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Instability onset and scaling laws of an auto-oscillating turbulent flow in a complex plasma
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We study a complex plasma under microgravity conditions that is first stabilized with an oscillating electric field.
Once the stabilization is stopped, the so-called heartbeat instability develops. We study how the kinetic energy
spectrum changes during and after the onset of the instability and compare with the double cascade predicted by
Kraichnan and Leith for two-dimensional turbulence. The onset of the instability manifests clearly in the ratio of
the reduced rates of cascade of energy and enstrophy and in the power-law exponents of the energy spectra.
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Introduction. Turbulence is often cited as one of the main
challenges of modern theoretical physics [1], despite being a
long-standing subject of study. Many turbulent systems are
more complex than Navier-Stokes flow in a fluid—involving,
for instance, complicated ways of energy injection, transfer,
and dissipation [1]. Turbulent pulsations or its analogs occur in
systems as diverse as soap films [2], insect flight [3], lattices of
anharmonic oscillators [4,5], Bose-Einstein condensates [6],
and microswimmers [7]. The development or, inversely, the
decay of turbulence is of special interest and can be studied,
for instance, in flames [8] or behind grids [9].

In general, when energy is put into a two-dimensional turbu-
lent system, the energy spectrum splits into the inverse energy
and direct enstrophy ranges—the so-called double cascade
develops [10,11]. Its presence has been supported by computer
simulations, but not unambiguously [12,13]. Only a few
numerical simulations [14–16] and experiments [12,17,18]
were able to simultaneously observe both cascades, which is
challenging due to the large range of scales necessary to cover
both the inverse and direct cascades [19]. Recently, it was sug-
gested that the inverse cascade might not be robust, but depend
on friction [16,20]. The evolution of the spectrum during the
onset of two-dimensional forced turbulence was investigated
in [21]. A recent topic of interest is the transition of weak wave
turbulence to wave turbulence with intermittent collapses [22]
and intermittency, i.e., strong non-Gaussian velocity fluctua-
tions, in wave turbulence [23–26], and so-called Janus spectra
which differ in streamwise and transverse directions [27].

In this Rapid Communication, we present a study of devel-
oping turbulence in dusty (complex) plasmas. Complex plas-
mas consist of microparticles embedded in a low-temperature
plasma. The microparticles acquire high charges and interact
with each other. They can be visualized individually and
thus enable observations on the kinetic level of, for instance,
vortices [28–30], tunneling [31], and channeling [32]. Gravity
is a major force acting on the microparticles in ground-based
experiments. Under its influence, the particles are located close
to the sheath region of the plasma, where strong electric fields
compensate for gravity, and strong ion fluxes are present.
It is desirable to perform experiments with microparticles
under microgravity conditions. Then, the microparticles are
suspended in the more homogeneous plasma bulk with a
weak electric field [33], and the strong ion flux effects such
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as wake formation [34] are avoided. The data presented in
this Rapid Communication were measured using the PK-3
Plus Laboratory [35] in the microgravity environment on
board the International Space Station. Here, large, symmetric
microparticle clouds form in the plasma bulk which typically
contain a small central, particle-free void caused by the
interplay between the ion drag and electric forces acting on
the microparticles [33].

Several authors have recently begun to study turbulence
in complex plasmas [30,36–38]. Using complex plasmas to
study turbulence has the advantage that the particles that carry
the interaction can be visualized individually, in contrast to
traditional experiments on turbulence [18,39,40], in which the
use of tracer particles might not be reliable [41]. Turbulence
in complex plasmas occurs at low Reynolds numbers, which
is common in viscoelastic fluids [42]. Furthermore, complex
plasmas are usually highly dissipative. Therefore, it is advanta-
geous to study forced turbulence. A good mechanism to induce
turbulent pulsations is the self-sustained heartbeat oscillation
[38,43]. This type of instability is characterized by a regularly
pulsating (auto-oscillating) microparticle cloud [33,44,45].
The heartbeat-induced auto-oscillations pump energy into the
microparticle cloud and are able to induce turbulence and
effectively channel the flow in two dimensions [38]. In the
experiment presented in this Rapid Communication, we use a
developing heartbeat instability and auto-oscillations to study
the onset of turbulence and, specifically, the development of
the kinetic energy spectrum. In addition to the channeling due
to the heartbeat, we limit our analysis to particles that move
within a plane for 0.2 s or longer, thereby excluding particles
with a significant transverse velocity component.

Experiment details. Here we present data obtained with
the PK-3 Plus Laboratory on board the International Space
Station [35]. The heart of the laboratory consists of a parallel
plate plasma reactor. The experiment was performed in argon
at a pressure of 9 Pa. Melamine-formaldehyde particles
with a diameter of (9.2 ± 1%) μm and a mass density of
1510 kg/m3 are inserted into the plasma via dispensers. They
are illuminated with the light from a laser that is spread into a
vertical plane, and their positions are recorded at a frame rate
of 50 fps. The rate of damping caused by the friction between
microparticles and neutral gas is γdamp = 10.7 s−1 [38,46]. The
microparticles’ velocity of sound is CDAW = 6–7 mm/s under
these conditions [38].

At the beginning of the experiment presented here, the par-
ticle positions are stabilized by applying a rapidly alternating
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FIG. 1. (a) Selected representative particle track demonstrating
alternating dynamics features before, during, and after the onset of
the instability. Color codes time from t = 19.3 s (black) to t = 25.5 s
(red). (b) Distribution of horizontal velocity of all particles in the field
of view during the first 60 s of the experiment. (c) Mean horizontal
velocity 〈v〉 (bottom line, black) calculated with a sliding window
of 0.2 s width, and its standard deviation, σv = [1/(N − 1)

∑
j (vj −

〈v〉)2]1/2 (top line, blue); N is the number of particles and vj the veloc-
ity of individual particles. When the instability develops (t = 23 s),
the particles begin to move to the left with 〈v〉 ≈ −1 mm/s, and
σv ≈ 5.5 mm/s. This drift is accompanied by a horizontal oscillation
at the heartbeat frequency. This is also visible in the particle track
(a), where at t > 23 s, the particle starts to move in ovals which are
successively displaced leftward.

additional electric field (frequency between 42 and 51 Hz).
This electric field suppresses a heartbeat instability. When
it is switched off, first the particles move out of the cloud
center, and a void develops. This void then begins to regularly
expand and contract—it undergoes the heartbeat instability
[33,35,44]. The heartbeat in the present experiment has a
frequency of fHB = 2.81 ± 0.03 Hz [38]. We analyze a time
series of 80 s duration. The heartbeat develops at t = 23 s
(t = 0 s corresponds to an arbitrarily chosen point during the
stabilization stage) (see Fig. 1). The transition from stabilized
cloud to heartbeat takes about 2 s as seen from the video
images, which is approximately 20 times longer than the time
scale defined by friction. A short movie showing experimental
data before, during, and after the transition can be found in the
Supplemental Material [47].

Velocity distribution. Figure 1 shows the evolution of the ve-
locity distribution before and after the stabilization is switched
off. During the stabilization stage, the mean horizontal velocity
is approximately zero. When the stabilization is turned off (at
t = 23 s), an oscillation caused by the heartbeat instability de-
velops, causing a drift of the particles leftward (toward negative
x values) (see Fig. 1). Details on the fully developed instability
can be found in [38,43]. Here we are interested in the transition
from the stabilized complex plasma to the unstable system.
This transition is clearly seen in the velocity distribution of
the microparticles (Fig. 1). The particles start drifting to the
left edge of the cloud, as can be seen in the displacement of
the particle track [Fig. 1(a)], in the shift of the distribution
toward negative values [Fig. 1(b)], and in the nonzero mean
axial velocity [Fig. 1(c)]. The movement of the particles with
the heartbeat manifests in an oscillating mean velocity. The
standard deviation of the velocity, which is a measure of the
particle kinetic temperature, also increases once the instability
sets in.1 Images visualizing the particle movement during the
instability are given in the Supplemental Material [47].

Energy spectra. Next, we are going to explore the evolution
of the energy spectra of the microparticles. To calculate
the spectra, we follow the method presented in [30,38]: We
calculate velocity maps, i.e., the average horizontal or vertical
velocity of the particles as a function of position. The energy
is then calculated from the squares of the Fourier-transformed
velocity maps by associating every energy value with the
corresponding wave vector modulus k = |k|. As we are inter-
ested in the transition process, we calculate the velocity maps
averaging over a number of frames. A small number of frames
is desirable to increase the resolution during the transition, but
introduces the problem of “holes” in the velocity maps. These
holes are positions in space for which no average velocity data
is available, as no particles were present or detected at these
positions in the frame range used to calculate the map. The
presence of the holes (gaps) in the data can potentially have a
significant influence on calculated energy spectra [48].

The size and number of holes depends on the radius over
which mean velocities are calculated and on the number of
frames involved in averaging. We test the influence on the
spectra by first calculating the spectrum from a map without
holes. Then, we artificially remove the data at the position of
the holes in a different velocity map and recalculate the energy
spectrum. We repeat this method using various averaging radii
and frame ranges to find the optimal parameters. According to
this analysis, we determine an averaging radius of five pixels
and a sliding window of 5 s width 2 as optimal choice to
calculate velocity maps. The result is shown in Fig. 2, which
clearly demonstrates that there is no significant influence of the
holes for the selected parameters. These are thus the parameters
selected to calculate the velocity maps used in the following
analysis, especially Figs. 3–5.

1A series of strong short-time excitations around t = 36–57 s,
caused by external shock compressions of the particle cloud, are
also visible. See [43] for more details.

2The averaging time is smaller than, for example, the large eddy
turnover time and the oscillon period τLE ≈ τosc ≈ 10 s.
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FIG. 2. Top: Map of the average horizontal velocity during time
t = (25–60) s. The small superimposed gray areas at x < 6 mm and
(23 � x < 33) mm indicate the positions of missing data (“holes”)
from a different velocity map calculated at time t = (16–21) s. The
axes indicate the position above the electrode, respectively, from the
left image edge. Bottom: Energy spectra calculated from the map
shown above with no missing data (thick blue line) and from the
same map with data removed at the position of the shown holes
(thin red line). The two spectra are virtually identical, indicating that
the holes superimposed on the map have no effect on the spectrum.
The black lines indicate the slopes E ∝ k−3 (dotted) and E ∝ k−5/3

(dashed).

Evolution of energy spectra. Figure 3 shows energy spectra
calculated in the stages before, during, and after the heartbeat
instability sets in. The energy rise once the instability begins
is clearly seen, as is the change in slope of the spectra. We
plot the average energy spectra before and after the onset of
the instability in Fig. 4. Before the onset of the instability, the
spectrum (blue crosses in Fig. 4) shows an exponential depen-
dence. During the instability (red circles in Fig. 4), the slope
of the spectrum changes at small wave numbers, and a range
with E ∝ k−5/3 develops. This is more easily visible in the
compensated energy spectra Figs. 4(b) and 4(c), which depict
the energy multiplied by k5/3 and k3, respectively. There is an
almost constant E × k5/3 range in Fig. 4(b) at k < 4 mm−1,
whereas E × k3 in Fig. 4(c) is almost constant at k > 4 mm−1.
The transition between the two ranges occurs at kexc ≈
4 mm−1. The enstrophy spectrum is given in the Supplemental

FIG. 3. Energy spectra with kinetic energy E on the vertical axis
as a function of wave number k and time t . The color codes the base
10 logarithm of the energy. The rise of the energy when the instability
starts is well visible.
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FIG. 4. Average energy spectrum calculated before [t = (0–22)
s, blue crosses] and after [t = (26–76) s, red circles] the instability
starts. (a) Energy vs wave number; overplotted is an exponen-
tial dependence (solid line) with E(k) ∝ exp [−(k/k0)] with k0 =
2 mm−1. Inset: Schematic demonstrating the double cascade of two-
dimensional turbulence, following [53]. (b),(c) Compensated energy
spectra. The two solid vertical lines indicate at which wave numbers
ε ′ and η′, respectively, were calculated (cf. Fig. 5). The dashed
line indicates the wave number at which the two ranges meet, kexc.

Material [47]. Next, we determine the power-law exponents n

of the energy spectra in the two ranges as a function of time
and plot them in Fig. 5(b). The transition when the instability
sets in is well visible for both ranges (note that the obtained
values of the slopes are sensitive to the exact k ranges selected,
but the results remain qualitatively unchanged).

Comparison to 2D forced turbulence. Our experiment is
intrinsically three-dimensional (3D) in nature. Typically, in
3D turbulence, the energy spectrum follows an E ∝ k−5/3 law
over a suitable range [13]. It is for a two-dimensional (2D)
system into which energy is injected at a length scale �exc

that Kraichnan [10] and Leith [11] predicted a separation of
the spectrum into scales larger and smaller than �exc: For k <

kexc = 2π/�exc, energy is transferred to lower wave numbers
k at zero vorticity flow by elongation and thinning of vortices
[49]. For this inverse energy cascade, it holds that

E = Cε2/3k−5/3, (1)

where E is the energy and C is a dimensionless positive
coefficient. The rate of cascade of kinetic energy per unit mass
is signified by ε. For k > kexc, it holds that

E = C̃η2/3k−3, (2)
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FIG. 5. (a) Parameter κ = √
η′/ε ′ [Eq. (3)] as a function of time.

The onset of the instability at t = 23 s is clearly visible as a strong
decrease of κ during approximately 3 s. (b) Power-law exponents
n obtained from linear fits to log E = a − n log k as a function of
time, where a and n are fit parameters. Fits were done for wave
numbers in the range (0.3 � k � 4) mm−1 (bottom) and (4 � k �
15) mm−1 (top), which correspond to the inverse and direct cascade
ranges, respectively (cf. Fig. 4). The error bars correspond to the 1σ

uncertainty estimates from the fit. The horizontal dashed lines indicate
the values n = 3 (top) and n = 5/3 (bottom), respectively, which are
the exponents predicted for the two cascades in 2D forced turbulence.

where C̃ is another positive constant, and η is the rate of
cascade of mean-square vorticity. In this enstrophy cascade
range (the direct cascade), vorticity flows from large to small
spatial scales, and there is a minor energy cascade in the same
direction [19,50].3 This power law is also displayed by freely
decaying two-dimensional turbulence [52]. The double cas-
cade structure is depicted schematically in the inset of Fig. 4.

The power-law exponents n obtained from linear fits to
the spectra in the present experiment are shown in Fig. 5(b).
The average values for t � 25 s are n = 3.1 ± 0.3 for (4 �
k � 15) mm−1 and n = 1.5 ± 0.5 for (0.3 � k � 4) mm−1.
Apparently, these values agree well (within the experimental
uncertainties) with Kraichnan’s power-law exponents n = 3
and n = 5/3.

Applying Kraichnan and Leith’s theory, it is possible to
calculate the reduced rates of energy and enstrophy transfer,
η′ = C̃3/2η and ε′ = C3/2ε, with Eqs. (1) and (2) using the

3There is a possible logarithmic correction to Eq. (2) of the form
[ln(k/kexc)]−1/3 [51]. The presence of linear friction can lead to
steeper power laws than given by Eq. (2) [19].

energy at two wave numbers k1 and k2 that fall into the two
ranges. We select k1 = 2 mm−1 and k2 = 6 mm−1, which are
indicated in Fig. 4 with vertical gray lines. Next, we define a
parameter κ ,

κ2 = η′/ε′ =
(

Ek3|k2

Ek5/3|k1

)3/2

. (3)

Figure 5(a) shows κ determined with Eq. (3) as a function
of time. As can be seen, κ behaves stepwise: Before the
instability begins, 〈κ〉 = (7 ± 1) mm−1. Around the onset
of the instability, there is a strong decrease of κ during
approximately 3 s, afterward 〈κ〉 = (3.9 ± 0.5) mm−1. When
a double cascade is present, κ can be used to determine the
excitation wave number kexc: It is exactly at this wave number
that the direct and indirect ranges are linked. Thus, at kexc,
Eqs. (1) and (2) can be equated, giving ε′2/3k

−5/3
exc = η′2/3k−3

exc,
and kexc = √

η′/ε′ = κ . The value of kexc ≈ 4 mm−1 fits very
well with the transition between the two ranges observed
in Fig. 4. Note that this value of kexc agrees with, but
is somewhat larger than, the previously estimated value of
kexc = 2πfHB/CDAW ≈ 2.7 mm−1 [38].

Discussion and conclusion. We speculate that the energy
spectra that we observe indicate a double cascade as predicted
by Kraichnan [10] and Leith [11] for forced two-dimensional
turbulence. The fact that the excitation wave number estimated
with the ratio of the reduced energy and enstrophy transfer rates
corresponds well to that determined directly from the energy
spectrum furthermore supports this speculation. If true, this
would be one of the few experiments on turbulence in which
both ranges of the double cascade are observed simultaneously.

However, the coincidence between the scaling exponents
from Kraichnan’s work and those found in the present work are
surprising, as the former exponents were obtained originally
under conservation laws for an inviscid 2D flow, and our
system is dissipative due to particle-particle interactions. We
cannot exclude that the coincidence between the power-law
exponents might be caused by other effects such as a flow
from the third dimension. A future, more precise investigation
is warranted. A simultaneous simulation of the plasma and
microparticle dynamics would be best, but is complicated
by the vastly different time scales. Previous simulations on
(unforced) two-dimensional turbulence in complex plasmas
are promising [30]. Further experiments dedicated to turbu-
lence in complex plasmas could include measuring fluxes, the
decay of turbulent motion, and investigating in more detail the
microparticle trajectories.
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