heat data show
crossovers at size-dependent temperatures T ∗(L) between an
effectively continuous energy state distribution regime for
T > T ∗(L) and a ground state plus excited state dominated
regime for T < T ∗(L).

For each of these models, the Binder parameter U4(β,L)
against normalized second moment correlation length
ξ (β,L)/L data do not lie quite on the η = 0 universal
curve, and for every L the data tend to zero temperature
end points which are far from U4(L) = 1, ξ (L)/L ≡ ∞. As
the temperature is lowered the data for each model evolve
continuously and smoothly through T ∗(L) indicating that the
effective η values in the T > T ∗(L) and T < T ∗(L) regimes
are similar to each other in each model. The T = 0 end-point
values of ξ (L)/L extrapolated to infinite L are different for
every model, implying that the models all lie in different
universality classes with different nonzero η(T ≡ 0) values.

From scaling analyses, the critical exponents of the discrete
distribution ISGs are estimated to be η = 0.20(2), ν = 4.8(1)
for the bimodal model, η = 0.155(5), ν = 3.8(1) for the
p = 0.125 diluted bimodal model, η = 0.13(1), ν = 3.8(1)
for the p = 0.20 antidiluted bimodal model, and η = 0.10(1),
ν = 3.6(1) for the symmetric Poisson model defined above.

The present discrete distribution models defined using a
parameter p each represents an infinite family of possible
models. If a parameter defining a particular model was
modified (for instance by choosing other values of p for the
diluted or antidiluted models) we would expect the critical
exponents to change continuously as functions of p, starting
of course from the bimodal values for p = 0.

To summarize, within the present numerical precision the
2D ISG models with continuous interaction distributions lie
in a single universality class, but the data indicate that the
2D ISG models with discrete distributions do not share this
universality class. On the contrary, each discrete distribution
model has its individual critical exponents.

When it was reported in 1980 by Morgenstern and Binder
[11] that the 2D bimodal ISG had a value η = 0.4(1), which is
nonzero, so different from the η ≡ 0 of the Gaussian model, it
was suggested that this universality breakdown behavior could
arise from higher order terms in the ε expansion for the critical
exponents in dimensions below upper critical dimension d = 6
[33]; see also [34]. Indeed there is now numerical evidence for
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nonuniversality in dimensions d = 4 [35,36] and d = 5 [37]
as well as in dimension d = 2.
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APPENDIX A: FULLY FRUSTRATED VILLAIN MODEL

In the square lattice fully frustrated (FF) Villain model
[38] all near neighbor interactions have strength |J |; in
the x direction all bonds are ferromagnetic, while in the
y direction columns of bonds are alternately ferromagnetic
and antiferromagnetic, so every plaquette is frustrated. This
is a well understood 2D model with a zero temperature
ferromagnetic transition and a strong ground state degeneracy,
which can provide a basis of comparison for other models
with ground state degeneracies such as discrete interaction
distribution ISG models.

For the FF model a number of properties have been
established analytically [39], by precise energy measurements
[31], and by simulations [27]. The FF ground state degeneracy
corresponds to a zero temperature entropy per site of 0.2916
[39]. [For comparison in the 2D bimodal ISG the zero
temperature entropy per site is 0.078(5) [5,18,40].] The first FF
excited states are at 4J . The zero temperature FF ordering is
ferromagnetic, with a thermodynamic limit (L = ∞, T = 0),
anomalous dimension exponent η ≡ 1/2 [39], and a low
temperature thermodynamic limit second moment correlation
length ξ (β) ∼ exp(2β)/2 [27,31,39]. The FF specific heats in
the infinite-L and finite-L limits were estimated in Ref. [31]
by sophisticated Pfaffian algebra to be of the form Cv ∼
βB exp(−Aβ), the values being B = 3 in the infinite-L limit
and B = 2 in the finite-L limit with A = 4 in both limits.
We show in Fig. 26 FF specific heat data for a wide range of
sizes in the form y(β,L) = ∂ ln Cv(β,L)/∂β against x = T .
This type of plot leads to a straight line with intercept −A

and slope B. For finite sizes in the FF model there is a
crossover at a size-dependent temperature T ∗(L), just as in
the 2D bimodal ISG [10,41]. The FF T ∗(L) crossover from an
effectively continuous energy level regime to the ground state
plus gap dominated regime can be identified by inspection of
Fig. 26 as the region where for each L the curve y(x) passes
from the thermodynamic limit T > T ∗(L) envelope curve
y(x) ≈ −4 + 3.5x to the finite-size ground state dominated
regime T < T ∗(L) line y(x) = −4 + 2x. The A and B values
practically agree with Ref. [31]; the crossover temperatures
are near T ∗(L) ≈ 0.5. The present figure can be compared
directly to the equivalent figure for the 2D bimodal ISG;
Ref. [1], Fig. 2. The lower diagonal line in the present Fig. 26
corresponds to just the same “naïve” ground state plus 4J gap
dominated specific heat regime as in the 2D bimodal ISG,

FIG. 26. Fully frustrated 2D model. Logarithmic derivative of
the specific heat ∂ ln Cv(β,L)/∂ ln β against temperature T . L = 96,
64, 48, 32, 24, 16, 12, 8 (left to right). Upper blue straight line:
the thermodynamic limit T > T ∗(L) envelope curve y(x) = −4 +
3.5x. Lower red straight line: the finite size ground state dominated
T < T ∗(L) regime y(x) = −4 + 2x.

Cv(T ) ∼ exp(−4/T )/T 2, but the 2D bimodal ISG large L

thermodynamic limit specific heat curve with A ≈ 0 and B

negative is very different from the FF large L limit curve.
The FF U4(β,L) against ξ (β,L)/L curve breaks off rapidly

from the η = 0 universal curve to arrive smoothly at a
critical end point ξ (T = 0,L)/L = 0.488 + 0.1/L, U4(T =
0,L) = 1.618 − 0.2/L) [27]; Fig. 27. In Fig. 28, we show
the FF derivative y(β,L) = ∂ ln χ (β,L)/∂ ln ξ (β,L) against
x(β,L) = 1/ξ (β,L), where ξ (β,L) is the second moment
correlation length and χ (β,L) is the susceptibility. In the
present Fig. 28 (as in the bimodal and Gaussian ISG figures

FIG. 27. Fully frustrated 2D model. Low temperature Binder cu-
mulant U4(T ,L) against the normalized correlation length ξ (T ,L)/L.
L = 8 (cyan squares), L = 12 (blue circles), L = 32 (red triangles),
L = 48 (black inverted triangles). For each L the data points terminate
smoothly at a zero temperature end point.
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FIG. 28. Fully frustrated 2D model. Logarithmic derivative
∂ ln χ (β,L)/∂ ln ξ (β,L) against 1/ξ (β,L). L = 96, 64, 48, 32, 24,
16, 12, 8 (left to right).

in Ref. [1], Figs. 3 and 4) for all the ThL envelope points the
data are in the regime T > T ∗(L).

The L-independent envelope curve of all the FF data in
the ThL regime L > ξ (β,L), T > T ∗(L) can be identified by
inspection. The essential point is that the “high temperature”
regime FF ThL derivative y(β,L) from temperatures above the
crossovers extrapolates smoothly and accurately to y(β,L) =
1.5, so to y(β,L) = 2 − η with an effective limiting η(T >

T ∗(L)) equal to 1/2, the analytically known L = ∞, T ≡ 0
critical exponent [39].

Thus in the FF model, it is found that when the “effectively
continuous energy level” regime effective exponent η(T ,L)
is extrapolated to the limit of large L using the ThL
∂ ln χ (β,L)/∂ ln ξ (β,L) differentiation procedure, the value
is equal to the T ≡ 0 ground state critical exponent. This can
be taken to imply that there is no difference between these two

FIG. 29. Gaussian 2D ISG. Derivative ∂γb(τb,L)/∂τb against τb

for L = 128, 96, 64, 48, 32 (left to right). Straight green line: fit to
the ThL regime data.

FIG. 30. Bimodal 2D ISG. Derivative ∂γb(τb,L)/∂τb against τb

for L = 128, 96, 64, 48, 32 (left to right). Straight green line: fit to
the ThL regime data.

limiting exponent values in the discrete interaction distribution
ISG models either.

APPENDIX B: FITTING PROCEDURE

In Ref. [1] the data for the derivative of the susceptibil-
ity and the second moment correlation length γb(τb,L) =
∂ ln χ (β,L)/∂ ln τb and νb(τb,L) = ∂ ln[ξ (β,L)/β]/∂ ln τb

were extrapolated to τb = 0 after making three parameter
polynomial fits of the type y(τb) = a + bτb + cτ 2

b .
In the present work we carry out the same type of fit but in

two stages. First we plot the higher derivatives ∂γb(τb,L)/∂τb

and ∂νb(τb,L)/∂τb against τb. In each case a two parameter
straight line fit y(τb) = b + 2cτb to the ThL data up to about
τb = 0.50 is quite acceptable. This implies that the leading
Wegner correction exponent θ happens to be close to 1.0
in all models, as was assumed in Ref. [1], and justifies the
simple polynomial fit procedure. Susceptibility ∂γb(τb,L)/∂τb

FIG. 31. Diluted bimodal 2D ISG. Derivative ∂γb(τb,L)/∂τb

against τb for L = 128, 96, 64, 48, 32 (left to right). Straight green
line: fit to the ThL regime data.
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FIG. 32. Antidiluted bimodal 2D ISG. Derivative ∂γb(τb,L)/∂τb

against τb for L = 128, 96, 64, 48, 32, 24 (left to right). Straight green
line: fit to the ThL regime data.

data are shown in Figs. 29–33. The ∂νb(τb,L)/∂τb data have
a similar aspect but are intrinsically more noisy. With the
parameters b and c in hand for each model and so with a single

FIG. 33. Symmetric Poisson 2D ISG. Derivative ∂γb(τb,L)/∂τb

against τb for L = 128, 96, 64, 48, 32 (left to right). Straight green
line: fit to the ThL regime data.

remaining free parameter a, fits were made up to τb ≈ 0.50 to
each of the γb(τb,L) and νb(τb,L) ThL curves shown in the
earlier sections.
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