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Role of thermal disequilibrium on natural convection in porous media:
Insights from pore-scale study
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The present study investigates the role of thermal nonequilibrium on natural convection in a fluid-saturated
porous medium heated from below. We conduct high-resolution direct numerical simulation at the pore scale
in a two-dimensional regular porous structure by means of the thermal lattice-Boltzmann method (LBM). We
perform a combination of linear stability analysis of continuum-scale heat transfer models, and pore-scale
and continuum-scale simulations to study the role of thermal conductivity contrasts among phases on natural
convection. The comparison of pore-scale lattice-Boltzmann simulations with linear stability analysis reveals
that traditional continuum-scale models fail to capture the correct onset of convection, convection mode, and heat
transfer when the thermal conductivity of the solid obstacles does not match that of the fluid.
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I. INTRODUCTION

Modeling convective heat transfer in porous media is
generally based on using average-scale formulations for
the momentum and energy equations. Darcy and extended
Darcy models such as Dupuit-Darcy (sometimes known
as Forchheimer’s model) and Brinkman-Darcy models are
the most commonly used to simulate fluid flow through a
porous medium [1]. The formulation of the average-scale
energy equation depends on the assumption of local thermal
equilibrium among the different phases [1]. Assuming a local
thermal equilibrium (LTE) allows us to recast the statement
of energy conservation into a single temperature equation,
while the absence of local thermal equilibrium, local thermal
nonequilibrium (LTNE), requires coupled energy equations,
one for each phase. The degree of disequilibrium between
phases during natural thermal convection has therefore a
significant effect on heat transfer and convective patterns.

In the present study, we consider a fluid-saturated porous
medium subjected to a vertical temperature gradient. This
problem, which is analogous to Rayleigh-Bénard convection,
was first studied by Horton-Rogers [2] and Lapwood [3] (here-
after called HRL convection). They performed a linear stability
analysis and identified the condition under which convective
patterns emerge. The transition is generally parameterized by
a modified critical Rayleigh number which is predicted to be
Racr = 4π2 for a horizontally infinite porous domain and for
a two-dimensional (2D) square box. This critical value is valid
as long as the momentum equation follows Darcy’ s law and
the phases are locally in thermal equilibrium (LTE).

Several experimental studies reported values of heat trans-
fer (Nusselt number) and critical Rayleigh number that deviate
from the theoretical predictions made for HRL convection
with the Darcy-LTE model, e.g., [4–6]. These experiments
also suggest that the contrast in thermal conductivity between
the solid and liquid phases exacerbates the discrepancy.
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The present study is focused on constraining the role of
solid-to-fluid thermal conductivity ratio to test which model
for the energy conservation at the continuum scale (LTE versus
LTNE) is better suited to study HRL convection in porous
media. The knowledge of pore-scale temperature distribution
in both fluid and solid phases is required for verifying the
consistency of the predictions from LTNE models. For this
purpose, we conducted direct numerical simulation (DNS)
at the pore-scale level over a 2D porous structure consisting
of regular arrangements of solid blocks. The advantage of
these pore-scale calculations is that they allow us to consider
a range of solid-to-fluid thermal conductivity ratios and
also, it does not rely on a homogenization model for the
energy equation (LTE versus LTNE, for example), where
the pore-scale information is filtered out. As a result, these
DNS calculations are here designed to test the validity of
either continuum-scale model under different conditions. The
numerical model is based on the lattice-Boltzmann method
(LBM) [7,8], and the momentum and energy equations are
solved at the pore scale and do not require closure equations
for permeability or effective thermal properties.

We first analyze the performance of LTNE models to assess
the role of local thermal disequilibrium on heat transfer around
and beyond the critical Rayleigh number Racr . We perform
linear stability analysis for finding the critical Rayleigh number
and also the critical convective mode at the onset of convection
as a function of the interphase heat transfer coefficient. We then
conduct DNS simulations over a range of Rayleigh numbers
for various solid-to-fluid thermal conductivity ratios to find
(1) the degree of local thermal disequilibrium under steady
conditions, (2) the prevailing convective mode near the onset of
convection, (3) the critical Rayleigh number where convection
starts, and (4) the relationship between heat transfer (Nusselt
number Nu) and thermal forcing as represented by Nu(Ra)
curves.

The organization of the paper is as follows: In Sec. II,
we present the mathematical formulation of the pore-scale
and continuum-scale models for HRL convection. Section III
presents the thermal performance of LTNE models. Section IV
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FIG. 1. Physical domains in the pore-scale study: (a) 10×10 unit cells, (b) 15×15 unit cells, (c) 20×20 unit cells, and (d) unit cell (dashed
line showing the periodicity).

provides the results of pore-scale DNS calculations for
HRL convection and the comparison of the results with the
corresponding LTE and LTNE models. Finally, we discuss
possible causes for the mismatch between continuum and
pore-scale models in Sec. V.

II. Mathematical FORMULATION

A. Pore scale

We consider the 2D porous media shown in Fig. 1 as our
pore-scale physical domains. The 2D porous enclosure has
the aspect ratio 1, Γ = height (H)/width (W)=1. The domain
consists of 10×10, 15×15, and 20×20 regular and identical
unit cells containing square solid blocks of dimension d such
that H/d ranges from 14.1 to 28.2. In Fig. 1, the solid blocks
are represented by the gray pixels, while the white pixels
between the blocks represent the fluid phase. The porosity of
the medium is ϕ = 0.5 for all pore-scale domains. The choice
of 20 layers in our study is solely based on the compromise
between the computational cost (due to the computationally
intensive simulations for detailed pore-scale analyses) and
retrieving a statistically relevant set of results to interpret
at the continuum scale. Since we intentionally designed our

domain to be a priori periodic, it becomes natural to select
the unit cell to be the representative volume element (RVE)
and also the averaging volume [9], and it thus eliminates the
uncertainty in defining the representative averaging volume.
The same procedure has been used extensively in similar
studies (see, for example, Refs. [9–13]). We show later in
Sec. V that the pore-scale simulations successfully recover
the important physical features of the HRL convection and
the results are independent of the coarseness of the solid
blocks.

The pore-scale analysis of HRL convection is based on
the direct numerical simulation of conservation equations for
both constituents for the two-dimensional porous media shown
in Fig. 1. For the fluid phase, the Navier-Stokes and energy
equations are (using the Boussinesq approximation)

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + ν∇2u + gβ(T − Tref), (2)

(ρc)f
∂T

∂t
+ ∇ · [(ρc)f uT] = ∇ · (kf ∇T), (3)
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where u is the pore-scale velocity field, P is the pressure, T
is the temperature, ν is the kinematic viscosity of the fluid,
β is the thermal expansion coefficient, g is the gravitational
acceleration, k refers to thermal conductivity, c is the specific
heat, and ρ the density of the fluid phase (subscript f). For the
solid phase, the energy equation reduces to

(ρc)s
∂T

∂t
= ∇ · (ks∇T), (4)

where the subscript s refers to the properties of the solid phase.
Across a fluid-solid interface I, the continuity of temperature
and normal heat flux yield

TI,+ = TI,−

n · (k∇T + ρcuT)I,+ = n · (k∇T + ρcuT)I,−, (5)

where n is normal to the interface, and + and − denote the
different sides of the interface. The hydrodynamic and thermal
boundary conditions are those for HRL convection and are set
with

(u,v) = 0, T = TH, for y = 0, for all x, (6)

(u,v) = 0, T = TC, for y = H, for all x, (7)

(u,v) = 0,
∂T

∂x
= 0, for x = 0,1, for all y. (8)

These governing equations are solved with the lattice-
Boltzmann method [7,8,14]. However, since the fluid-saturated
porous matrix at the pore-scale level comprises a thermally het-
erogeneous system due to different thermophysical properties
between solid and fluid, we resort to a thermal LBM model
designed to satisfy the conjugate interface boundary conditions
described by (5). In recent years, several thermal LBM models
have been developed for solving the conjugate heat transfer
problems [15–24]; the present calculations follow the proce-
dure described in [15] for the thermal energy equation. We
used a single-relaxation time D2Q9 lattice-Boltzmann model
for both the velocity and temperature distribution functions.
There are several approaches for applying the no-slip boundary
condition [25,26]. In the present study, Zou-He’s bounce-back
scheme of the nonequilibrium part of the particle distribution
functions [26] is used to implement no-slip conditions at solid
boundaries, and the thermal counterslip method is applied to
enforce both Dirichlet and Neumann boundary conditions for
the energy equation [27,28]. In the pore-scale simulations,
we used 60×60 grid-point resolution over each unit cell.
The lattice-Boltzmann parameters were selected such that
the Mach number is sufficiently small to stay within the
incompressibility limit.

The regular configuration of repeated unit cells provides us
with a straightforward test for the LTE and LTNE assumptions.
We can compute local phase averages 〈Ti〉i over each unit cell
with

〈Tf 〉f = 1

Vf

∫
V

Tf dV = 1

φV

∫
V

Tf dV,

〈Ts〉s = 1

Vs

∫
V

Ts dV = 1

(1 − φ)V

∫
V

Ts dV . (9)

In order to compare the pore-scale results with the
continuum-scale predictions, we need to compute the Darcy-
Rayleigh number Ra* and average Nusselt number Nu*, which
are defined as

Ra∗ = gβ(TH − TC)KH

αmνf

= Raf Da
kf

km

Raf = gβ(TH − TC)H 3

αf νf

, Da = K

H 2

Nu∗ = 1 + 1

A

∫
A

uyT dA

αm�T/H
, αm = km

(ρc)f
. (10)

Raf is the conventional Rayleigh number based on the fluid
properties. In Ra*, K is the permeability of the porous medium
and αm is the thermal diffusivity based on stagnant thermal
conductivity of the solid matrix and the hosted fluid km. Da is
the Darcy number of the porous medium. We use our LBM
model to compute the permeability and average properties of
the heterogeneous media from the pore-scale calculations.

B. Continuum scale

Assuming local thermal equilibrium, HRL convection at
the continuum scale is described by

∇ · q = 0, (11)

μ

K
q = −∇P + ρg, (12)

(ρc)m
∂T

∂t
+ (ρc)f q · ∇T = km∇2T, (13)

where T is the local temperature averaged over both phases, c
is the specific heat, and ρ is the density. K is the permeability
of the porous medium, P is the pressure, μ is the dynamic
viscosity of the fluid, and q is the seepage velocity (Darcy
flux). The subscripts m and f refer to the properties of the solid
or fluid mixture and the fluid, respectively. Equations (12)
and (13) are coupled through the Boussinesq approximation.
It should be mentioned that km is not only a function
of the thermal conductivity of each phase, but it depends
strongly on the structure of the porous medium. This structural
control has been studied extensively, both theoretically and
experimentally, and it is found that km cannot be defined simply
as the volumetric arithmetic or harmonic mean of the fluid and
solid thermal conductivities [29,30].

We can relax the local thermal equilibrium assumption
by developing a model where the energy conservation for
each phase is considered separately and coupled through an
interphase heat exchange term [1]. This allows the two phases
to experience different temperatures locally, which may appear
more consistent with convection in porous media where the
fluid and solid thermophysical properties are different and the
advection of heat may be highly spatially heterogeneous [1].
There are multiple derivations for the two-temperature models,
and the reader is referred to Rees and Pop for an overview of
the recent developments with LTNE approaches [31]. In the
present study, we consider two common models, which are
referred to as LTNE-1 and LTNE-2. The difference between
the two models stems from the way they were developed. The
LTNE-1 model, which is the simplest two-temperature model,
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FIG. 2. LTNE-1: (a) Variation of critical Rayleigh number Racr for the horizontal wave modes m = 1 and 2 with dimensionless interphase
heat transfer coefficient H; (b) variation of Nusselt number Nu with H for Ra = 50.

is based on the following set of equations [1,31]:

ϕ(ρc)f
∂Tf

∂t
+ (ρc)f q · ∇Tf = ϕkf ∇2Tf + h(Ts − Tf ),

(14)

(1 − ϕ)(ρc)s
∂Ts

∂t
= (1 − ϕ)ks∇2Ts − h(Ts − Tf ), (15)

where h is the interphase heat transfer coefficient responsible
for the nonequilibrium heat transfer between the different
phases and ϕ is the porosity of the medium. The subscript
s and f refer to solid and fluid phase properties, respectively.
Summing Eqs. (14) and (15) and assuming thermal equilibrium
reduces the model to the single temperature (LTE) model with
an effective mixture thermal conductivity km = ϕkf + (1 −
ϕ)ks , which is a volumetric average and not a true stagnant
conductivity. This is one of the inconsistencies of the LTNE-1
model in the LTE limit. On the other hand, if we apply
volume averaging over the microscale energy equation, extra
coupling terms between solid and fluid phases appear which
are ignored in this (LTNE-1) formulation. Even for the case
of pure heat diffusion, it has been shown that these extra
coupling terms cannot be omitted from the general energy
equation [10]. Keeping this in mind, Nakayama et al. [32]
used the volume-averaging process and extended the previous
works for heat conduction [10,33] to convection-conduction
heat transfer and derived the following LTNE-2 equations:

ϕ(ρc)f
∂Tf

∂t
+ (ρc)f q · ∇Tf

= ∇ · [(ϕkf + kf G + kdis)∇Tf ]

+(−ksG)∇2Ts + h(Ts − Tf ), (16)

(1 − ϕ)(ρc)s
∂Ts

∂t
= ∇ · {[(1 − ϕ)ks + kf Gκ]∇Ts}

+(−ksG)∇2Tf − h(Ts − Tf ), (17)

where kdis is the thermal dispersion conductivity, and κ =
ks/kf and G is the tortuosity parameter [33]. The following
equation has been proposed for calculating the tortuosity
parameter G [33]:

G = km/kf − ϕ − (1 − ϕ)κ

(κ − 1)2
, (18)

which always gives a negative value for G and recovers the
true stagnant thermal conductivity of the medium km. This can
be easily verified by summing up Eqs. (16) and (17) together
and assuming local thermal equilibrium, which yields km =
ϕkf + (1 − ϕ)ks + kf (1 − κ)2G. Therefore, by knowing the
thermophysical properties of each phase and also the stagnant
thermal conductivity of the medium, we can find the value of
the tortuosity parameter.

A critical aspect of using both LTNE formulations lies in
the determination of the appropriate value of h. In general, h
is known to depend on many factors, including the detailed
geometry of the porous medium, the porosity, the phase con-
ductivities and diffusivities, and also the pore-scale velocity
field [34,35].

III. LTNE RESULTS

We perform a linear stability analysis for both LTNE
models (details are provided in the Appendix) to find the
critical mode and the critical Rayleigh number at the onset
of convection. Figure 2 presents the results for the LTNE-1
model. Panel (a) shows how the critical Rayleigh number
Racr of the horizontal wave modes m = 1 and 2 changes
with the dimensionless interphase heat transfer coefficient H
[defined in the Appendix, Eq. (A9)]. The critical Rayleigh
number at the onset of convection for each H is the minimum
of the corresponding values for the two modes (m = 1, 2;
higher modes yield even greater Racr , not shown here). HRL
convection is a multistable thermal system, meaning that
different convection modes may coexist at a given Rayleigh
number. One of the distinguishing features of convective
patterns with different horizontal modem is the amount of
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FIG. 3. LTNE-2: (a) Variation of critical Rayleigh number Racr for the horizontal wave modes m = 1 and 2 with dimensionless interphase
heat transfer coefficient H; (b) variation of Nusselt number Nu with H for Ra = 50.

heat that is transferred through the domain. Therefore, it is
crucial that continuum-scale formulations, such as LTNE-1
and LTNE-2 models, predict a consistent and correct mode.

Figure 2(a) shows that for the LTNE-1 model, in the limit
H → ∞, i.e., local thermal equilibrium between solid and
fluid phases, the single-cell convection mode m = 1 is selected
at the onset of convection and Racr is higher than 4π2, the
critical Rayleigh number based on the Darcy-LTE model for
a horizontally infinite domain or a square box (aspect ratio 1).
The inconsistency here results from the mixture effective
thermal conductivity km to differ from the true stagnant thermal
conductivity of the medium in the LTNE-1 model. On the other
hand, as H → 0, i.e., extreme local thermal disequilibrium
between solid and fluid phases, Racr is lower than 4π2,
indicating that convection initiates at lower Ra than predicted
by the LTE model. In both limiting cases of H→0 and ∞,
m = 1 is the critical mode at the onset of convection. However,
for intermediate values of H, Fig. 2 shows that the second
horizontal mode m = 2 becomes the favored mode. This
explains the local peak in Nu(H) for a fixed Ra (here 50),
shown in Fig. 2(b). At high values of H, since Racr is larger
than 50, convection is absent and the Nusselt number is equal
to 1, as expected.

The behavior of the LTNE-2 model is different from
LTNE-1, as shown in Fig. 3. Panel (a) shows the dependence
of Racr on H. First for the whole range of H values, the
dominant horizontal mode at the onset of convection is m = 1.
Second, we can observe that, in contrast with LTNE-1, the
critical Rayleigh number recovers the correct value in the
LTE regime (H → ∞). On the other hand, we find Racr

to be always smaller than 4π2 over the whole range of
interphase heat transfer coefficient and decreases with the
degree of disequilibrium between phases. This suggests that,
under local thermal disequilibrium conditions, the onset of
convection is expected to occur at lower Ra with model
LTNE-2 than LTE would predict, which also affects the Nusselt
number (higher than expected from LTE model), as observed
in Fig. 3(b).

IV. PORE-SCALE RESULTS

A. Degree of local thermal disequilibrium

Figures 4 and 5 illustrate, respectively, the pore-scale
temperature and velocity maps of 20×20 unit cells for different
ratios of solid-to-fluid thermal conductivities κ = ks/kf at
Ra∗ = 80. The detailed temperature and velocity maps in the
pore-scale simulations of Figs. 4 and 5 enable us to image and
study small- (pore-) scale flow and temperature distributions
and test several average-scale assumptions, including local
thermal equilibrium and non-Darcian effects. We use Eq. (9)
and calculate the phase-averaged temperatures 〈Tf 〉f and 〈Ts〉s
over each unit cell [shown in Fig. 1(d)] in the pore-scale
temperature solution in Fig. 4. This allows us to quantify
the degree of local thermal disequilibrium between phase-
averaged temperatures for each unit cell.

Figure 6 shows the maximum disequilibrium between
phase-averaged temperatures observed at each Rayleigh num-
ber and for different thermal conductivity ratios. The maxi-
mum observed disequilibrium is below 2% for all κ values.

In order to quantify the significance of this level of thermal
disequilibrium, we use the pore-scale data for the case where
the solid matrix and fluid have the same thermal conductivity,
i.e., κ = 1. Since κ = 1, the stagnant thermal conductivity
of the porous medium is equal to the thermal conductivities
of solid or fluid, i.e., km = ks = kf . In other words, the unit
cell is thermally homogeneous at the pore-scale level. We
can use this case for comparing the pore-scale data with
the corresponding Darcy-LTE solution to verify whether a
thermal disequilibrium of �2% leads to departure from LTE
assumption or not. For comparison with the average-scale
solution, the Darcy number of the porous structures in Fig. 4
is calculated from our LBM model and is found to be Da =
2.435×10−5, Da = 1.195×10−5, and Da = 7.594×10−6 for
10×10, 15×15, and 20×20 domains, respectively. Figure 7
shows the comparison of the pore-scale heat transfer data
with those from the average-scale formulations of [36] for a
square box. The average-scale solution of Henry et al. [36] is
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FIG. 4. Steady temperature maps at Ra∗ = 80 for 20×20 of unit cells: (a) κ = 1, (b) κ = 50, and (c) 1/13.

based on a Darcian description of the momentum conservation
with a single-temperature energy equation, i.e., Eqs. (12) and
(13). There is an excellent agreement between the pore-scale
data for κ = 1 and the continuum-scale solution of Henry
et al. [36]. The current pore-scale results for the case of κ = 1
show that the onset of convection agrees with the theoretical
value of Ra∗ = 4π2 and that the average heat transfer behavior
after the onset of convection follows the one predicted by the
classical Darcy-LTE formulations. This justifies that the local
thermal disequilibrium of �2% observed at the pore scale is
not significant and a single-energy model at the average scale
provides accurate description of the thermal behavior.

The excellent agreement between the pore-scale data and
the LTE-Darcy solution in Fig. 7 further confirms that the
calculated permeability of the medium by using LBM is accu-
rate and that non-Darcian effects are negligible for the present
porous configuration (small Darcy number). The calculated
pore-scale Reynolds number is also smaller than 1, further
confirming that our simulations satisfy the Darcian regime.

B. Nu∗− Ra∗ scaling when κ �= 1

We now turn our attention to the effect of thermal con-
ductivity contrasts between the solid and fluid on the average

heat flux in the domain. Figure 8 summarizes the results for the
average Nusselt number for κ = 50 and κ = 1/13 over a range
of Ra around the onset of convection for the case of 20×20
unit cells. Recalling that κ = ks/kf , the data on Fig. 8 shows
that when solid is more conductive than the fluid, for example,
in κ = 50, the average Nusselt number falls below the results
for κ = 1, the values predicted by Darcy-LTE solutions. The
opposite trend is observed when the fluid is more conductive
than the solid, i.e., κ = 1/13. This discrepancy between LTE
Nu∗ − Ra∗ results and our pore-scale calculations is not caused
by local thermal disequilibrium between phases, as the latter
is found to be small and comparable to what we observed for
simulations with κ = 1, which matched accurately with the
LTE predictions. If we set H in both LTNE models to a value
corresponding to about 2%–3% of thermal disequilibrium
between the fluid and solid phases, we find that both LTNE
models are not able to match the observed heat transfer (Nu*)
found in the pore-scale simulations (Fig. 8).

Comparing the pore-scale data in Fig. 8 with those from
κ=1 displayed in Fig. 7 shows that, not only does the Nu∗(Ra∗)
scaling for κ �= 1 deviate from the LTE solution, but also
the onset of convection departs from the classical value of
Ra∗=4π2. We define the critical Rayleigh number as the point
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FIG. 5. Steady velocity magnitude maps at Ra∗ = 80 for 20×20 of unit cells: (a) κ = 1, (b) κ = 50, and (c) 1/13.

where a sudden change in the slope of the Nu∗ − Ra∗ curve oc-
curs. When the solid and fluid have similar thermal conductiv-
ities, a critical point defines the Rayleigh number value above
which Nu∗ > 1. However, when the thermal properties of the
solid and fluid are different, Nu∗ is not necessarily equal to 1
below Ra∗

cr because small-scale fluid motion around each cell
can slightly perturb the heat transfer (uncritical convection).
For κ = 1/13, convection initiates well before 4π2, while it
is shifted to slightly higher values than 4π2 for κ = 50. Our
pore-scale simulations show that the critical Rayleigh numbers
for κ = 1/13 and 50 are Ra∗

cr 	 35 and 42, respectively.
Although we argued that we do not expect this discrepancy

to arise because of a lack of local thermal equilibrium between
phases, it is worthwhile to contrast our pore-scale results with
LTNE models and test whether any of the two LTNE models
presented here can reconcile the spread in Nu∗(Ra∗) and the
shift in Ra∗

cr observed. According to Fig. 2, explaining the
early initiation of convection for κ = 1/13 (Ra∗

cr 	 35) based
on the LTNE-1 model first would require a significant degree
of thermal disequilibrium, and second would predict that the
critical horizontal mode just at the onset of convection is
m = 2. These two outcomes from the LTNE-1 model disagree
with our pore-scale results.

Similar issues arise when trying to explain the pore-scale
simulation results with the LTNE-2 model. According to
Fig. 3(a), if we select an H value which provides a critical
Rayleigh number of around 35 (similar to pore-scale observa-
tions for κ = 1/13), then the numerical solution of the LTNE-2
model predicts a significant local thermal disequilibrium and
would also yield Nusselt number values in excess of the LTE
(κ = 1) model. In summary, neither LTNE-1 and LTNE-2
models can explain the shift in the onset of convection and
the Nu*(Ra*) dependence self-consistently.

In the absence of a consistent description of the pore-scale
results with LTE and LTNE models, the discussions in the next
section try to provide an interpretation in terms of a thermal
dispersion phenomena in HRL convection which arises from
the contrast in thermal conductivity between different phases.

V. DISCUSSION AND CONCLUSION

A. Effect of coarseness

When convection initiates, boundary layers build up at
the top and bottom boundaries. As the Rayleigh number
increases, these boundary layers shrink in size, resulting in
larger temperature gradients and heat flux next to the top
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FIG. 6. Percentage of the maximum amount of thermal disequilibrium in the DNS results for the 20×20 of unit cells: (a) κ = 1 and 50 and
(b) κ = 1 and 1/13.

and bottom boundaries. Using the continuum-scale equations
for modeling HRL convection is valid as long as the pore
size of the medium is smaller than any length scale of the
flow, especially thermal boundary-layer thickness in HRL
convection [37]. Therefore, it is crucial to verify whether the
coarseness of the domain in our pore-scale simulation allows
us to retrieve average solutions in the continuum limit and
resolves the boundary layers accurately.

Figure 9 illustrates the horizontally averaged temperatures
in the pore-scale temperature fields of various coarseness
using arrays with 10×10, 15×15, and 20×20 solid blocks
(Fig. 1). We observe that as the Rayleigh number increases,
the boundary layer becomes more localized, thus resulting in
higher Nusselt numbers. It also shows that using a coarser
number of solid blocks in the 10×10 and 15×15 cases results
in similar horizontally averaged temperature profiles to the
20×20 case. Therefore, different numbers of solid blocks offer
a similar average thermal behavior, which is further illustrated
in the Nu*(Ra*) curves of Fig. 10.

FIG. 7. Nusselt number Nu∗ versus Rayleigh number Ra∗ for
20×20 of unit cells, κ = 1.

The data in Figs. 9 and 10 show that the observed shift in the
onset of convection and the Nu*(Ra*) scalings for different κ

and Ra∗ values are robust over the range of coarseness studied
here, which suggests that the resolution and coarseness used
are suitable to compare DNS results with continuum model
predictions. Figure 11 shows that, for κ = 1 and Ra∗ = 100 in
the 20×20 case, the thickness of the boundary layer is at least
4 times larger than the size of the unit cell, which is the true
averaging volume for the regular configuration of solid blocks
in the pore-scale domain. For Rayleigh numbers larger than
the values studied here, however, finer configurations of solid
blocks would be required.

B. Thermal dispersion

The deviations between the pore-scale observations and
Darcy-LTE predictions can originate from three factors: LTNE
effects, non-Darcian effects, and thermal dispersion effects. In
the previous sections, we showed that the first two factors are

FIG. 8. Nusselt number Nu∗ versus Rayleigh number Ra∗ for
20×20 unit cells, κ = 50 and 1/13. For comparison, the results for
the LTE and LTNE models and κ = 1 are shown, respectively, in gray
symbols and black lines.
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FIG. 9. Horizontally averaged temperatures for 20×20 unit cells: (a) κ = 1, (b) κ = 50, and (c) κ = 1/13.

negligible for the range of κ and Ra∗ numbers investigated in
the pore-scale study. In the present section, we try to investigate
the role of thermal dispersion on the observed shift in the onset
of convection and the Nu*(Ra*) scalings.

In applying the volume-averaging approach for developing
the continuum-scale energy equation (LTE or LTNE models)
from the exact pore-scale energy equations, the thermal
dispersion term ∇ · (−(ρc)f 〈T ′u′

f 〉f ) appears, where T ′ and
u′

f are local temperature and velocity fluctuation fields. (For
the detailed derivations, the reader is referred to Refs. [38,39],
for example.) For continuum-scale energy equations such as
the LTE and LTNE models to be applicable, we need to
provide a closure model for the resulting thermal dispersion
contribution.

Thermal dispersion is historically modeled as a pseu-
dodiffusive term [40–42], i.e., ∇ · [−(ρc)f 〈T ′u′

f 〉f ] = ∇ ·
(kdisp∇〈Tf 〉f ), or equivalently,

−(ρc)f 〈T ′u′
f 〉f = kdisp∇〈Tf 〉f , (19)

where kdisp is the dispersion conductivity of the porous
medium.

Several studies provided models for kdisp in porous media
based on the theoretical derivations [40–43] and numerical
simulations over a periodic single unit cell [44–46]. The

available models for the dispersion conductivity can be
represented by kdisp = C · qn, where C is a constant, n is some
exponent, and q is the local Darcy velocity [or equivalently, as
kdisp = f (Pe orRe), where Pe and Re are the pore-scale Péclet
and Reynolds number based on the local average velocity of
the fluid].

The inherent pseudodiffusive assumption for the thermal
dispersion term and its dependence on the local average
velocity bears important implications in HRL convection.
First, thermal dispersion becomes a nonlinear term in the
continuum-scale energy models; therefore it cannot influence
the onset of convection [47–49]. Second, previous studies
[48,50] showed that the inclusion of thermal dispersion lowers
the heat transport for lower values of Ra∗ but increases Nu∗

as Ra∗ is increased. In summary, the available closure models
for kdisp cannot explain the shift in the onset of convection and
the consistently lower or higher Nu*(Ra*) scalings when the
solid is more or less conductive than the fluid phase.

There are several experimental evidences for HRL convec-
tion that qualitatively support the present pore-scale results.
Cheng [4] and Kladias and Prasad [6] reported that for a porous
system with the solid matrix being more conductive than the
fluid phase, the measured Nusselt numbers are lower than
the one predicted by Darcy-LTE and non-Darcy-LTE models.

033123-9



HAMID KARANI AND CHRISTIAN HUBER PHYSICAL REVIEW E 95, 033123 (2017)

FIG. 10. Effect of coarseness on Nu∗− Ra∗ scalings. The results
for the LTE model and κ = 1 are shown in gray.

Kladias and Prasad [6] further showed that the inclusion of a
thermal dispersion term does not resolve the issue of a lower
heat transfer than the LTE case for larger thermal conductivity
ratios. The same authors then propose that local thermal
disequilibrium may be the cause for the observed deviations
between experimental data and theoretical predictions. Lister
[49] also observed an early initiation of convection at Ra∗ = 33
in the HRL convection when the fluid is more conductive
than the solid phase, although the author manually shifted the
experimental data to start the convection at 4π2.

The present pore-scale study provides significant insights
into the nature of thermal disequilibrium and dispersion in
HRL convection. The detailed pore-scale temperature fields
reveals that, on one hand, deviations from the predicted
critical Rayleigh number and amount of heat transfer can
occur even in the presence of local thermal equilibrium.
On the other hand, we posit that a nontraditional thermal
dispersion effect is responsible for the discrepancy between
pore-scale and continuum models. According to the pore-scale

FIG. 11. Horizontally averaged temperature field vs the height of
the domain; 20×20 unit cells, κ = 1, Ra∗ = 100.

observations, ∇ · (−(ρc)f 〈T ′u′
f 〉f ) is directly linked to the

contrast in thermal conductivities between the solid and fluid
phases, and its contribution disappears when both phases
share the same thermal conductivity. Also, the present results
prompt a reassessment of the pseudodiffusive model of thermal
dispersion in the HRL convection. This latter point relaxes
the resulting nonlinear nature of the thermal dispersion, which
subsequently explains the shift in the onset of convection when
solid and fluid phases have different conductivities. Further
analysis along this direction is left for a future study.

APPENDIX: LINEAR STABILITY ANALYSIS
OF LTNE MODELS

In this section, we provide a comprehensive linear stability
analysis of LTNE-1 and LTNE-2 models. Banu and Rees
[51] were the first to investigate the effect of local thermal
disequilibrium on the onset of convection with the LTNE-1
model [Eqs. (14) and (15)]. They showed that for finite values
of h, the onset of convection deviates significantly from the
classical value of 4π2. As h → ∞, LTNE recovers LTE and
satisfies the classical value 4π2. However, the definition of
the critical Rayleigh number used in their study [Eq. (11) and
Fig. 3 in Banu and Rees [51]] is based on a volumetric average
for the effective thermal conductivity km,max = ϕkf + (1 −
ϕ)ks . As discussed earlier, the stagnant thermal conductivity
is generally significantly lower than this value. The original
derivation of the critical Rayleigh number 4π2 is based on
the true stagnant thermal conductivity of the medium, and
so is the common Nu∗− Ra∗ correlation. For these reasons,
we decided to conduct the linear stability analysis on model
LTNE-2 [Eqs. (16) and (17)], and we will find that the LTNE-1
model corresponds to a special case of that more general
analysis. In order to have a consistent set of formulations for
the stability analysis, we rewrite the LTNE-1 and LTNE-2
models in the following general form (assuming that kdis at the
onset of convection can be considered uniform):

ϕ(ρc)f
∂Tf

∂t
+ (ρc)f q · ∇Tf

= kff ∇2Tf + kf s∇2Ts + h(Ts − Tf ), (A1)

FIG. 12. Recovering the results of Banu and Rees [51] for
km = ϕkf + (1 − ϕ)ks in LTNE-1 model.
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(1 − ϕ)(ρc)s
∂Ts

∂t
= kss∇2Ts + ksf ∇2Tf − h(Ts − Tf ).

(A2)

For the LTNE-1 model, the thermal conductivities are
defined as

kff = ϕkf , kf s = ksf = 0,

kss = (1 − ϕ)ks , (A3)

while for the LTNE-2 model, they are defined as

kff = ϕkf + Gkf + kdis, kf s = ksf = −Gks ,

kss = (1 − ϕ)ks + Gksκ. (A4)

We define the following dimensionless variables:

t∗ = t
αm

H 2ϕ
, (u,v)∗ = (qx,qy)∗

H

αm

,

(x,y)∗ = (x,y)
1

H
,

θs = Ts − Tc

Th − Tc

, θf = Tf − Tc

Th − Tc

. (A5)

We can recast Eqs. (12), (A1), and (A2) with the stream func-
tion ψ and normalize lengths, velocity, time, and temperature
based on the dimensionless variables in Eq. (A5) to retrieve
the following dimensionless governing equations:

∇2ψ = Ra∗ ∂θf

∂x
, (A6)

∂θf

∂t
+ V · ∇θf = γ∇2θf + σ∇2θs + H(θs − θf ), (A7)

∂θs

∂t
= ηλ∇2θs + σλ∇2θs − H(θs − θf ), (A8)

where

γ = kff

km

, η = kss

km

, σ = ksf

km

= kf s

km

,

H = Hh2

km

, λ = ϕ

1 − ϕ

(ρc)f
(ρc)s

,

V = (u,v) =
(

−∂ψ

∂y
,
∂ψ

∂x

)
, (A9)

and Ra* is defined as

Ra∗ = ρgβ�T KH

νf αm

, (A10)

which is now based on true αm, as opposed to the modified
Rayleigh number based on km,max = ϕkf + (1 − ϕ)ks . We
follow the same procedure as Banu and Rees [51] for the
linear stability analysis. The basic solution (conductive state)
has the following form:

ψ = 0, θf = θs = 1 − y, (A11)

which is perturbed and becomes

ψ = �, θf = 1 − y + �f , θs = 1 − y + �s. (A12)

Inserting this expression into Eqs. (A6)–(A8) and linearizing
the nonlinear advective terms gives the following set of
linearized equations:

∇2� = Ra∗ · ∂�f

∂x
, (A13)

∂�f

∂t
= γ∇2�f + σ∇2�s − ∂�

∂x
+ H(�s − �f ), (A14)

∂�s

∂t
= ηλ∇2�s + σλ∇2�s − H(�s − �f ). (A15)

We can assume the following solution form for the velocity
and temperature fields:

� = A1 sin nπy sin mπx,

�f = A2 sin nπy cos mπx,

�s = A3 sin nπy cos mπx,

(A16)

where m and n are the horizontal and vertical cell numbers, respectively. Inserting these expressions in the linearized governing
equations yields

⎛
⎝m2π2 + n2π2 Ra∗mπ 0

mπ γ (m2π2 + n2π2) + H σ (m2π2 + n2π2) − H
0 σλ(m2π2 + n2π2) − Hλ ηλ(m2π2 + n2π2) + Hλ

⎞
⎠ × (A1A2A3) = (000).

The critical Rayleigh number Ra∗ can then be found by setting the determinant of the matrix to zero:

Ra∗ = π2(m2 + n2)2

m2

[(m2π2 + n2π2)(γ η − σ 2) + H(γ + η + 2σ )]

[η(m2π2 + n2π2) + H]
. (A17)

Equation (A17) can now be used for analyzing both LTNE models at the onset of convection. By setting σ = 0, Eq. (A17)
recovers the stability behavior of the LTNE-1 model. First, by temporarily setting km to be equal to the upper limit value, namely,
km,max = ϕkf + (1 − ϕ)ks , our analysis should recover the results from Banu and Rees [51]. This is shown in Fig. 12, where we
observe that the critical Rayleigh number for the onset of convection is always lower than the classical 4π2 value for the whole
range of normalized interphase heat transfer coefficient H. The true stagnant thermal conductivity of the porous medium takes
values lower than this upper limit, whose effect is to raise the critical Rayleigh number at the LTE limit, which has been shown
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in Fig. 2(a). Comparing Figs. 12 and 2(a) shows the fact that correcting the value of the stagnant thermal conductivity from the
upper limit value of km,max to the correct value km significantly changes the value of the critical Rayleigh number.
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