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Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line
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We investigate the short-time universal behavior of the two-dimensional Ashkin-Teller model at the Baxter
line by performing time-dependent Monte Carlo simulations. First, as preparatory results, we obtain the critical
parameters by searching the optimal power-law decay of the magnetization. Thus, the dynamic critical exponents
θm and θp , related to the magnetic and electric order parameters, as well as the persistence exponent θg , are
estimated using heat-bath Monte Carlo simulations. In addition, we estimate the dynamic exponent z and the
static critical exponents β and ν for both order parameters. We propose a refined method to estimate the static
exponents that considers two different averages: one that combines an internal average using several seeds with
another, which is taken over temporal variations in the power laws. Moreover, we also performed the bootstrapping
method for a complementary analysis. Our results show that the ratio β/ν exhibits universal behavior along the
critical line corroborating the conjecture for both magnetization and polarization.
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I. INTRODUCTION

In 1971 Baxter [1] calculated the free energy of the
symmetric eight-vertex model and found out for the first
time a continuous dependence of the critical exponents on
the coupling coefficients of the model. This result seemed,
in principle, to contradict the universality hypothesis [2–4],
which suggests that the critical exponents should be constant
and a variation would be possible only in the case of a change
in the symmetry. Despite this apparent contradiction, Kadanoff
and Wegner [5] and Wu [6] showed independently a connection
between the continuous variation of those exponents and the
presence of a marginal operator in the Hamiltonian by demon-
strating the equivalence of this model with an Ising model
in a square lattice without field. In this formulation, besides
the interactions between next-nearest neighbors, there is still
a four-body interaction and the Hamiltonian is written as [7]:

βH8V = −J1

L∑
i,j=1

σi,j+1σi+1,j − J2

L∑
i,j=1

σijσi+1,j+1

− λ

L∑
i,j=1

σijσi,j+1σi+1,j σi+1,j+1, (1)

where σij = ±1 is the Ising spin at the site (i,j ) of the lattice,
β = (kBT )−1, kB and T being, respectively, the Boltzmann
constant and the temperature of the system. The sums run
over all spins and periodic boundary conditions are assumed:
σL+1,j = σ1,j and σi,L+1 = σi,1. The spins are coupled by the
coefficient J1 in one direction and by J2 in the other one and
the coefficient λ couples four spins.

The symmetric eight-vertex model, also known as the
Baxter model, has only one critical line, where J1 = J2 = J .
This line is given by the equation [7]

exp(−2λ) = sinh(2J ). (2)

Besides the eight-vertex model there are other models that
exhibit nonuniversality, e.g., the Ising model with competing

interactions [8] and the Ashkin-Teller model [9]. The latter
was introduced in 1943 to describe a four-component system
with nearest-neighbors interactions, displaced on a two-
dimensional lattice. Soon after Baxter’s work, Fan [10] showed
that the Ashkin-Teller (AT) model could be represented by
two superposed Ising systems and coupled by a four-body
interaction coefficient.

In this representation the Hamiltonian for the AT model is
given by two-species model:

βHAT = −K1

L∑
i,j=1

σi,j (σi,j+1 + σi+1,j )

−K2

L∑
i,j=1

μi,j (μi,j+1 + μi+1,j )

−K4

L∑
i,j=1

σi,jμi,j (σi+1,jμi+1,j + σi,j+1μi,j+1),

(3)

where σi,j = ±1 (μi,j = ±1) is the Ising spin at the site (i,j )
of the sublattice σ (μ), K1 (K2) is the coupling coefficient
of the spin variable σi,j (μi,j ), and K4 is the four-body
coefficient, which couples the two Ising systems. The sums run
over all spins and periodic boundary conditions are assumed:
σ (μ)L+1,j = σ (μ)1,j and σ (μ)i,L+1 = σ (μ)i,1.

Wegner [11] showed that by carrying out a duality trans-
formation in one of the lattices (μ, for example), one can
map the AT model into a staggered eight-vertex model. This
alternation does not disappear even for the isotropic model
(K1 = K2 = K) except at the self-dual line

exp(−2K4) = sinh(2K), (4)

where the AT model becomes equivalent to an isotropic
eight-vertex model with four-spin coupling constant (λ) given
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by

tanh(2λ) = tanh(2K4)

tanh(2K4) − 1
, (5)

which is critical if K4 < 1
4 ln 3 [7], with critical exponents

related by [12–14]:

2 − 1

νAT

= 1

(2 − 1/ν8V )
, (6)

where

1

ν8V

= 1 − 2

π
sin−1[tanh(2λ)]. (7)

In the Ashkin-Teller model, besides the magnetization M

of each sublattice, another order parameter is present: the
polarization P . These order parameters are defined as

Mσ = 1

L2

〈
L∑

i,j=1

σi,j

〉
, Mμ = 1

L2

〈
L∑

i,j=1

μi,j

〉
,

(8)

P = 1

L2

〈
L∑

i,j=1

σi,jμi,j

〉
,

where 〈·〉 denotes the ensemble average:

〈(·)〉 = 1

Z

∑
{σi,j ,μi,j }

(·) exp
[−βHAT

({σi,j ,μi,j }Li,j=1

)]

with Z = ∑
{σi,j ,μi,j } exp [−βHAT ({σi,j ,μi,j }Li,j=1)].

However, as we are dealing with the isotropic version of
the model, the spins of each sublattice are symmetric and, in
this case, their magnetizations will have the same behavior.
Then the net result is that the number of samples for the
magnetization is doubled. Henceforth, we consider only two
order parameters: the magnetization (M) that includes both
sublattices, and the polarization (P ).

The purpose of this paper is to study the dynamic critical
behavior of the Ashkin-Teller model to obtain the dynamic
exponents θg , θ , and z, as well as the static exponents β

and ν for both order parameters. To reach our goal, we
carry out short-time Monte Carlo (MC) simulations in the
two-dimensional isotropic AT model. The paper is organized
as follows. In the next section, we briefly present the
nonequilibrium technique as well as the scaling relations used
in this work. In Sec. III, we find out the critical exponents of
the Ashkin-Teller model. Finally, in Sec. IV we present our
conclusions.

II. CRITICAL DYNAMICS FOR THE MODEL

Until a few years ago, it was commonly believed that no
universal behavior could be found in systems during the initial
stage of the relaxation process. As a result, critical properties
of those systems, such as transition temperatures and critical
exponents, were obtained only in equilibrium. The numerical
calculation of such values was not a simple task, due to the
severe critical slowing down that takes place in the vicinity
of the criticality. Many efforts have been made to circumvent
this difficulty, for instance, the cluster algorithm [15,16] has
proven to be very efficient in the study of static properties

of systems. Nevertheless, in that case the original dynamic
class of universality is violated, leading to normally small
values for the dynamic critical exponents. Another way to
avoid problems with the critical slowing down was proposed
by Janssen et al. [17] and Huse [18]. Using renormalization
group techniques and numerical calculation, respectively, they
showed that the critical relaxation of a system initially at very
high temperature exhibits universality and scaling behavior
even in the initial steps of evolution. The so-called short-time
regime became, therefore, an important method in the study
of phase transitions and critical phenomena.

The dynamic scaling relation obtained by Janssen et al. for
the kth moment of the magnetization, extended to systems of
finite size [19,20], is written as

Mk(t,τ,L,m0) = b− kβ

ν Mk(b−zt,b
1
ν τ,b−1L,bx0m0). (9)

Here t is the time evolution, b is an arbitrary spatial rescaling
factor, τ = (T − Tc)/Tc is the reduced temperature, and L is
the linear size of the square lattice. This evolution is governed
by a new dynamic exponent θ independent of the well-known
static critical exponents and the dynamic exponent z. This
new exponent characterizes the so-called critical initial slip,
the anomalous behavior of the magnetization when the system
is quenched to the critical temperature Tc. In addition, a
new critical exponent x0, which represents the anomalous
dimension of the initial magnetization m0, is introduced to
describe the dependence of the scaling behavior on the initial
conditions. This exponent is related to θ as x0 = θz + β/ν.

From Eq. (9), the scaling relations for the kth moment of
the magnetization and polarization of the Ashkin-Teller model
are given, respectively, by

Mk(t,τ,L,m0) = b− kβm
ν Mk(b−zm t,b

1
ν τ,b−1L,bxmm0) (10)

and

P k(t,τ,L,p0) = b− kβp

ν P k(b−zp t,b
1
ν τ,b−1L,bxpp0), (11)

where p0 is the initial polarization of the system. Here,
differently from 〈O〉, the average O describes an average
over different random evolutions and initial conditions of the
system.

In this work the dynamic critical exponents θm and θp are
obtained through two different approaches. In the first one,
we consider the time correlation of the order parameters [21]
given by

QM (t) = M(0)M(t) ∼ t θm (12)

and

QP (t) = P (0)P (t) ∼ t θp . (13)

This approach takes into account different initial random
configurations of spins for the different time evolutions, the
only requirement being that M(0) = m0 ≈ 0 [and similarly
P (0) = p0 ≈ 0]. The second approach considers a fixed and
small initial magnetization and polarization (m0 and p0) for the
different time evolutions, which leads to the following scaling
forms:

M(t) ∼ m0t
θm (14)
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and

P (t) ∼ p0t
θp . (15)

In order to observe such power-law behaviors we can
look into some details of the scaling relations. However, as
the two order parameters follow similar behaviors, we will
consider only the magnetization and extend the results to
the polarization. In a regime of small initial magnetization
and soon after a finite time scaling b = t1/z, at the critical
temperature (τ = 0) and for large systems (L → ∞), Eq. (9)
can be written as

M(t,m0) = t−β/(νz)M(1,tx0/zm0). (16)

By calling x = tx0/zm0, an expansion of the averaged
magnetization around x = 0 results in

M(1,x) = M(1,0) + ∂xM|x=0x + O(x2). (17)

By construction M(1,0) = 0 and, since u = tx0/zm0 � 1, one
can discard quadratic terms resulting in 〈M〉m0 ∼ m0t

θ , with
θ = (x0 − β/ν)/z. This anomalous behavior of the initial
magnetization is valid only for t < tmax, where tmax ∼
m

−z/x0
0 . Here it is important to make clear an interesting

point. Let us consider the time correlation function QM (t) =
1

Ld

∑
i σi(0)

∑
j σj (t) as an example (where d is the dimension

of the system). We can expand this function obtaining

QM (t) = 1

Ld

Ld∑
i=1

σi(0)σi(t) + 1

Ld

∑
i 	=j

σi(0)σj (t), (18)

where the term A(t) = 1
Ld

∑
i σi(0)σi(t) is known as the spin-

spin autocorrelation function. When the spins are randomly
distributed on the lattice sites with m0 exactly equal to 0 in all
time evolutions used to compose the average, we must expect
A(t) ∼ t−
m , where 
m (the time autocorrelation exponent) is
related to θm (the exponent of the time correlation of the total
magnetization) according to a closed form (see, for example,
Refs. [20,22]):


m = d/zm − θm. (19)

Another dynamic critical exponent is obtained far from
equilibrium by following the behavior of the global persistence
probability G(t) [22], the probability of the order parameter
does not change its sign up to the time t . For the magnetization
(and polarization) at the critical temperature, it decays,
respectively, as

GM (t) ∼ t−θgm , (20)

and

GP (t) ∼ t−θgp , (21)

where the exponents θgm
and θgp

are the global persistence
exponents of the magnetization and polarization.

As pointed out in Ref. [22] and shown in several works
[23–36], the global persistence exponent is an independent
critical index and is closely related to the non-Markovian
character of the process. If the magnetization is a Markovian
random variable, which is not the case in the present work,

this exponent should obey the equation

θgm
zm = −θmzm + d

zm

− βm

νm

, (22)

or simply θgm
zm = (1 − zm)θm + 
m − βm

νm
.

The dynamic critical exponents zm and zp are obtained
using the ratios [37]

F2M
(t) = M(t)2

m0=0

M(t)
2
m0=1

∼ td/zm (23)

and

F2P
(t) = P (t)2

p0=0

P (t)
2
p0=1

∼ td/zp , (24)

where the average is over different samples with initial states
m0 and p0, respectively.

The first moment of the magnetization in Eq. (23) (in the
denominator) is obtained by considering the power-law decay
obtained by considering ordered initial state (m0 = 1) in the
scaling relation given by Eq. (16). Since the system has no
dependence on initial conditions, one has

Mm0=1 (t) ∼ t−
βm

νmzm . (25)

The same analysis can be done for the polarization, obtaining

P p0=1(t) ∼ t
− βp

νpzp . (26)

On the other hand, the second moment of the magnetization
in Eq. (23) (the numerator) can be written as

M2
m0=0 = 1

L2d

Ld∑
i=1

σ 2
i + 1

L2d

Ld∑
i 	=j

σiσj ≈ L−d

for a fixed t . By taking into account k = 2 in Eq. (10) with
b = t1/zm and considering that the spin-spin correlation σiσj

is negligible for m0 = 0, we obtain

M2
m0=0(t,L) ≈ t

−2βm
νmzm M2

m0=0(1,t−1/zL)

= t
−2βm
νmzm (t−1/zL)−d

∼ t (d− 2βm
νm

)/zm (27)

for the second moment of the magnetization and, similarly,

P 2
p0=0(t,L) ∼ t

(d− 2βp

νp
)/zp (28)

for the second moment of the polarization. Therefore, the
power laws given by Eqs. (23) and (24) can be easily verified.

This approximation proved to be very efficient in estimating
the exponent z, according to results for the Ising model, the
three-state and four-state Potts models [37], the tricritical point
of the Blume-Capel model [38], metamagnetic model [39],
ANNNI model [40], spin models based on generalized Tsallis
statistics [41], Z5 model [42], the Baxter-Wu model [43], the
double-exchange model [44], Heisenberg model [34], protein
folding models [45], even models without defined Hamiltonian
(see, for example, Refs. [27,46,47]).

The static exponents must be obtained via other power
laws. When L → ∞, one has M(t,τ ) = b−kβ/νM(b−zt,b1/ντ ).
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By scaling b−zt = 1, we have M(t,τ ) = t−β/(νz)f (t1/(νz)τ )
where f (x) = M(1,x) and so ∂ ln M(t,τ )/∂τ = 1

〈M〉
∂
∂τ

M =
t1/(νz)f (t1/(νz)τ ). Therefore, we have

DM (t) = ∂ ln M

∂τ

∣∣∣∣
τ=0

= f0 · t1/(νmzm) ∼ tφm, (29)

where f0 = f (0) is a constant and φm = 1/(νmzm). Since we
have already estimated the exponent zm [Eq. (23)], we are
able to obtain νm. With these two exponents in hand, we can
obtain βm by estimating the exponent μm = βm/(νmzm) from
Eq. (25). By changing M by P , we have

DP (t) = ∂ ln P

∂τ

∣∣∣∣
τ=0

∼ tφp (30)

with φp = 1/(νpzp), where the exponents νp and βp are
obtained by following the same procedures adopted for the
magnetization.

III. SOME DETAILS ABOUT HEAT-BATH
MONTE CARLO SIMULATIONS

In this section, we describe with some details how the heat-
bath Monte Carlo simulations are carried out in our work to
evolve the spins. The interesting point here is that the transition
occurs for the pair of spins (σi,j , μi,j ) and not for single spins
since we have coupled lattices. Moreover, this transition does
not depend on current spin. So, the transition probabilities
of each possible pair: (+,+), (−,+), (+,−), and (−,−) are
calculated by

p[· → (σi,j , μi,j )] = 1

S
exp[−E(σi,j , μi,j )]

with S = e−E(+,+) + e−E(−,+) + e−E(+,−) + e−E(−,−) and

E(+,+) = −K(�i,j + 
i,j ) − K4�i,j ,

E(−,+) = −K(
i,j − �i,j ) + K4�i,j ,

E(+,−) = −K(�i,j − 
i,j ) + K4�i,j ,

E(−,−) = K(�i,j + 
i,j ) − K4�i,j ,

where

�i,j = σi+1,j + σi−1,j + σi,j+1 + σi,j−1,


i,j = μi+1,j + μi−1,j + μi,j+1 + μi,j−1

and

�ij = σi+1,jμi+1,j + σi−1,jμi−1,j + σi,j+1μi,j+1

+ σi,j−1μi,j−1.

For the AT model the relevant quantities correspond to
time-dependent magnetization, polarization, as well as their
superior moments, here represented by a general symbol O

defined via our MC simulations as an average over all L2

spins and over the different Nrun runs (the number of different
time evolutions):

O(t) = 1

Nrun L2

Nrun∑
k=1

L∑
i,j=1

Oi,j,k(t), (31)

where the index k = 1, . . . ,Nrun denotes the corresponding run
of each simulation. The ordered state is ferromagnetic, with
all (or most of) the spins pointing either up or down.

As discussed in the previous section, the lattice’s initial
condition to be simulated in our study depends on the scaling
relation as follows.

(i) Equations (12) and (13): To obtain such power laws,
the averages are obtained from a set of runs with initially
random configurations allowing the direct calculation of the
dynamic exponents θm and θp. Here, the only requirement
is that 〈m0〉 = 〈p0〉 = 0. Unfortunately, the huge fluctuations
for P (t), even for Nrun = 3 × 105 runs, prevented us from
estimating θp through this method.

(ii) Equations (14) and (15): In order to obtain the same
exponents θm and θp we use these alternative equations.
However, in this case, a careful preparation of the initial order
parameters (m0 and p0) is needed, besides the limit procedures
m0 → 0 and p0 → 0. Here we used Nrun = 105 runs.

(iii) Equations (25) and (26): In order to perform the
simulations to obtain the exponents by these power laws, we
used ordered initial states, which means m0 = 1 and p0 = 1.
In this particular case the simulations do not present sensitive
fluctuations and for all cases we used Nrun = 4000 runs.

(iv) Equations (27) and (28): When computing the second
moment of the magnetization or polarization, we used m0 = 0
[half (randomly chosen) of the spins up and the other half of
the spins down] and Nrun = 4000 runs.

(v) Equation (29): When dealing with Monte Carlo simu-
lations, the partial derivative is approximated in first order by
the difference

∂ ln M(t,τ )|m0=1

∂τ

∣∣∣∣
τ=0

≈ 1

2ε
ln

[
M(t,Tc + ε)|m0=1

M(t,Tc − ε)|m0=1

]
, (32)

where ε � 1. It is clear from Eq. (32) that two independent
simulations are necessary to obtain the exponent 1/νz: one
of them evolves at the temperature Tc + ε, and the other
one evolves at Tc − ε. Here we used Nrun = 4000 runs for
M(t,Tc + ε)|m0=1 and Nrun = 4000 runs for M(t,Tc − ε)|m0=1
since we start from ordered initial states.

It is important to mention that the number of runs used in
this work is equal to or larger than Nrun used in other successful
works (see, for example, Refs. [33] and [40]).

IV. LOCALIZATION OF CRITICAL POINTS:
POWER LAW OPTIMIZATION

In this section we performed some initial simulations to
give more knowledge about the criticality of the AT model.
The theoretical predictions of the critical line are described by

K4(K) = − 1
2 ln[sinh(2K)]. (33)

Therefore, let us consider a particular critical point of
this curve, denoted by [K (c),K

(c)
4 ], which corresponds to

a particular critical coefficient Jc of the Baxter model,
such that λc = − 1

2 ln[sinh(2Jc)]. Hence, we obtain K
(c)
4 =

1
2 tanh−1 ( tanh(2λc)

tanh(2λc)−1 ) and K (c) = 1
2 sinh−1[exp(−2K

(c)
4 )].
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TABLE I. The five points in the self-dual critical line.

Critical point (CP) J λ K K4

P1 0.4 0.059332097 0.489889651 −0.067369092
Ising Model 0.5 ln(1 + √

2) 0 0.5 ln(1 + √
2) 0

P2 0.5 −0.080719681 0.393334281 0.069427372
P3 0.596439479 −0.20159986 0.347625611 0.142089631
FSP Model +∞ −∞ (ln 3)/4 (ln 3)/4

The critical exponents at the equilibrium state for the AT
model are well known and given by

ν = νm = νp = 2 − y

3 − 2y
,

(34)

βm = 2 − y

24 − 16y
βp = 1

12 − 8y
,

where the parameter y belongs to the interval [0,4/3] and is
given by

y = 2

π
cos−1

[
1

2
(e4K4 − 1)

]
. (35)

In Table I, we collected the five critical points considered in
this work (J ) as well as the four-body coupling constants (λ) at
the critical line of the Baxter model. The corresponding coeffi-
cients K and K4 for the Ashkin-Teller model, calculated from
Eqs. (2), (4), and (5), are also shown in this table. We choose
the points, P1: J = 0.4, which corresponds to y � 1.0754; the
Ising point, which corresponds to J = 1

2 ln(1 + √
2) or y = 1;

P2: J = 0.5 corresponding to y � 0.8977; and the point P3,
which has the same thermal exponent (ν = 5/6) of three-state
Potts model, corresponding to J � 0.596 which corresponds
to y = 3/4. This point was reported in Ref. [53] as belonging to
the universality class of the three-state Potts model. However,
in an erratum, the author has fixed this mistake. For example
we can observe the difference for the exponent β = 1/9 for
the three-state Potts model while for the point P3 we have
βm = 5/48. The last point in Table I is the four-state Potts
(FSP) point corresponding to J → +∞ (or y = 0).

In Fig. 1 we present the critical line of the AT model and
illustrate the points to be considered in this study, as well as
the perpendicular lines for each point. In order to find these
perpendicular lines, we first focus on the tangent lines to the
curve K4(K) = − 1

2 ln[sinh(2K)] passing through the critical

points [K (c),K
(c)
4 ]. These tangent lines are written as

K
‖
4 = − coth(2Kc)(K − Kc) − 1

2 ln[sinh(2Kc)] ,

and the perpendicular line to this tangent line, can be written
as

K⊥
4 = tanh(2Kc)(K − Kc) − 1

2 ln[sinh(2Kc)]. (36)

Our initial plan was to study the phase transition points
of the AT model via time-dependent MC simulations by
estimating the best K given as input the parameter K (min)

(inicial value) and run simulations for different values of K

according to a resolution �K .
We performed this task for the five points shown in Fig. 1

by taking into account only the magnetization and the analysis

was carried out by using an approach developed in Ref. [41]
in the context of generalized statistics. This tool had also
been applied successfully to study multicritical points, for
example, tricritical points [39] and Lifshitz point of the
ANNNI model [40], Z5 model [42], and also in models without
defined Hamiltonian [48].

Since at criticality it is expected that the order param-
eter obeys the power-law behavior of Eq. (25), for each
value K = K (min) + i�K , with i = 1, . . . ,n, where n =
�(K (max) − K (min))/�K�, we performed MC simulations and
calculated the coefficient of determination, which is given by

r =
∑NMC

t=1 (ln M − a − b ln t)2

∑NMC

t=1 [ln M − ln〈M〉(t)]2

, (37)

with ln M = (1/NMC)
∑NMC

t=1 ln M(t), and the critical value
Kc corresponds to K (opt) = arg maxK∈[K (min),K (max)]{r}. The
coefficient r has a very simple explanation: it measures the
ratio: (expected variation)/(total variation). The bigger the r ,
the better the linear fit in log scale, and therefore, the better the
power law that corresponds to the critical parameter excepted
for an order of error �K .

Particularly for these simulations, whose main aim is to
check the critical parameter, we used only NMC = 300 MC
steps but, for the simulations used to estimate the static critical
exponents, we used NMC = 1000 MC steps.

FIG. 1. Critical line described by equation K4 =
− 1

2 ln[sinh(2K)]. The points correspond to J = 0.4 (P1),
J = 0.5 (P2), Ising model, J � 0.6 (P3), and four-state Potts (FSP)
model. The perpendicular lines passing through each point are also
presented.
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FIG. 2. Coefficient of determination r as function of K walking
on the perpendicular line presented in Fig. 1. The maximum occurs
at the expected critical points.

In Fig. 2 we can observe that the maximum occurs exactly
in the point [K (c),K

(c)
4 ] as conjectured by Eq. (33) for each

point. This figure shows r as function of K walking on the
perpendicular line given by Eq. (36). Since we corroborate
such conjecture using an optimizer based on MC simulations,
we are now prepared to study the critical exponents (dynamic
and static ones) for these points.

V. RESULTS

In this article we study the short-time critical dynamics
of the Ashkin-Teller model [7] by carrying out Monte Carlo
simulations in five points (see Table I) along the Baxter line
where the model presents nonuniversal behavior.

We estimate the dynamic critical exponents θgm
, θgp

, θm, θp,
zm, and zp for each considered critical point as well as the static
critical exponents: νm, νp, βm, and βp. We elaborate a more
detailed statistical procedure to estimate the static exponents
since their sensitivity deserves more attention. Among the
points we take into account, we include the critical points
of the Ising, and FSP models. The exponents θgm

, θm, and zm

have already been obtained numerically for the critical points
of the two-dimensional Ising model [20,49–52] and the FSP
model [35,37,43,53–55]. These last two exponents, as well
as the exponents θp and zp were calculated for some points
on the self-dual critical line of the Ashkin-Teller model by Li
et al. [56]. In addition, the exponents zm and zp were estimated
for some points on the critical line for the Baxter model by
Takano [57]. As far as we know, the dynamic critical exponents
θgm

, and θgp
were not found yet for the Ashkin-Teller model.

It is important to mention that θm and θp have not yet been
obtained by power-law correlations, as well as the exponents
zm and zp, which have not yet been studied through the method
that mixes initial conditions. Both methods are employed
in this paper. On the other hand, for the static exponents,
conjectures assert that the ratio βm/νm = 1/8 for the entire
critical line while βp/νp is not constant as J increases. Hence,
this fact deserves attention and a detailed study.

In our simulations we use square lattices of linear sizes
L = 64, 128, and 256 and the system evolves in contact with a
thermal bath in five points on the self-dual critical line of the AT

model. Zheng in Ref. [20] has shown that there is no expected
differences in exponents for the lattice sizes L = 128 and 256
within error bars. As will be shown in the following tables,
our results assert that, as in Zheng’s work, there is no need
of performing simulations for lattices greater than L = 256.
Our estimates for each exponent and the corresponding error
are obtained from five independent seeds of Nrun runs, each
one as previously described in Sec. III. However, since the
two sublattices of the model (σ and μ) are symmetrical, the
number of effective bins for the magnetization are doubled. In
order to measure the slopes of the power laws described above
(in double-log scale) we consider the time interval [150,300]
for the dynamic exponents. For the static ones, a more detailed
statistical tool was prepared taking into consideration averages
over different seeds and temporal variations. In this case the
maximal number of MC steps was NMC = 103.

A. Dynamic critical exponents θgm and θg p

The first exponents we calculate are the global persistence
exponents θgm

and θgp
that are achieved when one considers

the global persistence probabilities GM (t) and GP (t), Eqs. (20)
and (21), which are defined as the probabilities of the order
parameters (magnetization and polarization) not changing
their signs up to the time t , at criticality (τ = 0).

In order to obtain these exponents, one can define the global
persistence probability as

GM (t) = 1 −
t∑

t ′=1

ρm(t ′) (38)

and

GP (t) = 1 −
t∑

t ′=1

ρp(t ′), (39)

where ρm(t ′) and ρp(t ′) are the fractions of samples that have
changed the sign of their magnetization and polarization,
respectively, for the first time at the instant t ′. Here, the
simulations are performed for some predefined values of the
initial magnetization m0 � 1 and polarization p0 � 1. Hence,
a sharp preparation of the initial states is needed to obtain
precise values for them. After obtaining the exponents θgm

and
θgp

for each value of m0 and p0, respectively, the final values
are achieved by performing the limit procedures m0 → 0 and
p0 → 0.

In this paper, we consider the following values for m0 and
p0: 0.002, 0.004, 0.006, and 0.008. To obtain these values,
we first insert randomly, at each site of the sublattices, a spin
variable that takes the values ±1. After that, the magnetization
of the sublattices and the polarization of the system are
measured by using Eq. (8). Then, spin variables are chosen
randomly and their signs are changed until we obtain a
null value for the magnetizations and polarization. The last
procedure is to change the signs of δ/2 sites of each sublattice
at random to obtain the desired initial magnetization m0 and
polarization p0.

In Fig. 3 we show the decay of the global persistence prob-
ability of the magnetization (on top) for the five considered
points, for L = 256 and m0 = 0.008. The error bars are smaller
than the symbols. In that same figure, at the bottom, we present
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FIG. 3. Global persistence probability of the magnetization for
L = 256. Top: polynomial decay of GM (t) × t for m0 = 0.008.
Bottom: linear fit of the estimates obtained for different values
of m0.

the plots of θgm
as function of m0, as well as the limit procedure

m0 → 0.
Table II presents the results obtained from the limit

procedure for the three lattices, L = 64, 128, and 256.
The results show that the dynamic critical exponent θgm

grows monotonically with J . Moreover, the values obtained
for the Ising and FSP models can be compared with results
obtained previously and found in literature.

For the Ising critical point, the uncoupled point, our result
is in complete agreement with that presented by Schulke
et al. [24], θg = 0.238(3). Our result can also be compared
to the value obtained by Majumdar et al. [22] using a
finite-size scaling technique. By starting from a random
initial configuration and collapsing the data, they found
θgz = 0.505(20). If we consider our estimate for zm (presented

TABLE II. The global persistence exponent θgm
for the five

considered points.

CP L = 64 L = 128 L = 256

P1 0.2063(26) 0.2211(16) 0.2283(28)
Ising model 0.2186(19) 0.2381(40) 0.2409(26)
P2 0.2417(25) 0.2656(7) 0.2618(14)
P3 0.2835(18) 0.3032(20) 0.3089(23)
FSP model 0.4678(38) 0.4763(60) 0.4679(13)

in Sec. V C), zm = 2.156(11), one finds θg = 0.234(10). This
result is slightly smaller than the value obtained in this paper
but they are in agreement with each other when considering
the statistical errors.

For the FSP model, Fernandes et al. [35] obtained θg =
0.474(7) and Arashiro et al. [55] found θg = 0.475(5) for the
FSP model and θg = 0.471(5) for the n = 3 Turban model
(this model belongs to the four-state Potts model universality
class). Therefore, our estimate is in good agreement with those
obtained previously.

Figure 4 shows the global persistence probability in double-
log scale for the polarization, for the five points along the
self-dual critical line (on top), L = 256 and p0 = 0.008. The
error bars are smaller than the symbols.

The plots of θgp
as function of p0, as well as the limit

procedure p0 → 0 are shown at the bottom of this figure and
the extrapolated values are presented in Table III.

For the polarization, the global persistence exponent de-
creases monotonically with J showing, as above, the nonuni-
versal character of the model. The values of the exponent
are higher than for θgm

but this difference disappears for the
four-state Potts critical point whereas in this point K = K4

and both θgm
and θgp

share the same value.

B. Dynamic critical exponents θm and θ p

As stressed before, we consider two different approaches
to estimate the exponents θm and θp. Our first attempt is

FIG. 4. Global persistence probability of the polarization for
L = 256. Top: polynomial decay of GP (t) × t for p0 = 0.008.
Bottom: linear fit of the estimates obtained for different values
of p0.
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TABLE III. The global persistence exponent θgp
for the five

considered points.

CP L = 64 L = 128 L = 256

P1 1.143(55) 1.035(12) 1.044(19)
Ising model 0.9941(76) 0.9867(57) 1.0027(80)
P2 0.9279(186) 0.9186(114) 0.9137(346)
P3 0.8183(224) 0.7988(94) 0.777(121)
FSP model 0.4607(105) 0.4570(106) 0.4741(18)

related to the time correlation of the magnetization and
polarization, Eqs. (12) and (13), respectively. However, the
huge fluctuations, even for 3 × 105 samples, prevented us from
considering this technique to obtain θp. In Fig. 5, QM (t) is
plotted in double-log scale for five different points.

Table IV shows our numerical results for each θm with the
corresponding error, for the three lattice sizes considered in
this paper.

The second method consists of calculating the exponents
θm and θp for different values of m0 � 0 and p0 � 0,
respectively, by using the Eqs. (14) and (15). Their final values
are then obtained by carrying out the limit procedure m0 → 0
and p0 → 0. In order to avoid huge fluctuations of the order
parameters, which arise when m0 and p0 are very close to
zero, we consider the following values of m0 and p0: 0.02,
0.04, 0.06, and 0.08.

Figure 6 shows the polynomial behavior of M(t) × t for
m0 = 0.06 in double-log scales, for the five different points
and L = 256 (top).

The limit procedures are shown at the bottom of this figure
and the extrapolated values can be seen in Table V for the three
lattices, L = 64, 128, and 256.

Our results displayed in Tables IV and V are in good
agreement with each other and show that the exponent θm

varies continuously with J . The estimates also corroborate the
available values for the Ising and FSP models. For the former
one, our results should be compared with those ones showed by
Grassberger [52], θ = 0.191(3), Li et al. [56], θ = 0.191(2),
and Okano et al. [51], θ = 0.191(1). For the FSP model, Okano
et al. [51] conjectured that the exponent θ should be negative

FIG. 5. The time evolution of the time correlation of the magne-
tization QM (t).

TABLE IV. The dynamic critical exponent θm obtained from the
time correlation of the magnetization, QM (t), for the five coupling
constants of the Baxter model at the self-dual critical line of the
Ashkin-Teller model.

CP L = 64 L = 128 L = 256

P1 0.207(15) 0.208(13) 0.205(10)
Ising model 0.188(20) 0.189(17) 0.188(13)
P2 0.163(10) 0.158(17) 0.162(20)
P3 0.129(19) 0.131(25) 0.121(17)
FSP model −0.087(85) −0.071(77) −0.031(51)

and close to zero and the results for this model [54,55] as
well as for the Ising model with three-spin interactions [58]
validate this assertion. Besides the four-state Potts model, it
has been shown in some papers that there are models in which
the exponent θ can also have a negative value, for instance,
the tricritical Ising model [59], Blume-Capel model [38],
metamagnetic model [39], and Baxter-Wu model [43,60].

In order to obtain the exponent θp, we consider the same
initial conditions, i.e., p0 = 0.02, 0.04, 0.06, and 0.08.
Figure 7 displays the behavior of P (t) × t , Eq. (15), in
double-log scale for p0 = 0.08 and L = 256 for the five
critical points considered.

The extrapolated values, obtained from the limit procedure
p0 → 0, are presented in Table VI for the three lattices,
L = 64, 128, and 256.

FIG. 6. The plot of M(t) × t , Eq. (14), for the initial magnetiza-
tion m0 = 0.08 and L = 256. Top: polynomial behavior of M(t) × t .
Bottom: linear fit of the estimates obtained for different values of m0.
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TABLE V. The dynamic critical exponent θm for the five consid-
ered points.

CP L = 64 L = 128 L = 256

P1 0.2171(23) 0.2198(35) 0.2203(45)
Ising model 0.1915(16) 0.1999(20) 0.1951(26)
P2 0.1681(64) 0.1646(33) 0.1666(14)
P3 0.1172(19) 0.1196(9) 0.1176(10)
FSP model −0.0580(21) −0.0707(59) −0.0611(42)

The results show that the exponent θp decreases mono-
tonically with respect to J . They are completely different
from those obtained by Li et al. [56], but for the four-state
Potts critical point (y = 1 in that paper). They showed that the
polarization is negative for all considered points.

C. Dynamic critical exponents zm and z p

Finally, the dynamic critical exponents zm and zp are
obtained by combining results from samples submitted from
different initial conditions (ordered state for the order pa-
rameter and disordered one for the second moment of the
order parameter), Eqs. (23) and (24), where the dimension of
the system is d = 2. This technique has proven to be very
efficient in estimating the exponent z for a large number of
models [35,37,38,43,44,55].

FIG. 7. The plot of P (t) × t , Eq. (15), for the initial polarization
p0 = 0.08 and L = 256. Top: polynomial behavior of P (t) × t .
Bottom: linear fitting of the estimates obtained for different values
of p0.

TABLE VI. The dynamic critical exponent θp for the five
considered points.

CP L = 64 L = 128 L = 256

P1 0.4466(320) 0.4364(16) 0.4301(7)
Ising model 0.4317(39) 0.3857(94) 0.3638(58)
P2 0.2797(361) 0.3017(125) 0.2860(115)
P3 0.1403(372) 0.0937(210) 0.1106(59)
FSP model −0.0611(115) −0.0597(44) −0.0645(1)

The time evolution of F2M
, obtained from Eq. (23), is shown

in Fig. 8 in double-log scale for the five considered points and
L = 256. The error bars are smaller than the symbols.

The mean values of zm and the corresponding errors are
given in Table VII for L = 64, 128, and 256.

In the decoupling point, J = K = 0.5ln(1 + √
2), the

exponent zm is in complete agreement with those obtained
for the two-dimensional Ising model [50,51]. However, our
estimate of zm for the FSP model, is larger, but very close to
the values recently obtained for that model, z = 2.290(3) [37]
and z = 2.294(3) [35], for the Baxter-Wu model [43], z =
2.294(6), and for the n = 3 Turban model [55], z = 2.292(4),
both belonging to the same universality class of the FSP model.

In Fig. 9 we show the time dependence of F2P
(t) in double-

log scales for the five considered points and L = 256. The
error bars, obtained from five independent runs, are smaller
then the symbols. The linear fits of these curves, as well as
of those ones with L = 64 and L = 128, lead to the values
presented in Table VIII.

By taking into account the statistical errors, the results
shown in Tables VII and VIII ensure that the exponents zm and
zp are varying with respect to J . In this case, only the exponent
for the FSP model is different from the others. Besides, for this
critical point, the exponents zm and zp share the same values
(within the error bars). On the contrary, the exponent zp is
greater than zm for the other points, in contrast with the results
shown in Ref. [56] for the Ashkin-Teller model, where there
is no distinction between the two critical indexes.

D. Static critical exponents

Here we finally calculate the static critical exponents of
the AT model. By using the exponents zm and zp obtained

FIG. 8. Time evolution of F2M
(t) for the five critical points and

L = 256.
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TABLE VII. The dynamic critical exponent zm for the five
considered points.

CP L = 64 L = 128 L = 256

P1 2.113(18) 2.139(16) 2.147(12)
Ising model 2.129(12) 2.156(11) 2.156(11)
P2 2.154(9) 2.168(13) 2.172(13)
P3 2.175(5) 2.198(14) 2.194(17)
FSP model 2.318(11) 2.342(21) 2.346(21)

in the previous section, we calculate the exponent ν for
the magnetization and polarization, respectively. Differently
from what occurs with the dynamic exponents, the computing
of static exponents deserves a more detailed analysis of
uncertainties and of final estimates. In this analysis we consider
both the external and internal averages.

In this paper, the static exponents were calculated by using
Nrun = 4000 runs in order to compute the averaged time series
in the situation that the system starts from m0 = 1 (or p0 = 1).
First, the error bars are obtained with Nb = 5 different bins (for
polarization). For the case of magnetization we have Nb = 10
different bins since the lattices are doubled. Here it is important
to differentiate bin from seed. We always used five seeds, but
due to duplicity of lattices in the AT model, and considering
the isotropic case (K1 = K2 = K) the number of bins is equal
to the double of seeds for the magnetization case.

We numerically compute the derivative through Eqs. (29)
and (30), which leads to:

D(t) = 1

2δ
ln

O[K4(Tc + ε),K(Tc + ε),t]

O[K4(Tc − ε),K(Tc − ε),t]
, (40)

where O[K4(T ),K(T ),t] denotes the averaged magnetization
and polarization calculated in values above and below the
critical temperatures. If K(Tc) = Kc = 1

Tc
, it is interesting to

observe that a perturbation on the critical temperature, Tc ± ε,
produces K(Tc ± ε) = 1/(Tc ± ε) = 1/Tc

(1±ε/Tc) = Kc/(1 ± δ),
where δ = ε/Tc. This means that when we divide Kc by (1 ±
δ), the critical temperature is perturbed by a value ±ε = ±δTc.
Similarly, K4(Tc ± ε) = Kc

4/(1 ± δ).
Figure 10 shows the time evolution of D(t) for magnetiza-

tion and polarization, calculated by Eq. (40). It is important to

FIG. 9. Time evolution of F2P
(t) for the five critical points.

TABLE VIII. The dynamic critical exponent zp for the five
considered points.

CP L = 64 L = 128 L = 256

P1 1.889(19) 2.236(16) 2.201(8)
Ising model 1.932(25) 2.225(21) 2.220(16)
P2 2.004(25) 2.232(17) 2.212(26)
P3 2.092(10) 2.253(19) 2.258(17)
FSP model 2.210(12) 2.341(12) 2.338(38)

notice that the best δ (δbest) for each critical point can change
and we study the best lag δbest suitable for each point. For the
magnetization, the error bars are obtained by using an average
over different N2

b = 100 points while for the polarization
N2

b = 25 points since we cross the Nb time series simulated
above critical parameter: O(Tc + ε,t), on the perpendicular
line as previously described, with Nb time series simu-
lated below critical parameter O(Tc − ε,t). We can clearly
observe a power-law behavior (log-log plot) for all points
studied.

So, in order to compute the static exponents, we observe
that the exponent φ = 1/(νz) has an important variation on the
different time lags considered, and therefore, such a variation
must be considered in the final estimates of the exponent ν.
In this analysis we index by k the time lag [t (k)

i ,t
(k)
f ], where

k = 1, . . . ,n. It was built considering that the minimum size
of the interval is � = 100 MC steps. Moreover, the minimum
ti adopted is 50 MC steps, while the maximum tf is 1000 MC
steps.

FIG. 10. Time evolution of D(t) for the five coupling constants.
Top: magnetization. Bottom: polarization.
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FIG. 11. Estimates of the exponents νm for the different time lags. The left-side plots show the exponents obtained by bootstrapping method
by adopting Nsample = 103 while the right-side ones were obtained with a simple crossing of Nb = 10 seeds (100 points).

We prepared an algorithm that considers the same number
of points per interval, which allows to perform linear fits under
the same conditions for all different intervals considered in the
analysis. The appropriate number of points per interval in this
paper was np = 25, and the spacing was adjusted to satisfy
such restriction.

Let us denote here Ol(Tc + ε,t), the order parameter
averaged over Nrun different runs corresponding to the lth
bin calculated in Tc + ε and Om(Tc − ε,t) corresponding to
the mth bin that was calculated in Tc − ε. Denoting φ

(l,m)
k

the exponent 1/νz, calculated using the two bins l and m

previously reported for the time lag k after a fitting of the
power law 1

2δ
ln Ol (Tc+ε,t)

Om(Tc−ε,t)
∝ tφ

(l,m)
k , our final estimate of the

exponent φk in this time lag is

φk = 1

N2
b

Nb∑
l,m=1

φ
(l,m)
k , (41)

which is an average over the bins. In this case we have an
uncertainty given by

σ 2
k = 1

N2
b

(
N2

b − 1
) Nb∑

l,m=1

(
φ

(l,m)
k − φk

)2
. (42)

Finally, we have the final estimate φ = 1
n

∑n
k=1 φk , which

is an average over the time lags and which leads to a final
uncertainty:

σ 2
φ = 1

n(n − 1)

n∑
k=1

(φk − φ)2 + 1

n2

n∑
k=1

σ 2
k

= σ 2
ext + σ 2

int, (43)

where the first term of the right-hand side corresponds
to external uncertainty (variation over the time lags). This
term corresponds to a temporal variation of the exponent,
since the exponent estimated for each lag changes along the
time evolution. A second source of errors corresponds to
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TABLE IX. The static critical exponents ν for the five considered points, for magnetization (m) and polarization (p). All estimates were
obtained for the largest lattice used in this work: L = 256. Here δbest is the best lag used in derivatives.

CP νm ν(boot)
m ν(min)

m ν(max)
m νp ν(boot)

p ν(min)
p ν(max)

p ν [Eq. (34)] δbest

P1 1.060(12) 1.060(24) 1.009(28) 1.117(30) 1.021(12) 1.021(16) 0.997(48) 1.066(52) 1.08900 0.005
Ising model 1.001(19) 1.000(42) 0.922(38) 1.089(68) 0.974(12) 0.974(28) 0.911(14) 1.020(88) 1.00000 0.002
P2 0.893(14) 0.893(24) 0.844(19) 0.941(46) 0.862(11) 0.862(18) 0.820(20) 0.912(42) 0.91500 0.002
P3 0.839(19) 0.839(36) 0.773(11) 0.951(58) 0.807(20) 0.807(28) 0.749(15) 0.904(86) 0.83333 0.001
FSP model 0.6682(41) 0.6684(74) 0.6391(98) 0.693(12) 0.6679(58) 0.6680(82) 0.637(11) 0.687(17) 0.66666 0.002

the internal component of uncertainty, i.e., the variation over
the pairs of the different seeds used for each time lag. So by
a final estimate of uncertainty we must compose these two
sources.

For the more skeptical, we also elaborate a bootstrapping
version of this analysis. The idea of bootstrapping is to
supply error bars, which would be more consistent by using a
larger number of seeds and so necessarily demanding higher
computational times.

In this case we choose two sets of five seeds (which should
be repeated as prescribed by the bootstrapping method) and
compose two new time series by averaging them. The first
one corresponding to the parameter Tc + ε and the other one
corresponding to the parameter Tc − ε yields an exponent.
We can repeat this procedure Nsample times instead of taking
the N2

b possible pairs as the previously described method.
So we can replace the Eqs. (41) and (42) by their corre-
sponding bootstrap equations : φk = 1

Nsample

∑Nsample
is=1 φ

(is )
k and

σ 2
k = 1

(Nsample−1)

∑Nsample

is=1 (φ(is )
k − φk)2, respectively, where φ

(is )
k

denotes the exponent calculated for the is th element of the
sample for the kth time lag. Equation (43) remains the same.
Given the exponent z ± σz previously calculated, the final
estimate of ν is obtained as ν = (zφ)−1, and the uncertainty is

obtained by σν = ν

√
( σz

z
)2 + ( σφ

φ
)
2
.

First, in order to observe the variation of the exponent ν over
the different time lags we prepare a plot to show the variation of
ν and its respective error bars for the different parts (time lags)
of the power law (Fig. 11). The x axis denotes a number that
indexes one specific time lag. It is important to mention that it
is a simple ordering, whereas we do not know which time lag
corresponds to the specific exponent since we are interested
only in observing the fluctuations of this exponent. In this
figure, we show the exponents of the magnetization for the
points corresponding to the Ising model, P3, and FSP model
where the right-hand side corresponds to estimates obtained by
using bootstrapping and the left-hand side the regular method
(both previously described).

This plot shows that the estimates can be deeply changed
along the power law but the theoretical prediction is cor-
roborated. The bootstrapping method produces higher error
bars as expected. So, taking into account the different source
variations, we obtain estimates to the exponent ν for the
different points studied in this paper. In Table IX we present
our final estimates of this exponent. The term (boot) refers
to exponents obtained using bootstraping. The terms max and
min mean the largest and smallest values found in our analysis.
The conjectured values are shown in the last column and

denoted by an asterisk, and are expected to share the same
value for both magnetization (m) and polarization (p). We can
observe a good agreement between the conjectured values and
our estimates.

It is important to mention that we have obtained such
exponents by MC simulations, and even by equilibrium MC
simulations. The agreement between the exponents ν for the
polarization and magnetization was only a conjecture.

By following the same process, we analyze the decay
of magnetization and polarization described by Eqs. (25)
and (26). The time evolving of these amounts are shown in
Fig. 12.

Here we proceed exactly as before to calculate ν. We
analyze the external (over different time lags) and internal
(over different bins) variations to estimate the exponent μ =
β/(νz). After a final estimate of μ and with the previous
estimates of ν and z, we obtain an uncertainty for β: σ 2

β =
β2[( σμ

μ
)2 + ( σν

ν
)2 + ( σz

z
)2]. We present our estimates of β in

Table X as we did for ν in Table IX.

FIG. 12. Time evolving of M(t) (top) and P (t) (bottom), for
m0 = 1 (or p0 = 1) for the five coupling constants.
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TABLE X. The static critical exponents β for the five considered points, for magnetization (m) and polarization (p). All estimates were
obtained for the largest lattice used in this work: L = 256. Differently from ν the conjectured values β∗ for the magnetization and polarization
are different.

CP βm β (boot)
m β (min)

m β (max)
m βp β (boot)

p β (min)
p β (max)

p β∗
m [Eq. (34)] β∗

p [Eq. (34)]

P1 0.1325(19) 0.1326(24) 0.1262(24) 0.1409(49) 0.2820(43) 0.2820(43) 0.2711(31) 0.2990(12) 0.1360930 0.2943721
Ising model 0.1246(15) 0.1241(20) 0.1192(58) 0.1310(30) 0.2504(31) 0.2504(31) 0.2404(56) 0.2660(57) 0.1250000 0.2500000
P2 0.1114(15) 0.1100(18) 0.1039(58) 0.1173(40) 0.1996(30) 0.1996(28) 0.1927(43) 0.2074(75) 0.1143817 0.2075268
P3 0.1045(11) 0.1046(15) 0.1024(15) 0.1092(33) 0.1663(22) 0.1663(21) 0.1566(55) 0.1766(50) 0.1041667 0.1666667
FSP model 0.08554(81) 0.0853(11) 0.0825(13) 0.0895(17) 0.0856(10) 0.0858(11) 0.0814(43) 0.0900(50) 0.08333334 0.0833334

Differently from what happens for ν (Table IX), the
conjectured values of β, for magnetization and polarization,
are different and our simulations corroborate both values. It
is important to notice that the exponents are the same for the
FSP point. In order to test the consistence of the estimates for
β and ν, we can compare β/ν with conjectured values (see,
for example, Ref. [61]). It is also important to stress that β and
ν may not be the same used in other papers and a comparison
must be done with some care.

Figure 13 shows the ratio β/ν for the different points. We
can check that β/ν remains the same for all points in the case
of magnetization (top), while we have a decrease of this ratio
when J increases for the polarization. In both situations, an
agreement with the conjectured values can be observed. The
blue curve was obtained using splines with the five conjectured

FIG. 13. The ratio β/ν calculate for magnetization (top) and
polarization (bottom). Our values present an excellent agreement
with the conjecture.

points obtained from literature. So we can check that all expo-
nents and, moreover, the conjectures are in agreement with our
time-dependent Monte Carlo simulations, i.e., the exponents
can be obtained even out of equilibrium extending even more
the applicability of this wide and successful approach.

VI. CONCLUSION

In this paper, we studied the nonequilibrium critical
behavior of the Ashkin-Teller model by performing Monte
Carlo simulations far from equilibrium. First, we checked
the critical parameters of the model by using a refinement
method proposed by the authors of this paper in previous
works. After that, the dynamic critical exponents θg , θ , and
z were obtained for the two order parameters of the model:
the magnetization and polarization. The simulations were
carried out at five different points on the self-dual critical
line including the Ising and four-state Potts critical points. The
exponents obtained at those points, for the magnetization, are
in good agreement when compared with previous estimates
except by the exponent zm for the four-state Potts critical point
that is slightly larger than that found in literature.

We have also obtained the static exponents. After a careful
procedure to obtain the exponents our results presented a
good agreement with conjectured results from literature. The
ratio β/ν decreases when J increases for the polarization
but remains the same (according to the error bars) for the
magnetization.

In this work, we showed again the wide applicability
of the theory of short-time dynamics to describe critical
phenomena retrieving equilibrium parameters in simulations
out of equilibrium as well as predicting nonequilibrium critical
indexes. As an important additional contribution, we also
proposed a statistical approach to estimate exponents in
time-dependent MC simulations by composing fluctuations
from intratime and intertime lags to produce suitable error
bars.
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