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Self-adjustment and disintegration threshold of Langmuir solitons in inhomogeneous plasmas

Y. A. Chen, Y. Nishimura,* Y. Nishida, and C. Z. Cheng
Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan

(Received 29 February 2016; revised manuscript received 22 December 2016; published 20 March 2017)

Dynamics of Langmuir solitons in the presence of a background density gradient is investigated numerically,
including cases with steep gradients to the extent the solitons can disintegrate. The disintegration threshold is
explained by regarding the electric field part of the soliton as a point mass moving along the self-generated
potential well corresponding to the density cavity. On the other hand, it is demonstrated that the Langmuir
solitons are robust when the density gradient is below the threshold. During the acceleration phase toward low
density regions, Langmuir solitons adjust themselves to balance the electric field pressure and the negative plasma
pressure by expelling the imbalanced portion as density cavities at the sound velocity. When the density gradient
is below the disintegration threshold, the electric field part of the soliton bounces back and forth within the
potential well suggesting the solitons have internal structures.
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I. INTRODUCTION

Langmuir solitons were theoretically predicted by Za-
kharov [1]. In a homogeneous medium, the Langmuir solitons
can propagate without changing their form when the nonlin-
earity from a ponderomotive force and dispersion balance.
Following the theoretical prediction, Langmuir solitons were
observed in a laboratory experiment via the trapping of density
cavities by imposing an external radio frequency electric
field [2]. In the experiment, the external electromagnetic
waves underwent mode conversion to become electrostatic
waves [3].

Langmuir waves are prototypical longitudinal waves in
plasmas. As is often the case, whenever the wave amplitude is
finite, nonlinearity comes into play. The nonlinear longitudinal
waves can be retained in the form of the solitons by a coupling
between the Langmuir waves and the disparate scale ion
acoustic waves, which are called the Langmuir solitons. A
one dimensional Langmuir soliton is known to be stable
but considered to be unstable in two and three dimensional
geometries [4].

In this paper, we aim at investigating whether Langmuir
solitons can stably propagate in one dimensional inhomoge-
neous media. We then examine the mechanism of the solitons
to disintegrate and discuss the threshold of disintegration,
which we refer to as separation between the positive electric
field pulse and the density cavity. The acceleration of Langmuir
solitons in inhomogeneous media is studied analytically
employing the nonlinear Schrödinger equation (NLSE) [5,6]
and Zakharov equations [7] in a small acceleration limit
and numerically at larger acceleration [8] to account for the
soliton generation at a resonant density in the experiment
[2]. The threshold for the survival of Langmuir solitons at
large density gradients is discussed in this paper. In this
paper, we employ a set of nonlinear fluid equations, the
Zakharov equations, to investigate the dynamics of Langmuir
solitons with inhomogeneous plasma background densities by
numerical simulation, in particular, at large density gradients
when the solitons can disintegrate. As predicted theoretically
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[5,7] and demonstrated numerically [8,9] by many other
authors, the Langmuir solitons are accelerated toward the low
density side. Based on the findings by numerical simulation,
to explain the disintegration threshold of the solitons, we
introduce the idea of quasiparticles [10], through which we
interpret the acceleration as an analogy of a point mass moving
along the potential well.

We also examine the emission of density cavities [11] which
propagates at ion sound velocity. We would like to recall that
Cow et al. [11] have theoretically analyzed the emission of
ion sound waves by the accelerated Langmuir soliton in the
limit where the velocity of the solitons is much smaller than
the ion sound velocity. On the other hand, as we demonstrate
below, when the density gradient is large enough to accelerate
the electric field soliton (and thus gain kinetic energy) to
overcome a potential energy well produced by the density
cavity, the soliton can completely escape from the cavity.
The density cavities will then remain as lumps without any
sustaining mechanism and split into pulses propagating at the
ion sound velocity. The latter sequence which separates the
electric field soliton and the density cavity is what we refer to
as disintegration.

This paper is organized as follows. In Sec. II, a computa-
tional model employing the Zakharov equations to describe
Langmuir soliton dynamics in inhomogeneous plasmas is
discussed. In Sec. III, the numerical simulation results are
discussed. In Sec. IV, the disintegration threshold of Langmuir
solitons with respect to the background plasma density
gradient is discussed. In Sec. V, a comparison of the Zakharov
simulation and the static density limit (the Zakharov equations
reduce to the nonlinear Schrödinger equation) is discussed. We
summarize this paper in Sec. VI.

II. COMPUTATIONAL MODEL

In this section, we discuss our computational model. As
mentioned above, we solve the Zakharov equations numer-
ically in this paper. The Zakharov equations [1,12] in the
presence of density gradients [5–7] are reviewed briefly
to elucidate where the dominant effect of inhomogeneous
background density enters. The Zakharov equations in a one
dimensional limit [12] that we employ in this paper originate
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and ion wave equation,

∂2
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2
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4πmemiω2
e

∂2
x |Ẽ|2. (2)

where we employed Gaussian-cgs units. Equation (1) is de-
rived from electron fluid equations and Poisson’s equation and
represents the Langmuir wave dynamics with the modulation
by a density change on the right side. Equation (2) is essentially
the ion acoustic wave equation with the ponderomotive force
on the right entering through quasineutrality. We have assumed
that perturbed quantities are separated into low frequency
components and high frequency components (see Ref. [12], for
example). Here, Eh in Eq. (1) stands for the high frequency part
of the electric field. We further set Eh = (1/2)Ẽe−iωet + c.c.,
where Ẽ is the slowly varying part of the electric field and
i is the imaginary unit. Plasma frequency is given by ωe,
and ve = ωeλe is the electron thermal velocity (λe is the
Debye length). In Eq. (2), n stands for the low frequency
part of the plasma density, e is the unit charge, mi and
me are the ion and the electron masses, respectively. Note
that quasineutrality is assumed for the low frequency plasma
density. The background plasma density profile is given by
neq(x) with n0 representing a constant density at a point in the
plasma. The ion sound velocity is given by Cs .

In reaching Eqs. (1) and (2), we have also assumed that the
spatial derivatives with respect to the high frequency compo-
nents are larger than that for the low frequency components
and similarly for the time derivatives. The inhomogeneous
density enters through the third term of Eq. (1) [5–8]. In
this paper, we take a linear form neq(x) = n0(1 − x/l) for
the background density, where l is the characteristic length.
To include the background density gradient, we have assumed
that the scale length l is much larger than the soliton width.
Parametrically, this latter condition is kept throughout the
numerical simulation presented in this paper. As a result,
the inhomogeneous background density does not appear in
the ion wave equation in our model. By taking the linear form
of the background density, the third term of Eq. (1) can be
separated into ω2

eEh and −(ω2
ex/ l)Eh. Then a part of the first

term proportional to ω2
eEh can be eliminated. We also assume

that the magnitude of the second order time derivative ∂2
t Ẽ is

small compared to ωe∂t Ẽ. We then find Eq. (1) of Ref. [7] and
Eq. (2) of Ref. [11]. Equations (1) and (2) are equivalent to
those employed in Refs. [7,8,11].

To ensure all terms are at an order of unity, in
Eqs. (1) and (2), we introduce normalized quantities T =
(2η/3M)(ωet) for time, X = (2η1/2/3M1/2)(x/λe) for length,
E = (31/2M1/2/4η)(eλe/Te)Ẽ for the electric field, and N =
(3M/4η)(n/n0) for the density. Here, M = mi/me is the mass
ratio and η = M(C2

s /v
2
e ), which is set to unity in this paper.

Then, normalized Zakharov equations in the presence of a
linear background density profile are given by

i ∂T E + ∂2
XE = −αXE + NE, (3)

and

∂2
T N − ∂2

XN = ∂2
X|E|2. (4)

As a reminder, E is the slowly varying part of the electric field,
and N is the plasma density perturbation. The normalized
acceleration parameter is given by α = 3M/4L where L =
(2η1/2/3M1/2)(l/λe). We employ a hydrogen to electron mass
ratio M = 1836 for numerical computations in this paper.
Note that the volume integral of the electric field pressure
and plasma pressure, which are the values of

∫ ∞
−∞ E2dX and∫ ∞

−∞ N dX, respectively, are conserved even when the solitons
are accelerated.

The nonlinear Schrödinger type equation [13] can be
obtained by assuming a static density and thus substituting
N = −|E|2 into Eq. (3). In the absence of inhomogeneous
background density, the balance between the nonlinear drive
and the wave dispersion in the NLSE sustains the soliton.
Note that the nonlinearity prevails over the dispersion effects
in two and three dimensional geometries and the solitons can
collapse. The soliton structure shrinks, and the amplitude at
the center tends to infinity at the collapse or the burn-out phase
[1,4,14].

Equations (3) and (4) are time advanced numerically by
the finite difference method (the leapfrog scheme instead of
conventionally employed split step Fourier methods [15]) so
that nonperiodic boundary conditions can be incorporated. The
analytical solution is taken as the initial condition [16]. Note
that Langmuir soliton solutions are parametrized by two free
parameters, namely, K0 and K1 [1,17–19]. General solutions
for the Langmuir solitons propagating at finite group velocity
are given by [16,18,19]

E(X,T ) = E0sech[K0(X − VgT )]ei[K1X−(K2
1 −K2

0 )T ], (5)

and

N (X,T ) = −2K2
0 sech2[K0(X − VgT )]. (6)

Here, E2
0 = 2K2

0 (1 − V 2
g ), whereas Vg = 2K1 is the group

velocity. Equations (5) and (6) can be obtained [18,19] by
substituting the form of a traveling wave for both E(X,T )
and N (X,T ) into the Zakharov equations Eqs. (3) and (4)
in the absence of the background density gradient term and
solving for the real and the imaginary parts separately. The
standard parameters taken are K0 = 3 and K1 = 0. We start
from Vg = 0 to observe the pure acceleration mechanism.
Note that the analytical solutions can be obtained only for
one dimensional cases. Note also that Langmuir solitons
in two and three dimensional geometries are predicted to
be unstable because nonlinearity prevails over dispersion
effects.

III. NUMERICAL SIMULATION RESULTS

The first numerical simulation result presented in Fig. 1
is for a Langmuir soliton with a background density change
given by L = 5 × 103. Figures 1(a) and 1(b), respectively,
demonstrate acceleration [5,7,8,11] of the electric field soliton
and the density cavity, whereas Fig. 1(c) shows the trace of the
peak position of the density cavity measured from Figs. 1(a)
and 1(b) suggesting nearly constant acceleration in the initial
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FIG. 1. Time evolution of (a) electric field soliton and (b) density cavity at L = 5 × 103. (c) Time versus the positions of the electric field
peak (XE) and the position of density minimum (XN ).

phase when the solitons are located inside the inhomogeneous
plasma. The peak positions of the electric field XE and the
positions of the density cavity minima XN are estimated by
a quadratic fitting of the solitons and the cavities because the
spatial resolution is restricted by the mesh size of the finite
difference method. The fitting is not in Fig. 1(c) but performed
within the X space at every time step. The mesh sizes are given
by dX = 0.02, and the time step is given by dT = 0.2(dX)2

throughout this paper. The quadratic fitting allows us to
accurately estimate the velocity and the acceleration of the
solitons. In Fig. 1(c), initially the electric field soliton is
accelerated by the theoretically estimated value of acceleration
A = 2α. However, in the case of Fig. 1, because the density
cavity cannot move spontaneously and behave as a drag, the
electric field soliton is decelerated (toward the negative X

direction) after the acceleration and experiences oscillatory
behavior within the effective potential well created by the
density cavity. On average, the solitons are accelerated (toward
the positive X direction) but more slowly. Note that if one takes
a static density limit N = −|E2| in Eq. (3), the acceleration
of the electric field soliton follows that given by theoretical

prediction [5–7]. The detailed mechanism of the oscillatory
behavior for small acceleration is discussed at the end of
Sec. IV.

In the second case, presented in Fig. 2, we consider a shorter
density scale length (meaning larger acceleration) compared
to Fig. 1. Here, L = 500 is employed. The emission of density
cavities moving exactly at the ion sound velocity is observed,
the direction of which is opposite to the (electric field) soliton
acceleration. It should be noted that the ion sound velocity
is unity in our numerical simulation [1]. For example, local
density minima of the emitted cavities are separated by a
distance of 1.80 in Fig. 2(b). On the other hand, the emission
of the positive density perturbation is along the direction of
the soliton acceleration. Subsequent to the emission discovery,
we reexamined the L = 5 × 103 case and confirmed that the
emitted density cavities (traveling at the ion sound velocity)
were there as long as the acceleration was finite.

Figure 3 shows the expansion of Fig. 1(b). As we discuss
at the end of Sec. IV, small ripples correspond to bounce
motions of the soliton within the cavity with a distance between
density minima in the range of 0.659 � �X � 0.690. In both
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FIG. 2. Time evolution of (a) electric field soliton, and (b) density
cavity at L = 500. Local density minima of the emitted cavities are
located at X = −5.36 (blue curve), X = −3.56 (green curve), and
X = −1.76 (red curve), which are separated by a distance of 1.80.
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FIG. 3. An expansion of the boxed region signified by the dashed
lines in Fig. 1(b).

Figs. 1 and 2, the values of
∫ ∞
−∞ E2dX and

∫ ∞
−∞ N dX still

conserve to the relative error of �10−5. Note that isolated
density cavities can be generated from any imbalance between
the electric field solitons and the density cavities. For example,
if we set mismatched initial conditions in Eqs. (3) and (4) (i.e.,
whenever the balance between the electric field pressure and
the plasma pressure by the density cavity breaks), one can
still observe the cavity emission. The plasma inhomogeneity,
however, is one of the ubiquitous ingredients of the balance
breaking.

We now take an even shorter density scale length of L =
50. For a plasma with an electron temperature of 1 eV and
a density of 1010 cm−3, L = 50 corresponds to 24 cm (the
soliton’s full width at half maximum is approximately 0.14 cm
with K0 = 3.0). With a further increase in the density gradient,
we observe the solitons disintegrate. The electric field quickly
spreads with the density inhomogeneity above the threshold,
and the density cavity loses its sustaining mechanism by the
ponderomotive force. In the absence of the sustaining electric
field, the original density cavity splits into two lumps (which
then propagate in opposite directions at the ion sound velocity).
Note that the density lumps are both negative, which is in
contrast to the subsonic acceleration cases of Figs. 1 and 2
(one being a cavity, and the other being a positive density
perturbation). Here in Fig. 4, a numerical simulation domain
of −20 � X � 60 is prepared beforehand to incorporate the
rapid spread of the electric field.

IV. DISINTEGRATION THRESHOLD OF
LANGMUIR SOLITONS

The disintegration of the soliton at the large density gradient
limit can be understood by comparing the first Zakharov
equation, which has the form of a Schrödinger type equation, to
a one dimensional Hamiltonian of a particle with momentum
P in a potential V (X),

H (P,X) = P 2/2 + V (X).

From a mathematical analogy, in comparison with the Hamil-
tonian, the first term in Eq. (3) corresponds to the kinetic
energy (except for the factor 1/2), and the terms on the right
side of Eq. (3) correspond to potential V (X) ↔ N − αX.
As a reminder, the idea bridging between the Schrödinger
type equation and a particle motion is that of matter waves
[20]. We also note that for a nonlinear Schrödinger equation
[which we obtain by considering the static density limit and
substituting N = −|E2| into Eq. (3)], by introducing the idea
of a pseudopotential [12,21,22], both the value of E and its first
derivative tend to zero at X → ±∞. One can find a spatially
localized solution suggesting existence of solitons.

Without the nonlinearity, the point mass (soliton) moves
down along the potential (density) well, toward the positive
X direction in the cases of Figs. 1–4. Figure 5(a) shows the
concept of the soliton moving subject to the potential (which
is referred to as a quasiparticle [10]). For the matter wave,
|E|2dX is proportional to the probability of a point mass found
within a small volume dX [20]. Complimentary to finding the
peak position of the electric field XE , we trace the center
of gravity of the E2 profile to determine the position of the
quasiparticle. At each time step, we can find the center of
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FIG. 4. Time evolution of (a) electric field soliton, and (b) density
cavity at L = 50. Disintegration of the Langmuir solitons caused by
a quick escape of the electric field soliton.

gravity XEC which satisfies the relation,
∫ XEC

−∞
E2dX = 1

2

∫ ∞

−∞
E2dX. (7)

Figure 5(b) compares the spread of the electric field in the cases
with (solid curves) and without (dashed curves) the nonlinear
term in Eq. (3). Correspondingly, Fig. 5(c) shows the center
of gravity XEC versus time for the two cases. By observing
the two cases in Figs. 5(b) and 5(c), it can be known that
the linear potential term dominates the electric field dynamics
when L = 50. From a plasma physics point of view [23], the
acceleration is due to the restoring force in plasma oscillation
being larger toward the lower density side compared to toward
the higher density side.

The acceleration threshold (the threshold density gradient)
for the soliton disintegration is considered. From the particle
motion’s analogy, the condition of the kinetic energy being
larger than the potential energy provides us with V 2/2 =
AW=N as a threshold. Here, W signifies the soliton width

TABLE I. A comparison of numerically estimated threshold
values of L and analytically estimated threshold values. For different
K0 values employed in Fig. 6.

K0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

L (analytical) 2065 612.0 258.2 132.2 76.50 48.17 32.27
L (numerical) 1325 530 265 150 90 57 37

(see the Appendix). For example, from the potential depth
of N = 2K2

0 = 18 and the soliton width of W = 0.5, we
estimate a required acceleration of A = 36 or L = 76.5 for
an escape and thus disintegration of the soliton. Since the
function sech2(K0X) has an infinitely long tail, we need to set
a finite width to tell ourselves if the majority of the electric field
soliton has escaped from the potential well made by the density
cavity. In this paper, we set the soliton width at K0W = 1.5
where the integrated area occupies approximately 90.5% of∫ ∞
−∞ E2dX.

Figure 6 and Table I summarize the numerically measured
values of K0 versus the solitons’ disintegration threshold L

with K1 = 0. The solid curve in Fig. 6 is given analytically by
Eq. (A4). The way we numerically estimated the disintegration
thresholds in L is as follows. By finding the position XN of the
density’s minimum, we estimate the area S1 = ∫ XN+W

XN −W
E2dX,

where W = 1.5/K0. At T = 0, S1 includes 90.5% of the
whole area S0 = ∫ ∞

−∞ E2dX = 4K0. During the time evolution
of the solitons, if the value S1/S0 ever becomes less than 1%,
we regard the soliton to be disintegrated. We also impose the
condition that the propagation distance of the soliton should
not exceed the characteristic length L.

In Fig. 6, we see a tendency for the threshold L values
being smaller than the analytical values for small K0 values
(K0 � 2 for wider solitons). The discrepancies in the smaller
K0 region as we understand from our observation is due to the
displacement of the density cavity toward positive X directions
during the acceleration phase of electric field soliton. As a
reminder, we assumed the density cavity to be fixed in space
in deriving our estimation (see the Appendix). On the other
hand, the measured threshold L values are slightly larger than
the analytical values for large K0 values (K0 � 2). This is
because, for the larger K0 values, the density cavity separates
into dominant two lumps in a relatively short time [see Fig.
4(b), for example] and the effective potential depth is reduced.
Despite finite discrepancies, we believe our model formula
(based on the idea of point mass trapped in a potential well)
has captured certain aspects of the disintegration threshold.
Based on the supporting findings in Fig. 6, we would like to
understand that the mechanism of the soliton disintegration is
due to the electric field soliton overcoming the density cavity’s
potential.

Large amplitude nonlinear Alfvén waves can induce par-
ticle acceleration along the magnetic field and thus density
compression. Similar to the Zakharov system, the nonlinear
Alfvén waves [24–26] when they are coupled to ion acoustic
waves can be described by a derivative nonlinear Schrödinger
equation [25,26] in a static density limit. The Alfvén soliton’s
collapse threshold by modulational instabilities is investigated
numerically and analytically [26–28]. By introducing the idea
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FIG. 5. Disintegration of solitons at a high density gradient. (a) Conceptual figure of a soliton being regarded as a particle falling down
toward the right under potential V (X) given by a superposition of a linearly varying function and a cavity. (b) Spread of the electric field soliton
compared with the solution of a linear Schrödinger equation. Here, LS stands for linear Schrödinger. (c) The center of gravity XEC of the
electric field soliton versus time for the two cases. The solid curve is obtained from the solution from the Zakharov equations, and the dashed
curve is obtained from the solution of the linear Schrödinger equation.

of a time scale for a change in the wave field intensity (τ1)
and the time scale for an ion acoustic wave to propagate
across the soliton (τ2), Spangler [28] has discussed a condition
for the static approximation to be valid for the Alfvén solitons.
Employing the two time scales, the static approximation is
valid when τ1 � τ2, which reads ε = W (∂t |E2|)/|E2| � 1 in
our studies. In our study of Zakharov equations, the change
in the wave field intensity is induced by inhomogeneous
background density. For a static approximation to be valid
for us in the presence of the density inhomogeneity, a formula
is suggested [28] in the form of

L

V
� W

|C̄s − V | , (8)

where V is the group velocity of the solitons and C̄s (= 1
in our normalization) is the normalized ion sound velocity.
Applying ε → 1, antithetical to the idea of the static ap-
proximation, we obtain V � 1, which means, if the velocity

of the Langmuir solitons immediately becomes close to the
ion sound wave velocity, solitons can disintegrate. This is
consistent with our finding from the numerical simulation
of Fig. 4.

Contrary to the disintegrating limits with large density
gradients, if the remaining electric field or the quasiparticle
is still trapped in the density cavity, it will oscillate within
the well. A signature of the soliton bounce motion (mismatch
of the peak positions) in the potential well is suggested in
Fig. 7 for a small density gradient case (obtained from the
same simulation in Fig. 1 at L = 5000). Figure 7 shows
the velocity of the peak position of the electric field soliton
(VE = dXE/dT ) and the velocity of the density minimum
position (VN = dXN/dT ). The period of bounce motion in
the initial phase is in the range of 0.668 � �T � 0.681,
which is correlated with the distances between density minima
(in the range of 0.659 � �X � 0.690) estimated in Fig. 3.
As a reminder, the ion sound velocity is unity in our
normalization.
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initial velocity of the solitons is zero. The solid black curve is given
by an analytical estimate L = 3MW/(2K0)2 (see the Appendix).
Numerically measured values are given by red circles.

V. SOLITON ACCELERATION IN THE STATIC
DENSITY LIMIT

A comparison with a static density limit (N = −|E|2) is
discussed. In the Zakharov system, due to the trapping of the
electric field by the cavity, the acceleration is small compared
to the NLSE limit [5]. In Fig. 8, we take a second order
time derivative of the center of gravity AEC = d2XEC/dT 2 to
estimate the acceleration. Although the acceleration is constant
for the NLSE case, much smaller values of acceleration are
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the density minimum position (VN ) for the L = 5 × 103 case of Fig.
1. The green dashed line is a tangent line to the soliton velocity in
the very initial phase. If a static density limit (N = −|E|2) is taken,
the velocity of the electric field soliton should obey the green dashed
line all the way. In practice, they cannot due to a dragging effect by
the density cavity, however.
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FIG. 8. The acceleration of the center of gravity of the electric
field soliton (AEC) for the L = 500 case of Fig. 2. The solid curve
is obtained from simulation by the Zakharov equation, whereas the
dashed curve is from the static density limit.

found in the Zakharov system. Taking the L = 500 case
of Fig. 2 as an example, the acceleration of the Zakharov
soliton is not constant; rather it is time dependent as shown in
Fig. 8, whereas 5.43 � AEC � 5.51 for the static density limit
(NLSE limit), being close to the theoretically predicted value
of A = 2α = 5.508 [5]. This is because the density cavity
cannot move faster than the ion sound velocity and hinder the
electric field soliton unless it can completely escape within
the first bounce motion as in the Fig. 4 case. If we solve the
NLSE with the same parameter and the same initial condition
in Eq. (4), the solitons do not decay simply because they do
not have emission of the density cavities as in the Zakharov
system.

VI. SUMMARY AND DISCUSSIONS

To summarize, the Langmuir soliton dynamics in inhomo-
geneous plasmas was investigated numerically. By a series of
numerical simulations solving Zakharov equations, we have
recovered the feature of the solitons being accelerated toward
the low density side as predicted theoretically in Refs. [5–7,11]
and demonstrated in Refs. [8,9]. As a consequence of the
acceleration and thus a mismatch between the electric field
solitons and the density cavities, isolated cavities moving
exactly at the ion sound velocity are emitted [11]. When the
acceleration is further increased, solitons disintegrate, and the
density cavities split into two lumps released also at the ion
sound velocity. The disintegration threshold is estimated by
an analogy between the soliton and a particle overcoming the
self-generated potential well.

The current paper considered nonlinear wave-wave inter-
actions through Zakharov’s fluid model. In the future, we
plan to conduct numerical computations by Vlasov simulation
[29,30] to incorporate wave-particle interaction to investigate
a much more realistic mechanism of the Langmuir soliton’s
sustainment and disintegration.
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APPENDIX: ESTIMATION OF THE
DISINTEGRATION THRESHOLD

Here, we would like to estimate the soliton’s disintegration
threshold based on energy conservation of quasiparticles. We
assume that the solitons do not have an initial group velocity.
Assuming the density cavity has moved W within a time
duration T under acceleration A, we obtain

AT 2

2
= W, (A1)

where W corresponds to the soliton width. If the effective
kinetic energy of the soliton is fully converted into the potential
energy whose magnitude is given by the density cavity N =
2K2

0 , we obtain

V 2

2
= N = 2K2

0 , (A2)

where V = AT . From Eqs. (A1) and (A2) we obtain the
threshold acceleration,

A = (2K0)2

2W
(A3)

to disintegrate the solitons. Because A = 3M/2L, the thresh-
old density length scale can be given by

L = 3MW

(2K0)2
. (A4)

The black solid curve in Fig. 6 is given by varying K0 in the
last expression.
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