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We compute electrical and thermal conductivities of hydrogen plasmas in the nondegenerate regime using
Kohn-Sham density functional theory (DFT) and an application of the Kubo-Greenwood response formula, and
demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction
therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit
e-e scattering correction to the DFT is posited by appealing to Matthiessen’s Rule and the results of our
computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our
correction is provided by an argument arising from the Zubarev quantum kinetic theory approach. Significant
emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham
DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal
conductivity can be made.
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I. INTRODUCTION

There has been a rapid increase of publications over the
past 15 years on the computation of electrical and thermal
conductivities for warm dense matter (i.e., from warm liquids
to hot dense plasmas) [1–10] using Kohn-Sham density
functional theory (DFT) [11,12]. In these studies, molecular
dynamics (MD) simulations are first performed for classical
ions moving in the force fields provided by the self-consistently
determined electron density within the Born-Oppenheimer
approximation. The resulting thermally occupied Kohn-Sham
states from individual ionic snapshots are then inserted into
Kubo-Greenwood [13,14] formulas to calculate the appropri-
ate current-current correlation functions. Finally, the results
from different uncorrelated snapshots are averaged together,
and electrical (σ ) and thermal (κ) conductivities are obtained.
Because the temperatures are high enough so that many
electrons are free to conduct, and thermal electrons move so
much faster than thermal ions, σ and κ for such systems are
governed entirely by the behavior of the electron currents:
the charge current je, for σ , and the heat current jQ, for
κ . The calculations then amount to a determination of the
degradation of these currents resulting from the interactions
of the current-carrying electrons with the rest of the plasma,
leading to resistance.

The advantage of using a DFT-based approach for dense
plasmas is that it is unnecessary to decide a priori which
electrons are “bound” and which are “free”, as the degree of
localization of a given single-electron state is determined in
the course of solving the effective mean-field Schrödinger-
like equation. However, there is also a disadvantage: The
electron-electron interaction is treated in a manner in which
the electrons are considered as an aggregate, through their
total charge density, rather than individually. This is in sharp
contrast to kinetic theory approaches such as the Boltzmann
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equation, in which explicit encounters between individual
particles are considered in the collision terms. With the
exception of DFT’s use of an exchange-correlation potential
(which itself depends only on the total electron charge density),
the treatment of the e-e interaction is essentially equivalent to
that in the Vlasov equation; explicit e-e collisions are absent.

The classic plasma kinetic theory for σ and κ is that of
Spitzer and Härm [15], in which a Fokker-Planck equation
is solved to determine the steady-state electron velocity
distribution resulting from the application of E or ∇T , from
which je and jQ are calculated. The collisions are treated
with Coulomb logarithms [16], log λei and log λee, which
account for screening of the two-body interactions in a manner
suited to the limit of weak plasma coupling (e.g., small-angle
scattering). Yet a more sophisticated kinetic theory approach
is that of the Lenard-Balescu (LB) equation [17], in which the
bare Coulomb collisions are dressed by the multicomponent
wave vector and frequency dependent dielectric function;
while resulting in answers identical to that of a Fokker-Planck
equation with appropriately chosen Coulomb logarithms for
sufficiently weak coupling, LB constitutes a predictive theory
in which arbitrary distributions and particle species can be
considered. Conductivities of quantum plasmas as predicted
by quantum Lenard-Balescu (QLB) are available [18–20], and
comparisons between LB predictions for classical plasmas
and the results of classical MD have proven very favorable
for comparable regimes of plasma coupling [21,22]. However,
unlike in the DFT treatment, only free electrons are considered,
and therefore the bound versus free distinction must be made
at the outset when studying real plasmas.

A method which attempts to combine some of the positive
features of the DFT-MD and kinetic theory approaches
(though predating the former) is the average-atom prescription,
exhibited generally in the Ziman resistivity formula [23].
Here various means (including DFT) are used to compute
the interaction between an electron and a representative
ion, together with its surrounding screening cloud of other
electrons. This interaction is then used in scattering theories of
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varying sophistication to produce the electronic contributions
to σ and κ [24–28], once a statistical distribution of ionic
positions is assumed. If the treatment of the representative
ion is sufficiently detailed, bound and free electrons can be
treated on similar footing. However, the method treats only
the electron-ion scattering; as in the Kohn-Sham DFT, e-e
scattering is not included. This is not a serious restriction for
low-T liquid metals (for which the original Ziman work was
intended [23]), since the imposition of electron degeneracy,
and the associated Pauli blocking, suppresses the effects of
e-e scattering on the electron distribution function [29]. But it
produces results which are in significant disagreement with, for
instance, the Spitzer-Härm theory [15], particularly for high-T
and for low-Z ions, since the effects of the e-e interaction are
not outweighed by those of e-i [30]. As such, it is customary to
employ separate multiplicative “Lorentz gas” [31] corrections
to σ and κ as determined from average-atom theories, which
ensure that the final results agree with the weak-coupling limits
of plasma kinetic theory [25,26,32]. These corrections reduce
σ and κ at high T , relative to their values as predicted by
theories in which an e-e collision term is absent, such as in
average-atom descriptions and in specialized Lenard-Balescu
treatments focused primarily on degenerate electrons [33].

Ziman resistivity formula results which are fit to ex-
pressions employing Coulomb logarithms, together with T -
dependent corrections accounting for e-e interaction, form the
basis for many wide-ranged models for plasma conduction
[34–36] used in continuum simulations of astrophysical
objects [37–39], inertial confinement fusion [40], and pulsed
power applications [41]. Indeed, the importance of these
applications for dense plasmas has fueled several of the
DFT-based investigations mentioned at the outset [4–7,9,10].
As such, these DFT works featured comparisons to some of
these models for σ and κ . In Ref. [6] for instance, comparisons
were made to the high-T limit of the Lorenz number (κ/σT )
for hydrogen plasmas, as predicted by Spitzer-Härm [15].
Though reasonable agreement was found, it has since been
established that this agreement was spurious, resulting from
an incomplete convergence of the DFT calculation of κ with
respect to the number of Kohn-Sham states included in the
computation [42]. While it is certainly reasonable to use DFT-
based approaches [5–7,9,10] to attempt to go beyond the many
approximations inherent in more conventional plasma descrip-
tions [15,18,19,34–36], it is equally important to uncover
potential weaknesses in the assumptions underlying current
implementations of Kohn-Sham DFT for plasma conduction.
This in turn requires that these DFT-based predictions of σ

and κ are well converged.
In this work we use the Kohn-Sham DFT prescription, com-

plete with DFT-based MD and the Kubo-Greenwood approach
mentioned above, to predict σ and κ for hydrogen plasmas at
sufficiently high-T to make a meaningful comparison to the
predictions of the quantum LB equation. Plasma conditions are
chosen to be ρ = 40 g/cm3 and T between 500 and 900 eV,
to coincide with a previous study [22] of hydrogen using
classical MD and statistical potentials [43,44], where it was
demonstrated that the weak-coupling assumptions underlying
LB are valid. These conditions offer the added advantage that
the hydrogen atoms are fully ionized, removing a potential
discrepancy between the two approaches. We show that our

DFT prediction for σ is in excellent agreement with that of LB,
while our prediction of κ is far too high in this regime. From
this, we posit that there are two distinct contributions of the e-e
interaction to plasma conduction: (1) a mean-field reshaping of
the electron distribution function which is present in the DFT
(as well as in any theory containing a Vlasov or Hartree term)
and (2) a binary e-e scattering piece which is missing in our
current implementation of DFT, but which is present in various
plasma kinetic theories (Fokker-Planck, LB, etc.). We argue
that while the first contribution affects both σ and κ , the second
contribution plays a role only for κ , due to the inability of
binary e-e scattering to degrade the electron charge current in
a system in which the conservation of total electron momentum
is mandated. By alternately turning off the e-e and e-i collision
terms in the quantum LB equation, we demonstrate that an
e-e scattering correction to the DFT thermal conductivity can
be written in the form 1/κ = 1/κDFT + 1/κOCP

ee , where κOCP
ee

is the thermal conductivity of the electron one-component
plasma (OCP) as predicted by QLB. We also find that the
reshaping contributions to σ and κ are practically identical.
This general framework is further justified by appealing to
arguments derived from a quantum Boltzmann theory using
the Zubarev approach [45–48]. Our conclusions extend and
amplify those made in a recent work investigating the effect of
e-e scattering on the electrical conductivity of plasmas [49].

The remainder of this paper is organized as follows: In
Sec. II, we outline the specific methods we use to produce
converged results for the conductivities of hydrogen plasmas
at high T using Kohn-Sham DFT. In Sec. III, we discuss the
comparison of these DFT results to those of QLB and construct
our e-e scattering correction for κ; additional motivation
for this correction using a quantum Boltzmann approach is
deferred to the Appendix. We conclude in Sec. IV.

II. THE DFT METHODS

Density functional molecular dynamics (DFT-MD) simula-
tions, performed with the Vienna Ab initio Simulation Package
(VASP) [50], are used to generate atomic configurations for
hydrogen with ρ = 40 g/cm3 and T of 500, 700, and
900 eV. The electronic temperature is established through a
Fermi occupation of the electronic states. All calculations are
performed in the local density approximation [12,51]. Given
the very high densities being explored (rs = 0.41 bohr), we
employ a bare proton 1/r potential for the hydrogen atom.
The plane wave cutoff energy for the DFT-MD runs is set to
3800 eV [52], and the electronic density and single-particle
wave functions are sampled at a single k-point at the �-point
(k = 0) in the Brillouin zone corresponding to the supercell
(see below). The practical limit on our calculations proved to be
256 hydrogen atoms in a periodically repeated cubic supercell.
Simulations with more atoms were intractable in combination
with the very high temperatures and corresponding need for
a very large number of bands for the transport properties and
the very high plane wave cutoff energy.

In each of these three cases, the electrons are fully ionized
from the hydrogen nuclei. Correspondingly, we calculate the
fundamental dimensionless plasma parameters for these three
cases, namely, the ion-ion coupling factor �ii ≡ e2/(kBT Ri),
where Ri = [3/(4πni)]1/3 is the Wigner-Seitz radius for the
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TABLE I. Dimensionless plasma parameters �ii and θ for a fully
ionized 40 g/cm3 hydrogen plasma.

kBT (eV) �ii θ

500 0.13 1.65
700 0.10 2.31
900 0.07 2.97

protons, and the electron degeneracy θ ≡ kBT /EFermi as
shown in Table I. Note that even for the highest temperature of
900 eV, where θ ∼ 3, we expect some residual consequences
of electron degeneracy.

Following the DFT-MD simulations, a set of atomic con-
figurations, well separated in time, are selected for subsequent
calculation of the transport properties following the treatment
in Ref. [7]. Achieving convergence on the electrical and
thermal conductivities for these high density, high-temperature
systems requires a very large number of bands, from several
thousand to well in excess of 10 000. A simple one-shot
calculation with such high band numbers is unfeasible owing
to poor convergence during the self-consistent determination
of the electronic density and Kohn-Sham wave functions. We
resort to a stepwise approach building up successively more
bands by doing a sequence of calculations with increasing band
numbers and using prior runs to initialize the simulation. A
consequence of the high band numbers is the need to continue
increasing the plane wave cutoff energy as there must be plane
waves of sufficient energy to represent the highest bands. The
combination of these two requirements leads to very poor
scaling as the temperature is increased.

Using the Kubo relation [13,14] for the current-current
correlation functions (〈jeje〉 for L11, 〈jQjQ〉 for L22, etc.), one
obtains [7]

Lij (ω) = 2π (−1)i+j

3V m2ω

∑
kνμ

(fkν − fkμ)|〈kμ|p̂|kν〉|2

× ε
i+j−2
kνμ δ(Ekμ − Ekν − h̄ω), (1)

where i and j are labeled by 1 and 2 for charge and heat
currents, respectively. V is the system volume, k is the
electron wave vector, ν and μ are electron band indices, and
fkν,μ are the corresponding Fermi occupations. The Ekν are
the Kohn-Sham band energies and 〈kμ|p̂|kν〉 are the dipole
matrix elements. The Onsager weights are given by εkνμ ≡
1
2 (Ekν + Ekμ) − h where h is the enthalpy per electron. The
appearance of the wave vector, k, assumes that we are dealing
with a periodic system (supercell, in our case). Though we
are ultimately interested in DC (ω = 0) conductivities in this
work, we perform computations of the Lij (ω) for small values
of ω and take the limit ω → 0, from which we compute σ and
κ .

The optical conductivity is given by

σ (ω) = e2L11, (2)

with the DC conductivity obtained in the limit ω → 0. The
convergence of the optical conductivity with respect to the
number of bands in the system is readily checked through

the sum rule [53]

S = 2mV

πe2Ne

∫ ∞

0
σ (ω) dω = 1. (3)

Likewise, the thermal conductivity is obtained from

κ = 1

T

(
L22 − L12 L21

L11

)
. (4)

Two fundamental challenges face us in evaluating σ and
κ using the expressions above: First, the ω → 0 limit can be
problematic, because a finite-sized cell of electrons always
possesses a nonzero minimum energy gap (and hence a
nonzero minimum value of Ekμ − Ekν) even though an infinite
collection of electrons at sufficient density generally does not.
Thus, it is necessary to determine the DC limit by fitting the
σ (ω) and κ(ω) results to ω-dependent forms which have the
correct behavior for an infinite system while extrapolating
the simulations to infinite size. For the systems considered
here, where the electronic density of states is free-electron-
like, and the optical conductivity is well described with the
Drude formula, this extrapolation of ω → 0 is straightforward.
Second, for the high-temperature plasmas of our interest here,
it is necessary to use a very large number of bands, (μ,ν), in
order to saturate the values of the Lij . This is especially true for
L22 needed for κ , since the larger power of factors involving
the single-particle energies more heavily weighs high-energy
states. For this, we find it necessary to extrapolate our
conductivities to an infinite number of bands (or, equivalently,
an infinite maximum eigenvalue) by performing a series of
calculations using an increasing number of bands for each
density and temperature condition we study.

We find that the assumption of a simple power law behavior
for the dipole matrix elements describes the asymptotic scaling
of the thermal conductivity calculations with the maximum
eigenvalue very well. Noting that L22 ∼ E2 and representing
the dipole matrix elements in the limit ω → 0 by Eγ we fit
a series of calculations with increasing maximum eigenvalue
εmax to the functional form

κ(εmax) = κ∞

∫ εmax

−∞ E2Eγ ∂f

∂E
dE∫ ∞

−∞ E2Eγ ∂f

∂E
dE

, (5)

where f gives the Fermi occupations for the temperature and
Fermi energy of the system in question. The values of γ and
κ∞ are then chosen for best fit to the series of calculations for
each εmax at a given temperature. The results of these fits for
the thermal conductivity are displayed in Fig. 1. The assumed
functional form captures the behavior of the calculated thermal
conductivity very well in the limit of high εmax, giving us high
confidence in the resulting value of κ∞. The best fit values of
γ varied little between the three cases, ranging from 3.3 at
900 eV to 3.4 at 500 eV.

We show the results of the same procedure [as in Eq. (5),
but with E2 → 1] applied to the electrical conductivity in
Fig. 2. Note the significantly more rapid convergence of the
electrical conductivity with increasing εmax. It is important to
note that even under conditions in which the sum rule (3) on
σ (ω) is satisfied to a high degree, the calculation of κ could
still be substantially in error. For example, the sum rules for
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FIG. 1. εmax → ∞ scaling fit to the thermal conductivity for T =
500, 700, and 900 eV and ρ = 40 g/cm3.

the 900 eV case range from 93.9% at the lowest εmax to 98.5%
at the highest εmax.

Given our added confidence in these extrapolated predic-
tions of σ and (especially) κ in these conditions, relative to
earlier predictions [6], we are now in a position to compare
them to the results of other approaches.

III. COMPARISONS BETWEEN KOHN-SHAM DFT AND
LENARD-BALESCU

In the moderate-to-weak plasma coupling regime of our
interest in this work, we know of no highly constraining ex-
perimental results for σ or κ for hydrogen plasmas. Therefore,
we can compare our extrapolated Kohn-Sham DFT results only
to the predictions from other theories. Fortunately, there is an
ab initio plasma kinetic theory which should provide very
accurate estimates in this particular regime: Lenard-Balescu
theory [17]. A recent work by some of us [22] demonstrated
that classical LB theory reproduces MD computations of σ and
κ for a semiclassical model of hydrogen (in which statistical
two-body interaction potentials were used [43,44]) for the very
same conditions we study here. The primary approximations
in LB theory pertain to the neglect of large-angle scattering
and a specific treatment of density fluctuations as modeled

FIG. 2. εmax → ∞ scaling fit to the electrical conductivity for
T = 500, 700, and 900 eV and ρ = 40 g/cm3.

by the random phase approximation (RPA) [54]. Since these
approximations play very similar roles in both classical and
quantum variants of the theory, we take the excellent agreement
displayed in Ref. [22] as a strong indication of the validity of
quantum-LB here [55].

The mathematical and numerical prescription we use to
generate quantum-LB predictions of σ and κ is outlined briefly
in Sec. 2.2 of Ref. [22], and the results we show here are in
fact identical to those plotted as the thick dark blue lines in
Figs. 1 and 2 of that work. We note that these predictions are
extremely close to those of Williams and DeWitt [18] for σ

and κ derived from the quantum-LB equation, though with the
minor caveat we mention in Ref. [56].

For the purposes of the discussion which follows, it is
important to understand that the LB kinetic equation for
hydrogen possesses two collision terms, Cei and Cee, each
of which involve [17–19,22]: (1) the Fourier transforms of
the bare two-body interactions; (2) occupation factors, f ,
evaluated at the momenta of the colliding particles; and (3)
the two-species dynamical RPA dielectric function, ε(q,ω),
evaluated at frequencies involving the center-of-mass energies
of the colliding particles. In practice, the effects of quantum
diffraction manifest through the occupation factors, while the
effects of screening arise through the dielectric function.

Figure 3(a) shows our extrapolated DFT results (solid
green circles) for the electrical conductivities of hydrogen
plasmas along the ρ = 40 g/cm3 isochore, as a function of
temperature. The general increase of σ with T is expected
from all theories [15,18,25,33], provided that T > TFermi,
as is the case here. Furthermore, the precise magnitude is
very much in line with our calculation of σ using QLB
theory [17,22], shown as the blue curve [56]. The slightly
lower σ values from QLB can be attributed to our neglect
of electron degeneracy in the QLB calculation, given that
kBTFermi is as high as 303 eV at this density [57]. Though
quantum diffraction is accounted for in our implementation
of QLB, Pauli blocking is not, as the collision terms we use
do not possess the proper 1 − f factors needed to account for
Pauli exclusion [22]. Nevertheless, the good agreement shown
here establishes that upon extrapolation, our Kohn-Sham
Kubo-Greenwood calculation of σ accounts for the bulk of
the physics also included in the Lenard-Balescu treatment.
This physics involves not only scattering of the conducting
electrons off the spatially distributed ions dressed by their
individual dynamic screening clouds, but also the contribution
of the e-e interaction in determining the precise shape of the
steady-state electron distribution, f (v) [58]. The tendency of
the e-e collision term within kinetic theory to reshape the
distribution at high-T is well known in the literature; if the
simple assumption of the shifted equilibrium distribution [29]
is made, σ is too low by a factor of 1.97 [33]. Indeed, this fact
necessitates the application of correction factors when theories
which make this assumption are used [25,26,32]. Though
explicit e-e collisions are not included in the DFT, it is clear
from this comparison that the mean-field Hartree (or Vlasov)
term is allowing for the proper reshaping of the distribution
upon the application of a weak uniform E field, since the
precise magnitude of σ is very sensitive to the shape of f (v)
[15,33]. The electrical conductivity in the absence of this
proper reshaping contribution of electron-electron collisions,
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FIG. 3. (a) Electrical conductivity of hydrogen at ρ = 40 g/cm3

as computed by Kohn-Sham DFT, extrapolated to an infinite number
of single-particle states, σDFT (solid green circles) and as computed
by the QLB equation using the prescription outlined in Ref. [22]
(blue curve), and the electrical conductivity in the absence of
e-e collisions from the QLB calculations, σei (open blue circles).
(b) Thermal conductivity of hydrogen at ρ = 40 g/cm3 extrapolated to
an infinite number of single-particle states, κDFT (solid green circles),
and as computed by the QLB equation using the prescription outlined
in Ref. [22] (blue curve).

σei , as calculated with the QLB equations, is shown with open
circles in Fig. 3(a) for comparison (see the discussion below
for our precise definition of σei).

Figure 3(b) shows the corresponding comparison for
thermal conductivity. Here the extrapolated DFT values are
higher than those of QLB by around a factor of two in this
regime. Prior to the realization that this extrapolation was
necessary here, the (underconverged) DFT predictions of κ

would have been in better agreement with the QLB results [6].
As for σ, κ is also known to be affected by the e-e interaction
within a plasma kinetic theory framework [15,18,33]. The
correction factor needed to account for its effects, relative to a
theory in which the low-T shifted equilibrium distribution
[29] is assumed, is distinct from that needed for σ . This
difference is the combined result of the different forcing terms
on the left-hand side of the kinetic equation (corresponding to
∇T rather than E [59]) and the marked differences between
the dependences of je and jQ on the electron velocities. In
particular, within a semiclassical framework (see Ref. [7]

and the previous section for more precise expressions using
Kohn-Sham states), je ∝ ∑

i evi , where i indexes individual
electronic states. Note that this is proportional to the total
electron momentum,

∑
i mvi . We therefore expect individ-

ual two-body e-e scatterings to do nothing to degrade je,
for the same reason that these intraspecies collisions must
leave the total electron momentum unchanged. Because of
this, the electron one-component plasma (OCP) has infinite
static electrical conductivity; the application of a constant
electric field to a uniform electron gas results in resistance-less
current. In contrast, jQ ∝ ∑

i(
1
2mv2

i )vi ∼ ∑
i

1
2mv3

i , assuming
that the potential energy contributions to the heat current are
negligible in comparison to the kinetic ones, as is the case for
the weak coupling conditions studied here [22]. Two-body e-e
scatterings can therefore change jQ (due to the fact that jQ
is no longer proportional to a conserved quantity), and this
results in a finite thermal conductivity for an electron OCP
[59]. It is then reasonable to expect that an extra contribution
to κ from the e-e interaction may result, which, in contrast to
σ , depends explicitly on e-e collisions. This beyond-Vlasov or
Hartree effect would indeed be absent from the Kohn-Sham
DFT prescription we employ here [49].

With these observations in mind, we posit the following
relations inspired by Matthiessen’s rule [60], in which these
two distinct manifestations of e-e interaction—(1) mean-field
reshaping of f (v) and (2) binary scattering degradation of
j—are added “in series”:

1

σ
= 1

Sσσei

+ 1

σ OCP
ee

= 1

Sσσei

, (6)

1

κ
= 1

Sκκei

+ 1

κOCP
ee

. (7)

Here σ OCP
ee and κOCP

ee are the electrical and thermal conductiv-
ities of the electron OCP, which can in principle be obtained
by scaling down the Cei collision term in a kinetic equation
otherwise possessing both Cee and Cei pieces. σei and κei are
the conductivities obtained by turning off the e-e interaction in
the precise manner discussed in the following paragraph. The
second equality in Eq. (6) arises from the fact that σ OCP

ee = ∞,
as mentioned above. The factors Sσ and Sκ are the reshaping
corrections which result from the mean-field part of the e-e
interaction. Our contention is that within our Kohn-Sham
Kubo-Greenwood prescription:

σDFT = Sσσei = σ, (8)

κDFT = Sκκei = κ

1 − κ/κOCP
ee

, (9)

where σ and κ are the true conductivities for the hydrogen
plasma, i.e., as predicted by quantum-LB if we assume it to be
perfectly valid in the conditions of interest.

Before we motivate Eqs. (6), (7), (8), and (9) further with
direct numerical comparisons, we must clarify what we mean
by σei and κei here. Consider the QLB calculations of σ and
κ for hydrogen. As mentioned above, the kinetic equation
for the electron distribution function has two collision terms,
Cei and Cee, each of which involves the two-component
dielectric function, ε. This dielectric function depends on all
three fundamental interactions, φee, φii , φei [54]. The collision
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TABLE II. σ and σei as determined from quantum Lenard-
Balescu for hydrogen at ρ = 40 g/cm3; Sσ = σ/σei .

kBT (eV) σ (1/Ohm · m) σei (1/Ohm · m) Sσ

500 1.31 × 108 1.82 × 108 0.72
700 1.82 × 108 2.61 × 108 0.70
900 2.37 × 108 3.45 × 108 0.69
1000 2.65 × 108 3.89 × 108 0.68
2000 5.76 × 108 8.76 × 108 0.66
3000 9.31 × 108 1.44 × 109 0.65
4000 1.32 × 109 2.05 × 109 0.64

terms, Cei and Cee, involve the screened interactions (φei/ε)
and (φee/ε), respectively. The conductivities σ and κ are
obtained by including both collision terms, while σei and κei are
obtained by including only Cei . However, it is important to note
that σei and κei still include the effects of the e-e interaction
within the dielectric function which screens φei , causing it to be
reduced relative to its bare value. This inclusion is crucial and is
taken into account in many theories less sophisticated than LB,
such as Spitzer-Härm (embedded in their assumption, bmax =
Debye screening length) [15] and the various Ziman formula
approaches in which the effective electron-ion scattering
potential is taken to be φei/εelectron [23,25,26,33]. It is also
accounted for in the rather sophisticated quantum-Boltzmann
approach of Refs. [48,49] where the fundamental interaction
within their Cei is φei statically screened by the electrons.

The construction of the various terms in Eqs. (6), (7), (8),
and (9) from LB is then straightforward: quantum-LB calcula-
tions including both Cee and Cei produce σ and κ; calculations
including only Cei produce σei and κei . Calculations in which
we apply a multiplier to Cei to force it to zero give us the
electron OCP results, σ OCP

ee and κOCP
ee . As discussed, we recover

σ OCP
ee → ∞ for all densities and temperatures, while we obtain

finite values for κOCP
ee as expected [59].

The need for the reshaping correction factors, Sσ and Sκ ,
is obviated within LB by first comparing σ with σei . Table II
shows our quantum-LB results for hydrogen along the ρ =
40 g/cm3 isochore. The ratio σ/σei ≡ Sσ varies between 0.64
and 0.72 within this temperature range. Even though the inclu-
sion of e-e interactions does nothing to degrade the electrical
current of an OCP, the inclusion of Cee here reduces σ by an
appreciable amount, and this occurs even as the contributions
of the e-e interaction within the screening function, ε, are left
unchanged. This reduction is due to the tendency for the e-e
interaction to make the electron distribution function more
isotropic in velocity space, which is seen clearly when the full
solution is obtained by expanding f in polynomials [18,19,22]
using the standard Chapman-Enskog procedure [59]. The
fact that our Kohn-Sham DFT electrical conductivities agree
quite well with the quantum-LB σ , and far worse for σei

(see Fig. 3), indicates that this reshaping effect is within
the purview of a self-consistent mean-field Hartree or Vlasov
approach [61]. Our assertion appearing in Eq. (8) is therefore
justified.

Turning to κ , if we now assume the relation of Eq. (7), our
LB computations of κ, κei , and κOCP

ee allow us to solve for Sκ .
Figure 4 shows the product, Sκ κei , versus T as the solid black

FIG. 4. Thermal conductivity of hydrogen at ρ = 40 g/cm3 as
computed within a number of approximations. QLB result for κ (blue
curve); κDFT extrapolated to an infinite number of single-particle states
(solid green circles); Sκκei as determined from QLB (solid black
diamonds); Sσ κei as determined from QLB (open diamonds); κDFT

corrected with κee from QLB using Eq. (10) (solid blue squares).

diamonds. These are extremely close to our results for κDFT,
shown as the solid green circles. This justifies our supposition
of Eq. (9), and points to a way to correct our Kohn-Sham DFT
results for the thermal conductivity of hydrogen plasmas:

1

κ
= 1

κDFT
+ 1

κOCP
ee

. (10)

The nearly coincident blue curve and solid blue squares at the
bottom of Fig. 4 show the comparison of the κQLB with that of
κDFT when corrected in this manner.

In passing, we note that our quantum-LB results for
hydrogen show that the reshaping correction factors for σ and
κ are quite similar: Sσ ∼ Sκ . This is illustrated by the relative
closeness of Sσκei (open diamonds) to Sκκei (solid black
diamonds) in Fig. 4. Likewise, Table III displays κ as computed
by Eq. (7) but with Sσ used instead of Sκ . Differences are less
than 10% and are decreasing as T is increased. As shown in the
Appendix, we have also used the Zubarev quantum-Boltzmann
prescription of Refs. [46–48] to affect the decompositions in
Eqs. (6) and (7), and within this approach Sσ and Sκ are the
same to within 5% in the Spitzer limit for these conditions.
Alternatively we show that under the assumption Sσ = Sκ , the

TABLE III. Various quantities for hydrogen as computed with
quantum Lenard-Balescu at ρ = 40 g/cm3: κ; κSσ

[κ as computed
from Eq. (7), but with Sσ instead of Sκ ]; the percentage difference
between κSσ

and κ .

kBT (eV) κ (W/m/K) κSσ
(W/m/K) % difference

500 8.27 × 106 8.98 × 106 8.5
700 1.61 × 107 1.74 × 107 8.1
900 2.69 × 107 2.89 × 107 7.4
1000 3.35 × 107 3.59 × 107 7.2
2000 1.47 × 108 1.56 × 108 6.1
3000 3.60 × 108 3.78 × 108 5.0
4000 6.84 × 108 7.17 × 108 4.8
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ansatz of Eq. (7) is satisfied to within 3% at the level of four
moments and within 2.2% in the Spitzer limit.

We emphasize that we are able to assert the efficacy of
the correction in Eq. (10) only because we are operating in a
regime where we expect Lenard-Balescu to be accurate. One
might then ask: Why use DFT at all, if LB is assumed to
be better? The answer is that for stronger-coupling and/or for
plasmas and conditions for which (unlike in the present cases)
ionization is incomplete, DFT is sure to provide much benefit
over LB, since LB as such is able only to describe weakly
coupled plasmas with no bound states etc. Nevertheless, our
primary aim in this work is to point out that an uncorrected
thermal conductivity from Kohn-Sham DFT [5–7,9,10] is
very possibly incomplete in its description, and that some
relation like that of Eq. (10) which accounts for the effects
of explicit e-e collisions may be more appropriate. It is also
possible that for higher-Z plasmas, such as those studied
in Ref. [10], the larger Z may cause the e-i interactions to
outweigh the e-e interactions to the point where such effects are
significantly less important [30]. This will very likely depend
on density and temperature, and additionally so because
highly degenerate electrons will feel minimal effects from e-e
scattering. More work must be done to further investigate these
issues.

IV. CONCLUSION

We have presented an investigation of the electrical and
thermal conductivities of hydrogen plasmas for ρ = 40 g/cm3

and T between 500 and 900 eV using Kohn-Sham DFT
together with a Kubo-Greenwood response framework to
compute the relevant current-current correlation functions. In
order to obtain converged results especially for the thermal
conductivity, it was necessary to conduct a detailed extrapola-
tion of transition dipole matrix elements to arrive at the results
corresponding to an infinite number of high-lying Kohn-Sham
states. The resulting electrical conductivities are in excellent
agreement with the predictions of quantum Lenard-Balescu
theory, while the thermal conductivities are roughly a factor
of two larger than the Lenard-Balescu values. By conducting
separate Lenard-Balescu studies in which electron-ion and
electron-electron collision terms are independently switched
off, we argue that the discrepancy in the thermal conductivity
results from the neglect of explicit two-body electron-electron
collisions in the (effectively mean-field) DFT prescription. In
contrast, the electrical conductivity is well predicted by the
DFT, suggesting that the well-known effect of the reshaping
of the electron distribution function for that quantity is
appropriately handled at the Hartree or Vlasov level. We
note that this good agreement for the electrical conductivity,
as well as the apparent agreement of the reshaping for the
electron-ion contribution to the thermal conductivity, suggests
that thermodynamic properties, such as the equation of state,
are also well described as long as the Born-Oppenheimer
approximation is valid. Electron-electron scattering plays a
continual and important role in the relaxation to a thermal
ground state distribution of electronic excitations. We are
implicitly assuming, through the Born-Oppenheimer approxi-
mation and associated Fermi occupations of electronic states,
that this process takes place sufficiently fast on the time scale of

the ionic motion that deviations from deviations from a Fermi
distribution at the prescribed temperature are very small.

We propose the following correction to the thermal conduc-
tivity as predicted by Kohn-Sham DFT, at least for hydrogen
plasmas: 1/κ = 1/κDFT + 1/κOCP

ee , where κOCP
ee is the thermal

conductivity of the electron one-component plasma at the
same (ρ,T ). It remains to be seen if such a correction is
sensible for plasmas other than hydrogen. In particular, it
is not clear as to what should replace 1/κOCP

ee for matter
in which the “free” electron density is less approximately
represented by an electron OCP. Recent work on the electrical
conductivity of warm, dense iron [62] has used a correction
supplied by dynamical mean field theory, and in other works
corrections to mean-field electronic structure approaches have
been proposed along similar lines [63]. More fundamentally,
it is likely of great interest to know if a more consistent
formulation within the rubric of time-dependent DFT [64]
and/or current-DFT [65] might admit a framework in which
explicit electron-electron scattering can appear naturally in
linear transport. These important questions we leave for future
studies.
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APPENDIX

The electrical and thermal conductivity is well known in
the classical nondegenerate limit using kinetic theory (see,
e.g., Refs. [15,59]) or linear response theory as outlined
by Zubarev, which will be employed here; for details, see
Refs. [45–49,66]. In the quantum-Boltzmann approach of
Zubarev, which contains both the Ziman theory and the Spitzer
theory as limiting cases, the conductivities are determined
in linear response theory to arbitrary order in generalized
momenta, while permitting arbitrary electron degeneracy and
strong scattering. For the analysis here, the collision integrals
are regularized through the assumption of statically screened
Coulomb potentials and the corresponding introduction of
a Coulomb logarithm. The electrons are assumed to be
nondegenerate.

In particular, the influence of electron-electron collisions
can be studied in order to validate the ansatz (7) and the relation
for the prefactors Sσ ∼ Sκ . We start from the definition of the
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conductivities,

σ = e2L11 , κ = 1

T

(
L22 − L12L21

L11

)
, (A1)

where the Onsager coefficients Lik are defined as

Lik = −h(i+k−2)

�0 | d |
0 k−1

βh
N̂1 − N̂0

i−1
βh

N1 − N0 (D)
; (A2)

h denotes the enthalpy per particle, β = 1/kBT , and �0 is the
system volume. The vectors N̂n, Nn and the matrix (D) in Eq.
(A2) contain correlation functions which can be calculated for
arbitrary densities and temperatures; see Refs. [49,66]. Using
a finite set of P moments to calculate the conductivities (i.e.,
the nonequilibrium distribution function) we have

N̂m = (N̂m0,N̂m1, . . . ,N̂mP ) ,

Nm =

⎛
⎜⎜⎝

Nom

N1m

...
NPm

⎞
⎟⎟⎠, (D) =

⎛
⎜⎝

D00 . . . D0P

...
. . .

...
DP 0 . . . DPP

⎞
⎟⎠. (A3)

Generalized moments of the electron system are used to
calculate the correlation functions,

Pn =
∑

k

h̄k[βEe(k)]na†
e(k)ae(k), (A4)

and the time derivatives Ṗn = i
h̄

[Hs,Pn]. Hs is the Hamilton
operator of the system, the kinetic energy of the electrons
is Ee(k) = h̄2k2/(2me), and a

†
e(k) and ae(k) are creation and

annihilation operators for electronic states k, respectively. The
correlation functions are given as Kubo scalar products and its
Laplace transforms:

Nnm = 1

me

(Pn,Pm),

N̂nm = Nnm + 1

me

〈Pn(ε); Ṗm〉, (A5)

Dnm = 〈Ṗn(ε); Ṗm〉.
In the nondegenerate limit, the terms 〈Pn(ε); Ṗm〉 can be
neglected since they are related to the Debye-Onsager re-
laxation effect, and we have Nnm = N̂nm. According to
the Hamilton operator Hs = T + Vei + Vee, the force-force
correlation functions Dnm in Eq. (A5) can be separated with
respect to electron-electron and electron-ion scattering, i.e.,
Dnm = Dee

nm + Dei
nm, for which analytical expressions can be

given for hydrogen plasma (Ni = Ne) in the nondegenerate
limit (see Refs. [48,49,67]):

Nnm = Ne

�(n + m + 5/2)

�(5/2)
, (A6)

Dnm = d

{(
n + m

2

)
! + cee

nm

√
2

}
, (A7)

d = 4

3

√
2π

e4

(4πε0)2

√
me

(kBT )3/2
neNi�(�), (A8)

with the Coulomb logarithm �(�). The weighting factors
for the e-e correlation functions are given by cee

0m = cee
m0 =

TABLE IV. Prefactors for the electrical (f ) and thermal conduc-
tivity (L) according to Eqs. (A9) and (A10) in the nondegenerate
limit. The Zubarev approach using an increasing number of moments
Pn (A4) is compared with the correct Spitzer values; see Refs. [67,68].
The Lorenz number �ee of an electron OCP defined by Eq. (A12) is
given. The thermal conductivity according to the ansatz (7) can be
expressed by the Lorenz number �ei+ee defined in Eqs. (A13)–(A15).

f ei f ei+ee Lei Lei+ee �ee �ei+ee

Spitzer theory 1.0159 0.5908 4.0 1.6220 - -

P0 0.2992 0.2992 - - - -
P0,P1 0.9724 0.5781 0.5971 0.6936 1.3223 0.4734
P0,P1,P2 1.0145 0.5834 3.6781 1.6215 1.6529 1.6004
P0,P1,P2,P3 1.0157 0.5875 3.9876 1.6114 1.6716 1.6605

0, cee
11 = 1, cee

12 = cee
21 = 11/2, cee

22 = 157/4, . . . The conduc-
tivities can be represented as

σ = f σ ∗, σ ∗ = (4πε0)2(kBT )3/2

√
mee2�(�)

, (A9)

κ = L

(
kB

e

)2

T σ, (A10)

where L is a Lorenz number. The Spitzer theory [15] gives
the correct values in this limit with f ei+ee

Sp = 0.5908 and

Lei+ee
Sp = 1.6220 if e-i and e-e interactions are considered. In

the case of a Lorentz gas, i.e., neglecting e-e scattering, we
get the values f ei

Sp = 1.0159 and Lei
Sp = 4.0. The prefactors

for solutions up to fourth order within the Zubarev approach
are given in Table IV. They demonstrate a rapid convergence
against the Spitzer values for the Lorentz gas and the fully
interacting electron-ion system; see Refs. [67–69].

We now calculate the conductivities for an electron OCP
model with only e-e interactions. This can be done with the
Hamilton operator

Hs = T + εVei + Vee (A11)

by taking the limit ε → 0 after calculating the Lik . Otherwise,
the Onsager coefficients are divergent (L11) or indefinite
(L12, L22) in the nondegenerate limit. We have treated the
electron OCP model by using up to four moments Pn. The
result for the thermal conductivity can be represented as

κee = κOCP
ee =

(
kB

e

)2

T σ ∗�ee. (A12)

The values for the factor �ee are given in Table IV. We now
explore the ansatz (7) in the nondegenerate limit

1

κ

?= 1

Sκκei

+ 1

κOCP
ee

, (A13)

within the approximation Sκ = Sσ . We begin by writing

Sκκei = LeiSκσei

(
kB

e

)2

T ≈ LeiSσσei

(
kB

e

)2

T . (A14)

Noting that σ ∗ = σei/f
ei and Sσ = f ei+ee/f ei we can

rewrite the ansatz as

κ = σ

(
kB

e

)2

T �ei+ee, (A15)
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where

�ei+ee = Lei�ee

�ee + f ei+eeLei
. (A16)

The factor �ei+ee, to be compared to the exact value Lei+ee,
is listed in the last column of Table IV. We observe a fast
convergence as before to 1.6605 at the level of four moments.
The deviation from the correct value in fourth order (1.6114)
is just 3.0%, i.e., similar to the deviations of the numerical data
from the quantum LB equation; see Figs. 3 and 4. If instead
we use the Spitzer values for f ei+ee and Lei+ee, agreement
with the Spitzer Lorenz number is within 2.2%. Note that the
coincidence of the values for Lei+ee and �ei+ee, i.e., of the direct
and sum of the inverse thermal conductivities representing

electron-ion and electron-electron scattering contributions,
is obtained only if we use the prefactor Sσ = f ei+ee/f ei ,
which contains the influence of both electron-ion and electron-
electron scattering.

Alternatively, we can take the ansatz (7) as an equality and
solve for Sκ/Sσ :

Sκ

Sσ

= 1

Lei

(
Lei+ee�ee

�ee − Lei+eef ei+ee

)
. (A17)

At the level of four moments, we find Sκ/Sσ = 0.9318, and
with the Spitzer values for f ei+ee, Lei , and Lei+ee, we obtain
Sκ/Sσ = 0.9502. Note that both of these results, for �ei+ee or
Sκ/Sσ , were obtained in a parallel approach to that taken in
the main text within the QLB framework and are completely
general in the nondegenerate limit.
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[15] L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).
[16] L. D. Landau, Phys. Z. Sowjetunion 10, 154 (1936); Zh. Eksp.

Teor. Fiz. 7, 203 (1937).
[17] A. Lenard, Ann. Phys. 10, 390 (1960); R. Balescu, Phys. Fluids

3, 52 (1960).
[18] R. H. Williams and H. E. DeWitt, Phys. Fluids 12, 2326 (1969).
[19] F. Morales, M. K. Kilimann, R. Redmer, M. Schlanges, and F.

Bialas, Contrib. Plasma Phys. 29, 425 (1989).
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Contrib. Plasma Phys. 53, 639 (2013).

033203-10

https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1098/rstl.1858.0020
https://doi.org/10.1098/rstl.1858.0020
https://doi.org/10.1098/rstl.1858.0020
https://doi.org/10.1098/rstl.1858.0020
http://arxiv.org/abs/arXiv:1603.02287
https://doi.org/10.1103/PhysRevLett.81.5524
https://doi.org/10.1103/PhysRevLett.81.5524
https://doi.org/10.1103/PhysRevLett.81.5524
https://doi.org/10.1103/PhysRevLett.81.5524
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevE.52.5368
https://doi.org/10.1103/PhysRevE.52.5368
https://doi.org/10.1103/PhysRevE.52.5368
https://doi.org/10.1103/PhysRevE.52.5368
https://doi.org/10.1002/ctpp.2150290410
https://doi.org/10.1002/ctpp.2150290410
https://doi.org/10.1002/ctpp.2150290410
https://doi.org/10.1002/ctpp.2150290410
https://doi.org/10.1063/1.2744366
https://doi.org/10.1063/1.2744366
https://doi.org/10.1063/1.2744366
https://doi.org/10.1063/1.2744366
https://doi.org/10.1002/ctpp.201300016
https://doi.org/10.1002/ctpp.201300016
https://doi.org/10.1002/ctpp.201300016
https://doi.org/10.1002/ctpp.201300016



