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Nonlinear effects in the bounded dust-vortex flow in plasma
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The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system
with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated
study of its volumetrically driven–dissipative vortex flow dynamics using two-dimensional hydrodynamics in
the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a
nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong
friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with
observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity,
where the primary vortices form scaling with the most dominant spatial scales of the domain topology and
develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust
viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with
a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows,
such as the Jovian great red spot, to microscopic biophysical intracellular activity.
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I. INTRODUCTION

The dissipative systems that are driven to an enduring
nonequilibrium state by a continuing source of free energy are
a paradigm for a wide range of living and nonliving systems
[1–3]. Nonequilibrium systems of this kind form stimulated
and stable patterns, and recover, as a result of interventions
from surroundings, to show first a formal signature of being
responsive (alive), in clear distinction from their nonliving or
purely entropy maximizing counterparts, like most museum
exhibits that simply follow the Clausius’ principle [3]. These
responsive systems show a vast dynamic memory by their
capacity and range of response to a continuum of stimuli
from their surroundings, each of which may invoke a unique
response, like making them erupt into a unique pattern. In its
simplest form, a behavioral transition to such a state occurs,
for example, in a system of Brownian particles irreversibly
diffusing through a medium [4] when they are additionally
subjected to a drive by a streaming medium and restricted
in space by a confining potential or boundary. This results
in a variety of their particle distributions for respective
combinations of potential, boundary, and flow topologies [5].
A more correlated fluidlike phase of charged microparticles,
suspended in the plasma state of matter [6–10], shows an even
larger range of patterned response already in the linear regime
of its dynamics [11–14] as a more realistic and rich nonlinear
regime of it remains yet unexplored [3].

While microscopic characteristics of dusty plasmas are well
known to resemble the crystalline [15–17] to viscoelastic
fluidlike [18,19] media, the macroscopic dynamics of its
fluidlike phase represents vortex activity in many volumetri-
cally driven complex and biophysical fluids at very accessible
scales. This dynamical range potentially covers low-Reynolds-
number life-supporting dynamics of intracellular fluid or
microcirculation of blood in lymphatic capillaries (Re < 1),
to high-Reynolds-number enormous scale circulations like the
Jovian great red spot (Re > 102). The first application of a two-
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dimensional (2D) hydrodynamic model to these volumetrically
driven dust vortices was done to systematically formulate
the vortex dynamics of dusty plasmas observed in normal
laboratory conditions, as well as in microgravity conditions,
on board the International Space Station (ISS) [20]. The results
of these linear studies, successfully predicting multiplicity
of vortex [13,14] and outlining basic scaling of boundary
effects at low to moderate Reynolds numbers [11], still
leave out the nontrivial physics of the often-noted transition
to nonlinear regime of these vortices. Recently observed
compelling nonlinear features of dust-vortex dynamics [12]
promise to shed light on several less understood aspects of
natural flows. For example, a nearly uniform vorticity in the
core of a toroidal dust cloud observed in a higher flow velocity
limit resembled high-Reynolds-number flow phenomena of
the Jovian great red spot [21,22]. More noticeably, nonlinear
phenomena, displayed also by dust dynamics, are proving to
be a natural timing mechanism for biological systems, with
growing evidence that processes like cell division are timed by
critical transitions on approaching a threshold size rather than
a preprogrammed linear evolution [23]. For example, the low-
Reynolds-number intracellular mitotic activity taking place in
cytoplasmic medium examined in budding yeast shows that the
cells born smaller than normal size spend longer duration in
the initial G1 phase until they reach a critical size for division,
reproducing normal size offspring [24]. Nonlinear critical
transitions thus provide a potential mechanism that monitors
cell size and uses this information to regulate progression
through events of the cell cycle, determining cell size and age,
namely, the fundamental limiting factors for overall evolution
of carbon-based life [23,25].

Equating the influence of chemical inhibitors of protein
synthesis and polymerization by that of the inertial flow in a
dusty plasma vortex, both of which must undergo criticality
for continued stabilization by diffusion-dominated viscous
transport at optimum scale, one gets a very primitive model
for size regulation of a biophysical cell via a nonlinear
threshold [26]. The equilibrium dusty vortex dimensions in
a nonlinear operating regime are similarly asserted by the
dynamics at a critical separation threshold rather than governed
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by the boundary geometry. This meaningful isomorphism
is, however, quantifiable only by a systematic nonlinear
formulation of the dusty plasma vortex dynamics. The present
paper approaches this objective by discussing in Sec. II the
essential two-dimensional toroidally symmetric, axially and
radially bounded setup considered in the present formulation.
Relevant to both the recent dusty plasma experiments and
majority of microscopic flow arrangements in nature, this setup
is considered with a radially sheared and axially uniform ion
flow driving the constrained dust dynamics. The methodology
of nonlinear solutions is presented in Sec. III, followed by
the characterization of solutions in Sec. IV. The signature of
nonlinearity in the form of uniform vorticity in the vortex core
is discussed in Sec. IV, where this uniformity is additionally
shown confirming with gigantic scale circulations like the great
Jovian red spot. In Sec. IV C the phenomena of the boundary
layer separation is investigated as a structural bifurcation of the
2D nondivergent vector fields with kinematic dust viscosity μ

acquiring the role of a bifurcation parameter. Section IV D
provides a nonlinear scaling, allowing one to estimate μ using
velocimetric parameters of dust-vortex flow. Summary and
conclusions are presented in Sec. V.

II. 2D NONLINEAR HYDRODYNAMIC MODEL

Similar to earlier linear approaches [11,14], the geometry of
confined dust fluid is considered identical to the recent exper-
iments where a toroidal dust structure forms having a poloidal
dust flow in a glow discharge plasma [12,13], shown in Fig. 1.
The dust fluid in this setup is suspended in the plasma and is
spatially confined. The confinement or localization of the dust
fluid in these and similar laboratory experiments is achieved
effectively by a combination of electrostatic and gravitational
fields where a two- or three-dimensional (3D) conservative
field Fc = −∇V is achievable by various experimental means
[17,27–30]. The potential well confining the dust must have
closed contours that are allowed to have arbitrary shapes
determined by effective dust confining potential. Considering
a nearly incompressible dust fluid in a dynamical equilibrium,
as described in Fig. 2, the interior of a highest potential
contour confining the dust fluid is filled up uniformly by
the fluid and without leaving any void or density variation.
In an azimuthally symmetric, toroidally confined dust fluid
recovered in the experiments, the dust fills a volume of the
torus which is allowed to have an arbitrary shaped cross section
determined by the confining potential. For analytic simplicity
this cross section of the torus is approximated in the present
treatment as a rectangle, as illustrated schematically in Fig. 2.
Accordingly, using cylindrical coordinates to accommodate
the azimuthal symmetry, the toroidal dust fluid is considered
confined by an effective potential V (r,z) within the boundaries
of a finite section of an infinite cylinder of flowing plasma, or
in the region where 0 < r/Lr < 1 and −1 < z/Lz < 1, with
no variation along the azimuthal dimension 0 < φ < 2π . It is
assumed that the confining potential jumps from a constant
value V0 to a very high value at the rectangular boundary,
providing a rectangular contour for perfect confinement.

For the dust flow that follows the incompressibility condi-
tion and has a finite viscosity, the dynamics is governed by the
Navier-Stokes equation in which the drive produced by the ion

10 mm

FIG. 1. Toroidal dust cloud with poloidal circulation in the
laboratory dusty plasma experiment.

drag and the friction produced by the stationary neutral fluid
can be suitably accounted for [31],

∂u
∂t

+ (u · ∇)u = −∇P

ρ
− ∇V + μ∇2u

− ξ (u − v) − ν(u − w). (1)

Here u, v, and w are the flow velocities of the dust, ion,
and neutral fluids, respectively. P and ρ are the pressure
and mass density of the dust fluid, respectively, V (r,z) is the
confining potential, μ is kinematic viscosity, ξ is coefficient
of ionic drag acting on the dust, and ν is the coefficient of
friction generated by the stationary neutral fluid [32–34]. The
overall combination of charged dust and background plasma is
quasineutral and the electrons are in thermal equilibrium with
the streaming ions and the confined dust. The incompressibility
of the confined dust component is ensured by the expression

∇ · u = 0, (2)

which allows defining a streamfunction ψ such that u =
∇ × (ψφ̂), with corresponding velocity components,

ur = −∂ψ/∂z and uz = 1

r

∂(rψ)

∂r
. (3)
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FIG. 2. Schematic representation of the toroidal dust cloud with
vortex motion and mapping of the boundary of its cross section
to a toroidal domain of rectangular cross section accommodated
in the cylindrical geometry of the present nonlinear solutions.
Segments AB, BC, CD, and DA of the cloud boundary map to
the corresponding sides of the rectangle ABCD.
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In case of an azimuthally symmetric dust flow, the dust
motion can suitably be treated in the two-dimensional
r-z plane such that the dust vorticity vector �ω = ∇ × u
is directed purely along φ̂. Using these definitions in Eqs. (1)
and (2) and stationary neutrals (w = 0), we obtain, for a
time-independent force equilibrium of dust flow field,

∇2ψ = −ω, (4)

(u · ∇)ω = μ∇2ω − (ξ + ν)ω + ξωs, (5)

where ωs is the vorticity of the ion fluid. The 2D solutions of (4)
and (5) were recently obtained in the linear regime, or the low-
Reynolds-number regime (Re = Lu/μ → 0), where the iner-
tial effects are dominated by the diffusive transport and nonlin-
ear term in the left-hand side of the Eq. (5) could be neglected.
The linear results allowed analysis of the almost laminar
dust-vortex structures involving slow dust motion in the recent
laboratory experiments where various single and multiple dust-
vortex form driven by nonuniformity of the plasma flows and
parameters. Interestingly, a detailed nonlinear regime of strong
dust-vortex flow is routinely observable in these experiments
where driven vortices with strong circulations are surrounded
in the region of weak drive either by secondary vortices that are
co- and countercirculating, or the stagnant regions of almost
no circulation such that very sharp and localized flow velocity
gradients are maintained inside the dust volume [12]. Usually
termed as more complex dust flow patterns and excluded from
the simpler interpretations, we show that these configurations
are well represented by the nonlinear solutions of the system
(4) and (5), as obtained in the following section.

III. NONLINEAR SOLUTION PROCEDURE

Equations (4) and (5) are solved in the present work by
retaining the nonlinear term in the left-hand side of Eq. (5),
which becomes comparable to the source and diffusion terms
in the right-hand side in the limit of large flow velocity.
Equation (5) in linear limit admits standard solution procedures
where integration is possible for an individual mode of the dust
vorticity interacting with that of the driver. As presented by the
authors in Ref. [11], such first 2D linear solutions excluding the
nonlinear term were obtained by constructing an eigenvalue
problem and representing the dust and source streamfunctions
in terms of a set of orthogonal eigenfunctions that satisfy the
appropriate boundary conditions. The nonlinear solutions are,
however, nontrivial, and even a numerical approach to them in
two dimensions must involve an iterative procedure as adopted
in the present study.

In the first step, the equations are cast in the form suitable
for numerical solutions in order to yield numerical solutions
with enough accuracy. This is achieved by ensuring that the
two residues, R1 and R2, defined, respectively, as


ψ


L2
= ∇2ψ + ω, (6)


ω


L2
= ∇2ω − 1

μ
(u · ∇)ω − (ξ + ν)

μ
ω + ξ

μ
ωs, (7)

are sufficiently smaller than the corresponding tolerance after
successive iterations. Using cylindrical coordinates (r,φ,z)

where all variations are in the r-z plane, Eqs. (6) and (7)
reduce to

ψn+1 = ψn + 
L2

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
+ ∂2

∂z2

)
ψn

+
L2ωn, (8)

ωn+1 = ωn + 
L2

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
+ ∂2

∂z2

)
ωn

− 
L2

μ

(
ur

∂ω

∂r

)n

− 
L2

μ

(
uz

∂ω

∂z

)n

−
L2K1ω
n + 
L2K2ωs, (9)

where 
ψ ≡ ψn+1 − ψn, K1 = (ξ + ν)/μ, and K2 = ξ/μ,
and the integer n represents the index of the iteration. In
our numerical solution procedure, the iterations are made by
updating the ω and ψ fields until the minimum values of the
residues R1 and R2 below a reasonably small tolerance are
achieved.

IV. NONLINEAR DUST VORTEX FLOW SOLUTIONS

The converged solutions are obtained for the confined dust
in the toroidal domain having a rectangular cross section where
the driving plasma flow velocity v is directed along −ẑ and
has only a radial variation of the form of a Bessel function j0

as presented in Fig. 3(a) with associated source vorticity ωs

plotted in Fig. 3(b). Driven by this plasma flow field in the
domain of confinement, the dust streamfunction is determined
iteratively by imposing the boundary conditions such that the
dust velocity normal to the boundaries is zero. Consequently,
the dust is well confined in a finite section of a cylinder that
accommodates the torus having a rectangular cross section
in the r-z plane. The boundary conditions are motivated by
the high-shear experimental configurations where the driver is
localized in a narrow region of the domain, and in the region of
domain far from the influence of the driver the dust experiences
strong friction such that velocities there are considerably
small (see schematic Fig. 2 and Ref. [12]). Accordingly, the
dust velocity follows no-slip boundary conditions for all the
physical boundaries confining the dust. However, at the vertical
boundary imposed by symmetry at the cylinder center (r → 0),
where the driving ion flow velocity is strongest, the magnitude
of the dust velocity is not controlled by the boundary condition.
A governing factor, all the derivatives at r = 0 vanish owing to
the cylindrical symmetry of the domain and radial component
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FIG. 3. Profiles of the (a) driver velocity v and (b) corresponding
driver vorticity ωs which are uniform along ẑ and φ̂.
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FIG. 4. (a) Dust flow streamlines, strengths of (b) the diffusive
term and (c) the nonlinear term plotted from top to bottom for
the values of dust viscosity μ = 1×10−3, 1×10−4, 1×10−5, and
8×10−7U0L, respectively, where the values ν = 0.01 U0/L and
ξ = 0.001U0/L are used.

of the dust velocity, vanishes at this boundary by natural
symmetry of the cylindrical setup.

The complete nonlinear solutions describing the driven
dust dynamics in terms of 2D flow streamlines and the
corresponding ψ and ω fields are presented for small- to
high-Reynolds-number regimes in Fig. 4. The length and
velocities in the present analysis are scaled to the system
length or the domain dimension L ≡ Lr = Lz and vertically
downward streaming ion velocity magnitude U0, respectively.
The parameters ξ , μ, and ν accordingly have units derived
from these scales. The entire analysis is done using a
common combination of driver velocity and corresponding
vorticity profiles presented in Figs. 3(a) and 3(b), respectively.
Considering a typical laboratory glow discharge argon plasma
with micron-size dust with parameters n � 109 cm−3, Te �
3 eV, Ti � 1 eV, largely at the sheath entrance where ions
are streaming with a flow velocity U0 equivalent to the
fraction of the ion acoustic velocity, cs = √

Te/mi . The value
of ion drag coefficient can be estimated as ξ ≈ 10−4U0/L,
and the neutral collision frequency can be ν ≈ 10−2U0/L

[32–34]. For a typical system size, L ≈ 10 cm, the range
of kinematic viscosity μ can similarly be chosen μ ≈ 6 ×
10−4U0L, which corresponds to small Reynolds numbers
(Rn � 1) of the dust flow consistent with the linear viscous
regime.

The dust flow streamlines, which in cylindrical setup are
the equal height contours of the product rψ in the r-z plane,
are plotted in the first column of frames in Fig. 4 for the
parameters ξ = 0.001U0/L and ν = 0.01U0/L. The effect of
change in the dust kinematic viscosity, from a higher value
μ = 1×10−3U0L to a lower value μ = 8×10−7U0L, is visible

TABLE I. Parameters μ and resulting values of 
rb, ub, and Re
in the analysis.

μ [U0L] ub [U0] 
rb [L] Re

1×10−3 0.0024 0.1387 0.336
1×10−4 0.0116 0.1030 11.961
1×10−5 0.0217 0.0456 99.141
1×10−6 0.0254 0.0198 503.705
8×10−7 0.0252 0.0178 561.600

on examining the results plotted from the top to bottom row of
frames in Fig. 4 where μ reduces, taking the values 1×10−3,
1×10−4, 1×10−5, and 8×10−7U0L, respectively. Also shown
in the second and third columns of Fig. 4 are the strengths
of the most dominant term ∇2ω and the nonlinear term
−u · ∇ω/μ, respectively, showing the increasing strength of
the nonlinearity, which is increasingly balanced by the viscous
diffusion at decreasing μ values. For example, as clearly
visible from Fig. 4, the diffusive term is much larger and
entirely uncorrelated to nonlinear terms for large μ values, or
in the frames (b) and (c). For the small μ value cases presented
in frames (k) and (l), the most interesting variation is present
in the boundary regions of the solution of Eq. (5), which is
produced entirely by the balance ∇2ω − u · ∇ω/μ ≈ 0, as the
contribution of other terms remains nearly negligible. As we
analyze in the following sections, the boundary in this regime
provides the strongest source of vorticity at smaller scales,
which can be dissipated in the domain volume at a relatively
slower rate than the linear case after being convected away in
the interior along the streamlines.

For the system (4) and (5) with applied boundaries, the
values of width 
rb of the boundary region, bulk flow velocity
ub, and Re are provided in Table I in the range of transition cor-
responding to the range of μ values used in the present analysis.
Note that the saturation of the width 
rb is in departure from
the linear boundary layer scaling 
rb ∝ μ1/3 [11] and relates
to nonlocal diffusion of vorticity convected along streamlines.
This convection governs a number of nonlinear aspects of
the dust-vortex flow addressable under the present formula-
tions. The dominant nonlinear features of high-Re solutions
described below include (i) a persistent uniform vorticity
core of the vortex, (ii) development of a separated convective
boundary layer via a critical phenomenon analogous to certain
biophysical processes, and (iii) a nonlinear boundary layer
scaling prescribing velocimetric determination of the dust
viscosity.

A. Persistent uniform vorticity solutions at high
Reynolds number

The strength of the nonlinear term u · ∇ω in Eq. (10)
can be examined for our solutions based on the properties
of dependence ω(ψ) in a 2D setup. For ω purely a function of
ψ the term must vanish, as can be shown by substituting the
definitions u = ∇ × ψφ̂ and a formal solution ω = f (ψ) of
∇2ψ = −ω in u · ∇ω:

u · ∇ω = (φ̂ × ∇ψ) · ∇(f (ψ). (10)

Note that the right-hand side represents a dot product of two
orthogonal vectors which must vanish for all ψ , implying that
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FIG. 5. (a) Dust flow streamlines superimposed by straight
lines and contours used to draw profiles of ω as function of
rψ , (b) vorticity ω as function of rψ along the straight line
segments (L1,L2,L3,L4 , and L5) joining the vortex center to
the domain vortices, and (c) that along the indicated contours
(C1,C2,C3,C4, and C5). The profiles correspond to μ = 10−3 U0L,
ξ = 0.001 U0/L, and ν = 0.01 U0/L.

the nonlinear term u · ∇ω must vanish where ω is either a
pure function ψ or uniform. For application to the present
cylindrical setup where the contour parameter is rψ rather
than ψ , this result readily transforms in the condition that the
nonlinear convection vanishes when ω is purely a function of
rψ . For our solutions it is noted that at high μ, although the
nonlinear term has a small magnitude it remains finite, since
ω shows a dependence on the product rψ as well as on r and
z. For the low-μ (high Re) solutions, however, the vorticity ω

remains almost independent of r and z in the interior and is
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FIG. 6. (a) Dust flow streamlines superimposed by straight
lines and contours used to draw profiles of ω as a function
of rψ , (b) vorticity ω as function of rψ along the straight
line segments (L1,L2,L3,L4, and L5) joining the vortex center
to the domain vortices, and (c) that along the indicated contours
(C1,C2,C3,C4, and C5). The profiles correspond to μ = 8×10−7

U0L, ξ = 0.001 U0/L, and ν = 0.01 U0/L.

purely a function of rψ , except in (and beyond) a thin boundary
layer region.

This dependence is characterized in Figs. 5 and 6 for high-
and low-μ cases, respectively. The contours of rψ are plotted
in subplot (a) of Figs. 5 and 6. The dependence ω(rψ) is
examined by plotting the variation of ω in space both when
rψ is allowed to change [across streamlines, by following the
solid lines, in subplot (b)] and when rψ is kept constant [along
streamlines, by following the dashed contours, in subplot (c)].
The strong variation in the boundary region of the high-μ case
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(Fig. 6) shows that the function of the nonlinear term is to
prevent the diffusion of externally produced large vorticity to
the interior region by convecting it away along the streamlines
in the boundary layer. The constant net vorticity of the core
region is hence conserved. This nonlinear balance allows the
setup of a nearly rigid bodylike motion of the vortex core with
v ∝ r and a constant vorticity both in laboratory experiments
and in natural flows.

We are now in a position to compare both low- and high-
μ limits accessible in laboratory experiments with a vortex
formation in nature at phenomenally different scales than those
of ordinary dusty plasma experiments. A highly persistent
vortex structure like the Jovian great red spot (GRS), Jupiter’s
largest anticyclonic vortex, measuring approximately 22 000 ×
11 000 km, for example, displays zonal eastward velocity
velocity profiles [21] in close agreement with the large-Re
(small μ) case plotted in Fig. 6, where a uniform vorticity
core is surrounded by zones of sharp vorticity gradients. The
similar velocity profiles are observed in relatively younger,
year 1939 originated, pair of anticyclonic Jovian white ovals
that are separated by teardrop-shaped cyclonic vortex. In the
interior region of closed streamlines the additional uniformity
of ω with respect to the product rψ in the low-μ case (Fig. 6)
is in confirmation of a toroidal analog of the integral condition
obtained by Batchelor [35],

∂ω

∂(rψ)

∮
r(ur r̂ + uzẑ) · dl = 0,

which applies to the streamlines in the interior region as the
integral evaluated along these closed streamlines vanishes for
these solutions, requiring ω to be independent of the product
rψ in the core.

B. Boundary layer separation and secondary vortex formation

For our high-μ case solutions, the boundary layer forms
all along the domain boundary where a no-slip condition is
applied and ψ remains monotonic in the direction orthogonal
to streamlines. In low-μ cases, however, the flow in the
regions of sharp corners features an arrangement of smaller
co- and counter-rotating vortices and ψ shows oscillatory
spatial variation orthogonal to streamlines with a variety of
scales, as highlighted in the subplot drawn in Fig. 6(b).
When driven at the same scale, the scale length of the largest
vortex in this regime is still determined by the dimension L

of the domain, while the surrounding secondary corotating
vortex has a smaller spatial scale length of ∼(

√
2 − 1)L.

This factor corresponds to the corner zones of a square
domain which accommodates a primary vortex of diameter
∼L. The region between two corotating vortices is further
populated by somewhat elongated and weak counter-rotating
teardroplike vortices as shown in Fig. 6(a). The strength of the
secondary small-scale vortex structures is, however, subject to
the magnitude of the dust viscosity. At higher dust viscosity the
large momentum diffusivity begins to prevent the formation
of small-scale structures, as presented in Figs. 5(a) and 5(b),
where the dust flow streamlines and ω values are plotted,
respectively, using μ = 10−3U0L.

For a low-μ case, Figs. 7(a) and 7(b) present strengths of
diffusive and nonlinear source terms for vorticity, respectively,

FIG. 7. (a) Magnitude of the diffusion term and (b) magnitude of
the nonlinear term plotted for μ = 8×10−7 U0L, ξ = 0.001 U0/L,
and ν = 0.01 U0/L in a domain confinement limited to larger r

values.

in a set of solutions obtained for a confinement domain limited
to larger r values (0.5 < r < 0.1) for clarity. The interface
of the central vortex with the domain boundary is strongly
localized at a few points (indicated as a, b, and c) of closest
approach from the center, (∼L/2), while elsewhere it is only
via a nearly circular shear layer running along the rest of
the boundary of the strongest vortex. The vorticity generated
by interaction of the central vortex with the no-slip domain
boundary is being convected away from points a, b, and c
along the streamlines in Fig. 7(b), as the convective nonlinear
term has large positive value along these streamlines. This
convected vorticity is, in turn, diffused away steadily across
the streamlines, owing to the sharp velocity gradient, by
the diffusion term which displays an identical variation but
with negative magnitude. Although the velocity gradients and
diffusion are higher along the shear layer, they are relatively
much more moderate as compared to the those required in
the linear model where the convection channel is unavailable
and a sharp boundary layer must exist in order to diffuse the
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vorticity generated at the no-slip boundary purely across the
streamlines.

C. Separation as structural bifurcation at critical viscosity

We now address the nonuniformity of the flow structure
along the domain boundary at high μ. Although the ideas
related to Prandtl-Batchelor boundary flows and their break-
down in various limits have long existed and are thoroughly
reviewed [36], it is only somewhat recently that development
of such nonuniformity and transition to a separated boundary
layer was shown to be a structural bifurcation of the 2D
flow characteristics [37,38]. For time-dependent or turbulent
flows this bifurcation was identified to take place at a critical
value of time t = T ∗ that corresponds to the breakdown of a
monotone vorticity profile in the boundary layer. We note that
in our steady-state flow formulation the kinematic viscosity μ

assumes the role of bifurcation parameter, and this transition
in our solutions takes place at a critical μ value. This criticality
allows the bounded dust-vortex setup to represent a class of
systems that can self-stabilize by making a critical transition
to a self-similar state [26].

As discussed in [37], the solutions of the set formed by the
Navier-Stokes and the incompressibility condition,

∂u
∂t

+ (u · ∇)u = −∇P

ρ
+ μ∇2u, (11)

and ∇ · u = 0, (12)

with a no-slip boundary ∂M of a compact manifold M can be
viewed as one-parameter families of divergence-free vector
fields with parameter t . For such a family of divergence-
free vector fields u(t), a structural bifurcation, or a change
in topological equivalence class, occurs at a point in the
spatial and parameter space if the normal derivative of the
velocity field un = ∂u/∂n has a degenerate singular point
on the boundary segment ∂M such that for un there is a
finite function of the parameter t , or ∂un/∂t �= 0. Since the
point of separation is also a spatially local extremum for the
vorticity, it was concluded by applying the Hopf lemma that
the vorticity gradient is directed outward or inward at this
point. The presence of an adverse pressure gradient required
for the separation in such divergence-free field systems follows
directly from the fact that the tangential derivative of the
pressure is exactly the normal derivative of the vorticity. Based
on this relationship, the above bifurcation condition was shown
in [37] to translate in terms of vorticity at the boundary ∂M ,
which essentially required that the vorticity profile must reach
its first zero value along ∂M at a local minimum point while
evolving with respect to the bifurcation parameter.

In Fig. 8, where ω is plotted for range of μ examined in our
analysis, we show that this condition holds for our solutions at
the frictional boundaries ∂M ≡ AB, BC, and CD (indicated
by arrows at two of the boundaries visible in the figure),
where such boundary layer separation takes place following
interaction with the boundary of the primary vortex at points
a, b, and c in our solutions (as marked in Fig. 7). For clarity, in
Fig. 9 we present the profiles of vorticity along the boundary
segment BC for various values of μ where the first zero
value of vorticity coincides with the local minima of vorticity

FIG. 8. The vorticity surface plots for values of parameter (a)
μ = 10−3, (b) 10−4, (c) 10−5, and (d) 8×10−7U0L. The developing
points of separation are indicated by arrows on segments AB and BC.

at a critical value μ∗ ≈ 1×10−5U0L for our analysis. This
location, z ≈ 0.29, at the boundary BC is indicated by an arrow
in Fig. 9. At this value μ = μ∗ the profile has a degenerate
singular point that bifurcates, at lower μ values, into a set of
two isolated points since the profile begins to intersect the axis
ω = 0 at two points above its minimum. Similarly, the values
for μ∗ for the separation at the boundaries AB and CD were
noted to be ≈3×10−5U0L and ≈2×10−6U0L, respectively,
meaning that the separation is triggered at the highest μ

value at the boundary AB, followed by the boundaries BC

and CD. These values demarcate the range beyond which
a nonlinear prescription needs to be applied for the local
estimates. This critical behavior, accompanied by emergence
of self-similar secondary structures, highlights the capacity
of confined dusty plasma vortex structures to represent the
complexity of biophysical processes where replication must
follow a bifurcation [23]. The transition in our square-shaped
setup produces an identical structure only with a scale ratio
of ∼1 : (

√
2 − 1). Interestingly, a recent experiment [39]

with dust vortices has indeed shown a transition resulting
in secondary dust vortices with scale ratio of unity, which
is isomorphic to the process of cell mitosis triggered by a
bifurcation and is being addressed by a distinct parameter
regime of our formulation.

D. Velocimetric prescription of the dust viscosity

We finally note that beyond the boundary layer separation
(BLS) transition at μ∗, a very simple relationship exists
between the velocimetrically obtainable quantities and dust
viscosity. This should allow one to estimate the dust viscosity
using velocimetry techniques, for example, computer-aided
particle imaging velocimetry (PIV), which provides local
velocity and vorticity in the vortex [12,40,41]. Since we
observe from the characterization of nonlinear solution that the
vorticity diffusion across the streamlines is nearly balanced by
the nonlinear convection of the vorticity, the balance (5) in the
convection-dominated boundary layer reads

μ∇2ω = u · ∇ω. (13)
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FIG. 9. The normalized vorticity profile along the no-slip bound-
ary BC for various values of parameter μ. The point of separation
and associated bifurcation is indicated by an arrow where the profile
corresponding to the critical value μ∗ ≈ 10−5U0L has a single
degenerate singular point.

Note that the right-hand side involves the convective derivative
of the vorticity ω parallel to streamlines, while the left-hand
side has a diffusion purely orthogonal to the streamlines. At
any given point in the boundary layer the balance (13) therefore
has a simple form,

μ
ω


r2
b

= u
ω

L‖
, (14)

where 
rb is the velocity gradient scale length, or approxi-
mately the boundary layer width, and L‖ = u/u′ is the gradient
scale length of the velocity along the streamlines (with the
prime indicating a derivative along the streamlines). This
readily provides the nonlinear version of the boundary layer
width scaling with the viscosity μ as

μ = 
r2
b

u

L‖
, (15)

indicating that in the BLS regime, the dust viscosity may
be evaluated from the experimentally determinable quantities,
namely, boundary layer width, dust velocity, and its gradient
length along the streamlines. In Fig. 10 we have plotted
the quantity 
r2

bu/L‖ as a function of viscosity μ, showing
that beyond the BLS transition (μ < μ∗ ≈ 1×10−5U0L on
segment BC) this quantity is equal to the viscosity μ. However,
a clear disagreement is triggered below the critical BLS tran-
sition and at larger μ the linear scaling [11] can be recovered.

V. SUMMARY AND CONCLUSIONS

The nonlinear properties of a volumetrically driven 2D dust-
vortex flow of a confined dust fluid suspended in a plasma are
studied. Motivated by toroidally symmetric flow formation
and signatures of the nonlinear nature of its flow dynamics at
higher dust velocities, 2D nonlinear equilibrium solutions of
the vortex flow are obtained in a toroidally symmetric domain.
The solutions obtained in the present treatment are relevant to
a large number of observations in dusty plasmas setups where
a vigorous dust-vortex flow dynamics is observed with flow
velocities approaching the nonlinear limit. The solutions are in
confirmation with experiments where a localized dust vortex

FIG. 10. The nonlinear boundary layer scaling with dust viscosity
μ. The profile shows a change of regime at μ∗ ≈ 1×10−5U0L.

is seen surrounded by regions with a relatively moderate or
negligible dynamical activity.

Similar to observations of a dust torus where poloidal dust
flow is recoverable with considerably uniform vorticity, the
driven primary vortex in the present solutions is formed with
almost uniform vorticity in the core, surrounded by region
a strong variation of vorticity value and oscillatory nature
of streamfunction. The relationship between vorticity ω and
product rψ is examined in the small- and large-Reynolds-
number regimes to recover independence of ω from rψ in the
uniform vorticity core formed at large Reynolds number. In
this limit the core vorticity follows the curvilinear form of an
integral condition on the regions of closed streamlines where
boundary conditions are no longer usable for determination of
ω in the high-Reynolds-number regime and its analytic value
remains largely indeterminate.

In the presence of 2D heterogeneous boundary conditions
applied to dust flow in a curvilinear coordinate system,
the major nonlinear effects cause the boundary layer to
separate from the domain boundary. This causes the vorticity
generated from the interaction with the no-slip, or frictional,
boundaries to be convected away with strong flows of the
primary vortices. The separation allows dynamic isolation
of the regions scaling with the dimensions of small-scale
features of the boundary (e.g., spatial modulations or the
sharp corners) and development of secondary vortices in these
regions. The development of a separated boundary layer is
investigated as a structural bifurcation where the kinematic
viscosity assumes the role of the bifurcation parameter and the
separation coincides with the bifurcation. The bifurcation is
shown to occur when the vorticity profile approaches its first
zero value along the boundary at the point where its minimum
is located. This critical behavior and signatures of equivalent
nonlinear vortex states in experiments indicates the capacity of
confined dusty plasma vortex structures to represent a class of
systems that can self-stabilize by making a critical transition
to a self-similar state, for example, biophysical transition
during cells undergoing mitosis. The nonlinear scaling of
the boundary layer parameters with kinematic viscosity μ is
obtained and a critical value μ∗ demarcating the transition
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to a nonlinear regime is identified. These two factors allow
estimation of the viscosity of charged fluids using appropriate
scaling by identifying a structural change in the flow patterns in

experiments. The nonlinear dust-vortex dynamics thus offers
quantitative insight and an analytic framework to a number of
natural systems that dusty plasmas emulate.
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