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Tricritical behavior of nonequilibrium Ising spins in fluctuating environments

Jong-Min Park1 and Jae Dong Noh1,2

1Department of Physics, University of Seoul, Seoul 02504, Korea
2School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea

(Received 14 February 2017; published 5 April 2017)

We investigate the phase transitions in a coupled system of Ising spins and a fluctuating network. Each
spin interacts with q neighbors through links of the rewiring network. The Ising spins and the network are in
thermal contact with the heat baths at temperatures TS and TL, respectively, so the whole system is driven out of
equilibrium for TS �= TL. The model is a generalization of the q-neighbor Ising model [A. Jędrzejewski et al.,
Phys. Rev. E 92, 052105 (2015)], which corresponds to the limiting case of TL = ∞. Despite the mean-field
nature of the interaction, the q-neighbor Ising model was shown to display a discontinuous phase transition for
q � 4. Setting up the rate equations for the magnetization and the energy density, we obtain the phase diagram
in the TS-TL parameter space. The phase diagram consists of a ferromagnetic phase and a paramagnetic phase.
The two phases are separated by a continuous phase transition belonging to the mean-field universality class or
by a discontinuous phase transition with an intervening coexistence phase. The equilibrium system with TS = TL

falls into the former case while the q-neighbor Ising model falls into the latter case. At the tricritical point, the
system exhibits the mean-field tricritical behavior. Our model demonstrates a possibility that a continuous phase
transition turns into a discontinuous transition by a nonequilibrium driving. Heat flow induced by the temperature
difference between two heat baths is also studied.
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I. INTRODUCTION

The Ising model is one of the most studied statistical
physics systems for the theory of phase transitions and critical
phenomena. Recently, Jędrzejewski et al. [1] studied the phase
transition in the so-called q-neighbor Ising model. In this
model, an Ising spin interacts ferromagnetically with q instant
neighbors which are chosen randomly among the other spins.
The model was shown to undergo a phase transition from
a high-temperature paramagnetic phase to a low-temperature
ferromagnetic phase. Interestingly, the phase transition is of
first order (discontinuous) with a discontinuous jump in the
spontaneous magnetization for q � 4, while it is of second
order (continuous) exceptionally at q = 3.

The q-neighbor Ising model looks similar to the Ising model
on an annealed network [2]. Suppose that Ising spins are on
nodes of a network and interact with each other through links.
In the annealed network, links are assumed to be rewired
so fast that every spin is connected to all the others with
effective coupling strengths. The equilibrium Ising model on
the annealed network is described by the mean-field (MF)
theory and is shown to display the continuous phase transition
[2]. In the q-neighbor Ising model, where spins interact with
random neighbors, spatial correlations are negligible and the
MF theory is also exact. Thus one might expect the continuous
phase transition as the MF theory predicts. Given the MF nature
of the model, the discontinuous transition in the q-neighbor
Ising model is puzzling.

The purpose of this study is to reveal the reason why the
q-neighbor Ising model deviates from the equilibrium MF
theory prediction. We notice that not only the Ising spins
but also the links connecting spins are fluctuating dynamic
variables. The q-neighbor Ising model will be shown to be
a limiting case of a nonequilibrium system driven between
two heat baths BL and BS at different temperatures TL and
TS , respectively. The Ising spins are in thermal contact with

the heat bath BS , while the links are in thermal contact with
BL. The q-neighbor Ising model corresponds to the case
with TL = ∞. The nonequilibrium driving with TL �= TS is
responsible for the deviation from the equilibrium MF theory
prediction.

Phase transitions in nonequilibrium Ising models have been
studied for a long time [3–9]. Ising spins can be driven out of
equilibrium under any dynamics breaking the detailed balance.
The nature of resulting nonequilibrium phase transitions may
or may not belong to the same universality class as the
equilibrium counterpart. The equilibrium Ising universality
class is stable against a nonequilibrium driving if the dynamics
does not conserve the order parameter [10,11]. On the other
hand, nonequilibrium Ising models with order parameter con-
serving dynamics display different types of phase transitions
[6,9,12–15]. Ising systems with spin-exchange dynamics are
such examples. These systems can be driven out of equilibrium
by introducing multiple heat baths or a directional bias in
the spin exchange process. In addition to the nonequilibrium
critical phenomena, energy or particle currents [8,9] and the
entropy production [16] have been attracting growing interests
recently.

The Ising spins in our study are connected via fluctuating
links at a different temperature. In Sec. II, we introduce
a nonequilibrium Ising model involving two heat baths of
temperature TS and TL. This model includes the q-neighbor
Ising model as a limiting case. The analytic theory for the
model is set up in Sec. III, and the resulting phase diagram in
the parameter space of TS and TL is presented in Sec. IV.
We find that the ordered phase and the disordered phase
are separated by the continuous phase transition line in
some region of the parameter space and by the coexistence
phase in the other region. The continuous phase transition
line ends at the tricritical point. The equilibrium model with
TS = TL undergoes the continuous phase transition while the
q-neighbor Ising model undergoes the discontinuous phase
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transition through the coexistence phase. We close the paper
with summary and discussions on the heat flow in Sec. V.

II. NONEQUILIBRIUM ISING MODEL

We begin with introducing the q-neighbor Ising model
of Ref. [1]. The system consists of N Ising spins sn (n =
1,2, . . . ,N ) in thermal contact with a heat bath at temperature
T . The spin states are represented as sn = ±1 or simply ±. Spin
configurations are updated following the Monte Carlo rule.
Each time step, one selects a spin si and q other spins, denoted
as {sik |k = 1, . . . ,q}, at random. These q spins are designated
as instant interacting neighbors of si with the energy function
E(si ; {sik }) = −J si

∑q

k=1 sik with a ferromagnetic coupling
constant J > 0. The spin si is then flipped (si → −si) with
the probability

PT (�E) ≡ min[1,e−�E/T ], (1)

where �E = E(−si ; {sik }) − E(si ; {sik }) is the energy change
on flipping si .

The flipping probability in (1) is taken commonly in the
Metropolis algorithm simulating the thermal equilibrium states
at a given temperature T/kB with the Boltzmann constant kB

[17]. The Boltzmann constant will be set to unity hereafter.
Thus, the q-neighbor Ising model appears to be a thermal
equilibrium system of Ising spins interacting with random
neighbors. Surprisingly, the q-neighbor Ising model exhibits
the first-order phase transition for any q � 4 [1]. The result is
in sharp contrast to the equilibrium MF theory predicting the
continuous phase transition [18].

In the q-neighbor Ising model, both the Ising spins and
the links between interacting spins are fluctuating dynamic
variables. The Ising spins interact with the heat bath of
temperature T . On the other hand, the links are rewired
completely randomly. This indicates that two different heat
baths, one for the spins and another for the links, are involved
in the q-neighbor Ising model.

To be more precise, we introduce the Hamiltonian for the
whole system including the spins and the links as

H (A,s) = −J

2

∑
i,j

Ai,j sisj , (2)

where Ai,j is an element of an adjacency matrix A and
s = (s1, . . . ,sN ) denotes a spin configuration. The coupling
constant J will be set to unity. The adjacency matrix element
Ai,j takes 1 if there is a link between i and j and 0 otherwise.
As a convention, we set Ai,i = 0 disallowing a self-loop. The
adjacency matrix is constrained by the condition∑

j

Ai,j = q (3)

for all i to ensure that every site has q neighbors. Then the
q-neighbor Ising model is equivalent to the combined system
of spins and links with the Hamiltonian (2) where the spins are
in thermal contact with a heat bath BS of temperature TS = T

and the links are in thermal contact with another heat bath BL

of temperature TL = ∞.
We now define the generalized model by introducing

the following dynamics to the combined system with the
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FIG. 1. Illustration of the link rewiring rule with q = 2. Two
quartets sharing x are enclosed with dashed curves.

Hamiltonian in (2). The link configuration A and the spin
configuration s are updated as follows (see Fig. 1): (i) Select
a site x at random. Current neighbors of x are denoted as
x1, . . . ,xq (Ax,xk

= 1). One also selects q distinct sites denoted
as y1, . . . ,yq among all sites but x. They are the potential
candidates for new neighbors of x. For each yk , one further
selects one of its neighbor y ′

k at random (Ayk,y
′
k
= 1). (ii) Try

to remove existing links between x and xk and between yk and
y ′

k (Ax,xk
→ 0 and Ayk,y

′
k
→ 0) and to add new links between

x and yk and between xk and y ′
k (Ax,yk

→ 1 and Axk,y
′
k
→ 1)

for all k = 1, . . . ,q. The link configuration after the rewiring
is denoted by A′. The rewiring trial is accepted with the
probability PTL

(�E), where �E = H (A′,s) − H (A,s) is the
energy change on rewiring with spin configuration s being
fixed. (iii) The spin sx is then flipped to −sx with the probability
PTS

(�E), where �E = H (A′′,sx) − H (A′′,s) is the energy
change on spin flip. Here A′′ denotes the adjacency matrix
after the rewiring trial, that is, A′ if the rewiring is accepted
or A otherwise, and sx denotes the spin configuration with sx

being flipped from s. The time t is measured in unit of Monte
Carlo step per site.

We adopt the so-called degree-preserving rewiring scheme
in step (ii) [19,20]. This method allows one to rewire the links
under the constraint of (3). Trials resulting in self-loops or
double-links are rejected. When TL = ∞, rewiring trials are
always accepted. Thus, our model with TS = T and TL = ∞
reduces to the q-neighbor Ising model [1]. When TS = TL, the
dynamics satisfies the detailed balance and the whole system
is in thermal equilibrium (see the discussion in Sec. IV A).
When TL = 0, one may think that the Ising spins will be
in thermal equilibrium on the quenched network. However,
the network keeps evolving even at TL = 0. Suppose that the
network reaches the ground-state link configuration to a given
spin configuration. When spin flips at finite TS , the links are
pumped out of the ground state and rewired. Thus, the model
with TL = 0 differs from the Ising model on the quenched
network.

III. MEAN-FIELD THEORY

Link rewiring allows spins to interact with any other spins.
Thus, spatial correlations between spins are negligible and the
MF theory is a good approximation. In this section, we derive
the MF rate equations for the mean magnetization density
per site m ≡ 1

N
〈∑i si〉 and the mean energy density per link

e ≡ 2
qN

〈H (A,s)〉 taking into account correlations up to nearest
neighbors directly connected with links.
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TABLE I. Quartet configurations with sx = + and associated
energy costs and realization probabilities. For sx = −, ω−

α is the spin
reversal of w+

α and p−
α (m,e) = p+

α (−m,e).

α ω+
α er ef erf p+

α (m,e)

1 (+ + ++) 0 2 2 (1 − e + 2m)2/16
2 (+ + +−) 0 2 2 (1 + e)(1 − e + 2m)/16
3 (+ + −+) 0 2 −2 (1 + e)(1 − e + 2m)/16
4 (+ + −−) 4 2 −2 (1 − e + 2m)(1 − e − 2m)/16
5 (+ − ++) 0 −2 2 (1 + e)(1 − e + 2m)/16
6 (+ − +−) −4 −2 2 (1 + e)2/16
7 (+ − −+) 0 −2 −2 (1 + e)2/16
8 (+ − −−) 0 −2 −2 (1 + e)(1 − e − 2m)/16

We first introduce several notations. Let n+ and n− be the
fractions of + and − spins, respectively. The magnetization
density is given by

m = n+ − n−. (4)

The normalization n+ + n− = 1 yields that

n± = 1 ± m

2
. (5)

Let n++, n−−, and n+− be the fractions of links connecting
++, −−, and +− spin pairs, respectively, satisfying the
normalization n++ + n−− + n+− = 1. The energy density per
link is given by

e = −(n++ + n−−) + n+−. (6)

Those fractions satisfy the relations n+ = n++ + 1
2n+− and

n− = n−− + 1
2n+−. Thus one can rewrite the fractions in terms

of m and e as

n++ = 1
4 (1 − e + 2m),

n−− = 1
4 (1 − e − 2m),

n+− = 1
2 (1 + e).

(7)

Since n++ � 0 and n−− � 0, e and m are restricted within the
range |m| � (1 − e)/2.

Rewiring a single link of a randomly selected site x involves
a quartet of four spins (sxsxk

syk
sy ′

k
) (see Fig. 1). A quartet

can take one of the 24 = 16 spin configurations. We label
the configurations with sx = +1 as ω+

α (α = 1, . . . ,8) and
the spin-reversed configurations as ω−

α . These configurations
are listed in Table I. Given m and e, the probability that
a quartet is in a certain configuration ω±

α is given by a
function of m and e. They will be denoted as p±

α (m,e).
For example, the quartet ω−

8 = (− + ++) has the proba-
bility p−

8 = 1
2n+−n++ = 1

16 (1 + e)(1 − e + 2m). The quartet
probabilities are summarized in Table I. It is obvious that
p+

α (m,e) = p−
α (−m,e) and

∑
α p±

α (m,e) = n± = (1 ± m)/2.
It would cost energy er (α) = [−(sxsyk

+ sxk
sy ′

k
)

+ (sxsxk
+ syk

sy ′
k
)]ω±

α
for rewiring, ef (α) = [2sxsxk

]ω±
α

for flipping of sx without rewiring, and erf (α) = [2sxsyk
]
ω±

α

for flipping of sx after rewiring. The energy costs are
summarized in Table I. Due to the spin-reversal symmetry of
the Hamiltonian, the energy costs for the configurations ω+

α

and ω−
α are the same.

Monte Carlo dynamics involves q quartets sharing a
randomly selected site x. We denote the number of quartets of
configuration ω±

α as nα (= 0,1, . . . ,q). Due to the spin-reversal
symmetry, we do not need to count the number of quartets with
sx = +1 and sx = −1 separately. They are constrained by the
sum rule

∑8
α=1 nα = q.

We are ready to set up the rate equations for m and e.
Suppose that a site x is selected at random. Provided that
sx = +, the probability that q associated quartets are specified
by {nα} is given by

f +(m,e,{nα}) = q!

(n+)q

8∏
α=1

(p+
α )nα

(nα)!
. (8)

The term (n+)q = (
∑

α p+
α )q in the denominator guarantees

the normalization
∑

{nα} f +({nα}) = 1, where the summation∑
{nα} is over all sequences of non-negative integers {nα}

satisfying
∑

α nα = q. Similarly, the probability for {nα} with
sx = −1 is given by

f −(m,e,{nα}) = q!

(n−)q

8∏
α=1

(p−
α )nα

(nα)!
. (9)

The symmetry property p+
α (m,e) = p−

α (−m,e) yields that

f +(m,e,{nα}) = f −(−m,e,{nα}). (10)

The updating probabilities of links and spins are determined
by the associated energy changes. The link rewiring would
cost

Er =
∑

α

nαer (α). (11)

The spin flip would cost

Ef =
∑

α

nαef (α), (12)

without link rewiring with probability 1 − PTL
(Er ), or

Erf =
∑

α

nαerf (α), (13)

after rewiring with probability PTL
(Er ).

Combining all the quantities, we finally obtain the rate
equations in the N → ∞ limit as

dm

dt
= F (m,e) and

de

dt
= G(m,e), (14)

where

F (m,e) = 2
∑
{nα}

(−n+f + + n−f −)
[
PTL

(Er )PTS
(Erf)

+{
1 − PTL

(Er )
}
PTS

(Ef )
]
,

G(m,e) = 2

q

∑
{nα}

(n+f + + n−f −)
[
ErPTL

(Er )
{
1 − PTS

(Erf)
}

+(Er + Erf)PTL
(Er )PTS

(Erf)

+Ef

{
1 − PTL

(Er )
}
PTS

(Ef )
]
. (15)

Here PT (E) is the transition probability function defined in
(1) and the factor ( 2

q
) of G accounts for the link density. The
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FIG. 2. Fixed-point analysis for q = 4 and βL ≡ 1/TL = 0.1.
Nullclines with F (m,e) = 0 (dashed line) and G(m,e) = 0 (solid line)
at (a) βS ≡ 1/TS = 0.44, (b) βS = 0.46, and (c) βS = 0.48. Dotted
lines are the boundaries of the physical region |m| � (1 − e)/2.
Closed and open circles indicate stable and unstable fixed points,
respectively. (d) Spontaneous magnetization m0 = |m| and the energy
density e at the stable (solid line) and unstable (dotted line) fixed
points. Monte Carlo simulation data are also shown. The circle (cross)
symbols represent the results in the cooling (heating) setup with
N = 106 spins.

dependence on TL, TS , and q is not shown explicitly. Using
the relation in (10), one finds that

F (m,e) = −F (−m,e) and G(m,e) = G(−m,e). (16)

Note that in the TL → ∞ limit, the function F (m,e) becomes
independent of e and one recovers the rate equation of
Ref. [1].

IV. PHASE DIAGRAM

The steady-state phase diagram is determined by analyzing
the fixed-point solution of the rate equation in (14). First,
Fig. 2 demonstrates how the fixed points bifurcate as TS

varies with fixed TL = 10 at q = 4. When TS > Td1 with
a threshold temperature Td1, the system has a single stable
fixed point at m = 0 [see Fig. 2(a)] and is in a disordered
paramagnetic phase. When Td2 < TS < Td1 with another
threshold temperature Td2, two pairs of stable and unstable
fixed points with |m| �= 0 appear additionally [see Fig. 2(b)].
Hence, the system can coexist in the paramagnetic phase
and in the ordered ferromagnetic phase. When TS < Td2, the
fixed point at m = 0 becomes unstable after merging with
the unstable fixed points [see Fig. 2(c)]. The system is in the
ferromagnetic phase with nonzero spontaneous magnetization
m0 ≡ |m|. In Fig. 2(d), we draw the steady-state values of e and
m0 against TS . The system undergoes a first-order transition
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FIG. 3. Fixed-point analysis for q = 4 and βL = 0.3. Nullclines
at (a) βS = 0.35, (b) βS = 1/Tc = 0.3589, and (c) βS = 0.37.
(d) Spontaneous magnetization m0 and the energy density e at the
stable and unstable fixed points obtained from fixed-point analysis.
The symbols represent the Monte Carlo simulation results. We use
the same convention for lines and symbols as in Fig. 2.

with the intermediate coexistence region. This behavior is
similar to that of the q-neighbor model with TL = ∞ [1].

The discontinuous transition is confirmed with the Monte
Carlo simulations. We have performed the simulations in two
different setups. In the cooling (heating) setup, we increase
(decrease) the inverse temperature βS by 0.01 in every 2000
time steps. The Monte Carlo simulation data are presented in
Fig. 2(d). The numerical data exhibit the hysteresis behavior
which is characteristic of discontinuous phase transitions.

When we lower the temperature TL, a qualitatively different
behavior emerges. Figure 3 shows the evolution of the fixed
points as TS varies with fixed TL = 10/3. When TS > Tc with
a critical threshold temperature Tc, there is a single stable
fixed point at m = 0 [see Fig. 3(a)]. As TS decreases below
Tc, the fixed point at m = 0 becomes unstable, while two
stable fixed points with m0 = |m| �= 0 appear near the unstable
fixed point [see Figs. 3(b) and 3(c)]. Hence, the spontaneous
magnetization m0 and the energy density e vary continuously
and the system undergoes a continuous phase transition [see
Fig. 3(d)].

The nature of the phase transition can be studied systemati-
cally. Let ε(m) denote the nullcline satisfying G(m,ε(m)) = 0.
The symmetry property G(−m,e) = G(m,e) implies that the
function is even in m, ε(−m) = ε(m). The fixed points of the
rate equation are found from zeros of

I (m) ≡ F (m,ε(m)) = −I (−m). (17)

It is convenient to consider

L(m) = −
∫ m

0
I (m′)dm′, (18)
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FIG. 4. Phase diagram at q = 4. The solid line is the continuous
phase transition line between the P and the F phases. In the C phase,
both the ferromagnetic state and the paramagnetic state are stable.
Along the dotted line, a4 = 0. The dash-dotted line corresponds to
the equilibrium line with βL = βS . Also shown is the shape of the
Landau free energy L(m) in each phase.

which is even in m. The stable fixed points of the rate
equations correspond to the local minima of L(m). Hence,
regarding L(m) as the Landau free energy, we can apply the
phenomenological Landau theory [18]. Note, however, that
L(m) is not the real free energy because the system is not in
thermal equilibrium.

One can expand the Landau free energy as

L(m) = a2

2
m2 + a4

4
m4 + a6

6
m6 + O(m8) (19)

with TL- and TS-dependent coefficients an. The paramagnetic
fixed point at m = 0 is stable when a2 > 0 and unstable
when a2 < 0. Thus, the threshold for the paramagnetic state
is determined by the condition a2 = 0. If a4 is positive near
the threshold, then the spontaneous magnetization scales as
m0 	 (−a2/a4)1/2 and the system undergoes a continuous
phase transition. Figure 3 exemplifies this case. On the other
hand, if a4 is negative near the threshold, the system is bistable
with m0 = 0 and m0 	 [(−a4 +

√
a2

4 − 4a2a6)/(2a6)]1/2 in the
region a2

4 − 4a2a6 � 0. The spontaneous magnetization jumps
from zero to m0 ∝ (−a4/a6)1/2. Hence the system undergoes
a discontinuous transition from the paramagnetic phase to the
ferromagnetic phase separated by the coexistence phase, as
exemplified in Fig. 2. The tricritical point is located at the
point where a2 = a4 = 0.

We present the phase diagram for the system with q = 4
in Fig. 4. The phase diagram consists of three phases: the
paramagnetic (P) phase, the ferromagnetic (F) phase, and the
coexistence (C) phase. The phase diagram is constructed as
follows. We first draw the lines a2 = 0 and a4 = 0. These
lines are found numerically easily since we know the analytic
expressions for I (m) and L(m). The two lines intersect with
each other at the tricritical point (TCP). The line a2 = 0 with
a4 > 0 is the boundary between the F and the P phases, while
the line a2 = 0 with a4 < 0 is the boundary between the F and
the C phases. The boundary between the P and the C phases,

which can be approximated by the line a2
4 = 4a2a6 neglecting

the O(m8) term in (19), is located numerically by examining
the existence of the local minimum of L(m) at m �= 0.

A. Equilibrium case with TS = TL = Teq

In order to reconcile with the results of the equilibrium
Ising model on the annealed network [2], we consider the
equilibrium line where TL = TS = Teq = 1/βeq in detail. We
can show that the transition probabilities in the rate equation
satisfies the detailed balance (DB) condition.

First, consider the rewiring process which transforms each
quartet configuration α = 1,2,3,4,5,6,7,8 to γ = γ (α) =
1,2,5,6,3,4,7,8, respectively. The DB requires that

n±f ±(m,e,{nα})
n±f ±(m,e,{nγ (α)}) = PT (−�Er )

PT (�Er )
= e4βeq(n4−n6) (20)

with �Er = 4(n4 − n6) (see Table I). Using p±
3 = p±

5 and
p±

4 /p±
6 = (1 − e + 2m)(1 − e − 2m)/(1 + e)2, we find that

the relation holds for all {nα} if

(1 − e + 2m)(1 − e − 2m) = e4βeq (1 + e)2. (21)

Second, consider the spin-flip process which transforms
each quartet configuration α = 1,2,3,4,5,6,7,8 to δ = δ(α) =
8,7,6,5,4,3,2,1, respectively. The DB requires that

n±f ±(m,e,{nα})
n∓f ∓(m,e,{nδ(α)}) = PT (−�Ef )

PT (�Ef )
= e2β(na−nb), (22)

where �Ef = 2(na − nb) with na = (n1 + n2 + n3 + n4) and
nb = (n5 + n6 + n7 + n8) (see Table I). Using the expressions
for p+

α (m,e) = p−
α (−m,e) in Table I and (21), we find that the

relations holds for all {nα} if[
(1 − m)

(1 + m)

]2(q−1)(1 − e + 2m

1 − e − 2m

)q

= 1. (23)

One can show further that the DB is also satisfied under
the simultaneous rewiring and flipping by combining the
calculations for each. Therefore, when TL = TS , the tran-
sition rates satisfy the DB condition and the equilibrium
energy density and the magnetization are determined by (21)
and (23).

We add a remark on the DB. Although the DB condition
is satisfied at the rate equation level, it is not satisfied at
the microscopic level of the Monte Carlo dynamics where
the link rewiring and the spin flipping are tried subsequently.
One can show that the rewiring and flipping do not commute
with each other, which breaks the DB. Nevertheless, the
preceding paragraphs show that the DB is satisfied in the
average sense. Thus we will regard the model with TS = TL as
the equilibrium model.

As seen from the phase diagram in Fig. 4, the equilibrium
system undergoes the continuous phase transition. The tran-
sition temperature Teq,c is found by analyzing (21) and (23).
After a straightforward algebra, we obtain that

Teq,c(q) = 2

ln(q) − ln(q − 2)
. (24)

The spontaneous magnetization behaves as m0 ∼ |Teq −
Teq,c|β with the MF exponent β = 1/2. We have also per-
formed the Monte Carlo simulations to measure the other
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FIG. 5. Finite-size scaling analysis of the spontaneous magneti-
zation m0 in (a) and the susceptibility χ in (b) for the equilibrium
model with TL = TS = Teq at q = 3 (red), 4 (blue), 5 (cyan), 6
(magenta), and 7 (orange) according to (24) and (25). Each data set
collapses well with the MF critical exponents β = 1/2, γ = 1, and
ν̄ = 2 near the critical point and for large system sizes. The straight
lines in (a) and (b) have the slopes 1/2 and −1, respectively.

critical exponents. Figure 5 shows the finite-size scaling plots
for the magnetization m = 〈|∑i si |〉/N and the susceptibility
χ = (〈(∑i si)2〉 − 〈|∑i si |〉2)/(NTeq). Near the critical point,
they follow the scaling form

m = N−β/ν̄Om[(Teq − Teq,c)N1/ν̄],

χ = Nγ/ν̄Oχ [(Teq − Teq,c)N1/ν̄]
(25)

with scaling functions Om and Oχ and the MF critical
exponents ν̄ = 2 and γ = 1. The data collapse confirms that
the equilibrium model belongs to the MF universality class.
This result suggests that the discontinuous phase transition
in the q-neighbor model is the effect of the nonequilibrium
driving.

B. Tricritical point

The tricritical point TCP lies at the point where a2 = a4 = 0
in (19). The first condition a2 = 0 yields that

I ′(0) = [(∂m + ε′∂e)F ]m=0,e=ε(0) = 0, (26)

0.3 0.4 0.5 0.6
βS

0

1

m
0

10-6 10-5 10-4 10-3 10-2
βS-βS,TCP

10-2

10-1

100

m
0

FIG. 6. Tricritical scaling of the spontaneous magnetization m0

along the line a4 = 0. The inset shows that m0 ∼ (βS − βS,TCP)1/4.

where ′ denotes the derivative with respect to m and ∂m,e is
a shorthand notation for the partial differentiation. Note that
ε(m) is an even function of m, hence ε′(0) = 0. Thus, we obtain
the condition

[∂mF ]m=0,e=ε(0) = 0. (27)

The second condition a4 = 0 requires that I ′′′(0) = 0. Taking
the derivatives and using ε′(0) = ε′′′(0) = 0, one obtains that
(∂3

m + 3ε′′∂m∂e)F (0,ε(0)) = 0. The function ε(m) is defined
by the relation G(m,ε(m)) = 0, which yields that ε′′(0) =
−[∂2

mG(0,ε(0))]/[∂eG(0,ε(0))]. Thus, we obtain that[(
∂3
mF

)
(∂eG) − 3(∂m∂eF )

(
∂2
mG

)]
m=0,e=ε(0) = 0. (28)

By solving (27) and (28), we find the tricritical point is
located at

βL,TCP = 0.180954 · · · and βS,TCP = 0.408461 · · ·
(29)

for q = 4. The location of the TCP can be found numerically
exactly for any q � 4.

The order parameter m0 follows the tricritical scaling
behavior near the TCP. In Fig. 6, we plot the spontaneous
magnetization m0 along the line a4 = 0 shown in Fig. 4.
It scales as m0 ∼ (βS − βS,TCP)1/4 with the MF tricritical
exponent 1/4 instead of 1/2 [18].

At q = 3, the lines a2 = 0 and a4 = 0 do not meet in
the (βS,βL) space, and a4 > 0 along the line a2 = 0. Thus
the transition is always continuous and the tricritical point is
absent.

V. SUMMARY AND DISCUSSIONS

We have studied the phase transitions in the Ising spin
system on the link-rewiring network. The system is in contact
with two heat baths BS and BL that govern the thermal
fluctuations of the spins and the links, respectively. This model
is introduced in order to explain the discontinuous phase
transition recently reported in the q-neighbor Ising model
where Ising spins interact with random neighbors [1]. Such
a result was puzzling since the MF theory is working in
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the q-neighbor Ising model and the equilibrium Ising model
in the MF theory exhibits a continuous phase transition.
We have found that the q-neighbor Ising model is indeed
a nonequilibrium system driven between two heat baths,
BS for spins at finite temperatures and BL for links at the
infinite temperature. We have constructed the phase diagram
of the extended model in the parameter space of βS = 1/TS

and βL = 1/TL with the temperatures TS and TL for spins
and links, respectively. When TS = TL, the model reduces
to the equilibrium model and displays the continuous phase
transition belonging to the equilibrium MF Ising universality
class. When TL is much larger than TS , the coexistence phase
emerges and the system exhibits the discontinuous phase
transition. The coexistence phase terminates at the tricritical
point. Our result shows that the nonequilibrium driving can
change the nature of the phase transition from being continuous
to being discontinuous.

A thermal system in between two heat baths at different
temperatures conducts heat from a high temperature bath to
a low temperature one. The steady-state heat flux, average
heat flow per unit time, from the bath BL to the system
will be denoted as Q̇. The steady-state heat flux from the
bath BS to the system is then equal to −Q̇. The heat flow
results in the increase of the total entropy with the rate Ṡ =
Q̇(−βL + βS). Recently, the critical scaling behavior of the
entropy production near the nonequilibrium phase transition
has been studied [16]. The heat is injected into the system from
the bath BL when links are rewired. Hence, by modifying (15),
one finds that the heat flux per link is written as

Q̇ = 2

q

∑
{nα}

(n+f + + n−f −)ErPTL
(Er ). (30)

The heat flux vanishes in the equilibrium case with TL = TS

due to the detailed balance thereon.
We investigate the heat flow for the q-neighbor Ising model

with TL = ∞, where the expression is simplified to

Q̇ = −2q(e + m2). (31)

0 0.2 0.4 0.6 0.8 1
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0.5

1

1.5

Q.

(a)

0 0.2 0.4 0.6 0.8 1
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0
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1

1.5
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(b)

FIG. 7. Heat flux from the heat bath BL at the infinite temperature
for q = 3 (a) and q = 4 (b). The solid lines represent the heat flux
evaluated at the stable fixed points, while the dashed lines represents
the heat flux evaluated at the unstable fixed points.

This expression is understood intuitively. Consider the
rewiring of a single quartet. There are two links in a quartet,
and the average energy of a quartet before rewiring is 2e. After
rewiring to random neighbors, the average energy becomes
−2m2. Thus, the heat flux should be given by (31).

The heat flux, evaluated from the fixed-point solutions
for e and m, is presented in Fig. 7. The nonzero positive
heat flux confirms that the q-neighbor Ising model is indeed
out of equilibrium. It varies continuously at q = 3 and
discontinuously at q = 4 as the order parameter m0 does. It
is noteworthy that the heat flux in Fig. 7 increases (decreases)
as βS − βL increase in the paramagnetic (ferromagnetic) state.
The heat flux usually increases as the temperature difference
becomes large. In this regard, the decrease of Q̇ in the
ferromagnetic state is odd. We also leave it for a future work
to understand this peculiar behavior.
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