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Toroidal-droplet instabilities in the presence of charge
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Neutral toroidal droplets can break via the surface-tension-driven Rayleigh-Plateau instability. They can
additionally exhibit a shrinking instability, which is also driven by surface tension, whereby the handle
progressively disappears. We find that charging a toroidal droplet can qualitatively change the behavior and
cause the droplet to expand. We successfully model the transition from shrinking to expanding, considering the
pressure balance across the interface of the torus. However, despite the change in behavior, charged toroidal
droplets end up breaking into spherical droplets. We quantify how the wavelength of the fastest unstable mode
associated to this breakup depends on the applied voltage and compare the results with theoretical expectations
for charged cylindrical jets.
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I. INTRODUCTION

The breakup of cylindrical jets has been the focus of study
since the pioneering work of Plateau [1] and Rayleigh [2].
Periodic disturbances of the surface of a jet grow exponentially
as long as the wavelength λ of the disturbance is greater than
the circumference of the jet. The growth rate, however, depends
on the perturbation wavelength via the dispersion relation,
which is typically peaked. Hence, among all perturbations or
modes, there is one which is the fastest and typically dominates
the breakup process [3]. Recent work has shown that toroidal
droplets are also unstable and break via the Rayleigh-Plateau
instability [4,5] as long as the aspect ratio ξ = R0/a0 > 2, with
R0 and a0 the radius of the central circle and the tube radius,
respectively [see inset in Fig. 1(a)]. When ξ < 2, no unstable
modes of the Rayleigh-Plateau type can grow and the toroidal
droplet transforms into a sphere via a different mechanism.
In this case the handle shrinks, eventually disappearing and
resulting in a single spherical droplet [6]. Shrinking is present
at all ξ , but it is the sole mechanism at low ξ for a torus to
become a sphere. This instability is not observed for cylinders
and it is intrinsic to the toroidal geometry [7–9]. Since the
mean curvature H of the torus varies along its circular cross

FIG. 1. (a) C/a0 as a function of R0/a0. The line is a fit to Eq. (1),
with εr as a free parameter. Inset: Schematic of a torus seen from
below. R0 is the radius of the central circle, shown with a dashed line,
and a0 is the tube radius. (b) Schematic of the experimental setup. A
bath containing silicone oil rotates with an angular speed ω while the
inner liquid is injected. The resultant toroidal droplet is charged at a
voltage V , while the electrical current is measured. The subsequent
evolution of the torus is captured from below using CCD camera.

section, so does the Laplace pressure, �P = 2γH , with γ the
surface tension. Shrinking then results from the fact that �P

is smallest in the inside region of the torus and greatest in the
outside region of the torus.

Charge affects the dynamics of drops and jets. Zeleny [10]
and, later, Taylor [11] studied the deformation of spherical
droplets due to the presence of charge. They found that the
interface transformed into a conical shape with a jet being
ejected from its apex. These jets break axisymmetrically via
Rayleigh-Plateau instabilities and are exploited in electrospray
technology [12,13]. However, in this case, the wavelength of
the fastest unstable mode is smaller than its value in the neutral
case, and it decreases with increasing charge [14–18]. New
phenomenology can also result from charging jets. Occurrence
of whipping modes, which are unstable nonaxisymmetric
modes driving the jet off-axis, is perhaps the most remarkable
example [19]; these modes are exploited in applications like
electrospinning [20–22]. Remarkably, both in electrospray and
electrospinning the charged jet is not equipotential; the dynam-
ics are so fast that the charges are unable to relax towards the in-
terface, preventing control over the surface charge distribution.

In this article, we study the effect of charge on the evolution
of toroidal droplets. On the one hand, surface charge introduces
an electrical stress that competes with the stress due to
surface tension, resulting in an expanding toroidal droplet at
sufficiently high voltage; this is qualitatively different from the
shrinking behavior seen in neutral toroidal droplets. On the
other hand, and also in contrast to what is seen in the neutral
case, charged toroidal droplets end up breaking into spherical
droplets after expanding. This allows quantifying the effect of
the charge on the Rayleigh-Plateau breakup of electrified jets.
Note that in contrast to electrospray or electrospinning, in our
experiments the torus is equipotential, allowing direct com-
parison with theoretical calculations where this is assumed.

II. EXPANSION OF CHARGED TOROIDAL DROPLETS

The generation of charged toroidal droplets is the same
as in [6], with a small modification to incorporate charge. A
glass cuvette with the outer liquid, silicone oil (30,000 cSt),
is placed on top of a metallic rotating stage. As it rotates, the
inner liquid, glycerol, is pumped through a metallic needle
offset from the center of rotation inside the silicone oil. This
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causes the formation of a curved jet, which closes onto itself
and forms a toroidal droplet. The droplet is then charged by
applying a voltage difference across the metallic needle and
the rotating stage, as shown in Fig. 1(b). The sensitivity of our
power supply is 10 V; as a result, this is the error in our voltage
measurements. We monitor the current as a function of time
and integrate to obtain the total charge Q. Once the toroidal
droplet is charged, we remove the needle and image the droplet
evolution from below using a CCD camera. We confirm the
experimental procedure for charging and measuring Q using
spherical droplets. For isolated spheres the relation between
Q, the radius of the spherical droplet r , and the applied voltage
V is well known: V = Q/(4πεrε0r), with ε0 the vacuum
permittivity and εr the relative dielectric constant of the outer
liquid. Hence, the capacitance is C = Q/V = 4πεrε0r . We
confirm that Q is linear with V for constant r , and that C

is linear with r . From a linear fit of the data, we obtain that
εr = 4.6 ± 0.4.

For charged toroidal droplets, we measure Q at different V

and obtain the capacitance. We do this for different aspect
ratios and find that C/a0 increases with increasing aspect
ratio, as shown in Fig. 1(a). Theoretically, we solve Laplace’s
equation �	 = 0, with 	 the electric potential, in a set of
toroidal coordinates [23] using that 	 = V at the surface
and that 	 → 0 at infinity [24]. The electric field can be
obtained from the potential �E = −∇	, and from the field
we obtain the surface charge density, σ = εrε0E, assuming
a perfect conductor. By integrating σ over the surface of the
torus, we can calculate Q [25], and using V , we obtain the
capacitance [24]:

C

a0
= 8εrε0

√
ξ 2 − 1

∞∑

m=0

(2 − δ0m)
Qm− 1

2
(ξ )

Pm− 1
2
(ξ )

, (1)

where δij is the Kronecker δ, and Pm and Qm are the
associated Legendre polynomials of the first and second kind,
respectively, of order m. A fit of the data to Eq. (1), with εr as
a free parameter, correctly captures the experimental results,
as shown in Fig. 1(a). We obtain εr = 3.7 ± 0.5, consistent
with our results for spheres and with the value of εr ≈ 3
reported for a similar silicone oil [26]. We note we can treat the
torus as a perfect conductor since the charge relaxation time
for glycerol is τr = ε0εr,g/σg ≈ 0.13 ms, with εr,g and σg its
relative dielectric constant and conductivity [27], respectively;
this is about 5 orders of magnitude smaller than the typical time
scale associated to the toroidal drop evolution. As a result,
the electrical charge is able to relax to the interface, which
can thus be treated as equipotential. In addition, experiments
with a mixture of water and 16 mM sodium dodecyl sulfate,
which is significantly more conductive than glycerol, showed
no difference with those reported here.

The evolution of the charged toroidal droplet qualitatively
changes compared to the uncharged counterpart. While for
ξ ≈ 5.3 and V = 2 kV the droplet shrinks, as shown in
Figs. 2(a)–2(c), where we highlight the central circle at time
t = 0 with a dashed line, for ξ ≈ 5.1 but at a higher voltage
of V = 4 kV the toroidal droplet expands, as shown in
Figs. 2(d)–2(f). In addition, while the toroidal droplet breaks
into three spheres in the first case, it breaks into four in the
second case. This suggests that the wavelength of the fastest

FIG. 2. Snapshots of the evolution of a torus with (a–c) R0/a0 ≈
5.3 and V = 2 kV, (d–f) R0/a0 ≈ 5.1 and V = 4 kV, and (g–i)
R0/a0 ≈ 1.6 and V = 4 kV. The dashed circles in (a,b) and (c,d)
correspond to the central circle at time t = 0. While in (b) the inner
part of the torus has clearly shrunken, in (e) it has clearly expanded.
The scale bar in all images is 2 mm. Note that the black shadow in (a),
(d) and (g) is due to the holder of the injection needle. (j) Shrinking
tori (circles), expanding tori (rhombus), and tori whose central circle
remains stationary (squares) in a V − ξ state diagram. The solid line
is the theoretical transition line separating shrinking from expanding
tori.

unstable mode is smaller for increasing charge, consistent with
theoretical expectations [28]. We note that the black shadow
in the upper part of Figs. 2(a) and 2(d) is due to the shadow
from the holder of the injection needle, which we remove after
the formation and charging of the torus.

To model the transition from shrinking to expanding tori,
we first consider the Laplace pressure of a toroidal interface,
2γH [7]. This is plotted with a continuous line in Fig. 3 as a
function of θ , the polar angle in the circular cross section of
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FIG. 3. Pressure drop across the interface of a torus due to surface
tension (continuous line) and electrostatic stresses (dashed line) as a
function of the polar angle θ . The inset is a cross section of the toroidal
tube; the full torus is obtained by rotating along the ϕ direction. The
values used for the calculation of the pressure drop are a0 = 1 mm
and R0 = 3 mm (R0/a0 = 3), γ = 32 mN/m, and V = 3 kV.

the torus (see inset in Fig. 3). Note that the pressure inside the
torus p at θ = π is greater than at θ = 0. This pressure drop
causes fluid to flow from the outside to the inside region of the
torus, resulting in shrinking. Second, we consider the pressure
drop across the interface due to the presence of charge, which
is given by the Maxwell stress tensor for a perfect conductor
− 1

2εrε0E
2, where E is calculated from 	, and εr = 3.7 as

measured from the capacitance. In this case the pressure is
maximum at θ = 0 and it is minimum at θ = π , as shown in
Fig. 3 with a dashed line, exemplifying the fact that this electric
stress is in direct competition with the Laplace pressure.

The total pressure drop across the interface of the torus is,
hence, given by

p(θ ) − po = 2γH − 1
2εrε0E

2, (2)

where po is the pressure outside the torus, assumed con-
stant. Considering this simple pressure balance, we antic-
ipate a shrinking-to-expanding transition when p(θ = 0) =
p(θ =π ). We can recast this equality in terms of the applied
voltage and the aspect ratio of the torus, as shown by the
line in Fig. 2(j). We use γ = 32 mN/m, corresponding to
the interfacial tension of our liquids measured using the
pendant-drop method [29]. Above the transition line, the torus
expands, while below the line, the torus shrinks. Note that
the voltage required to transition from shrinking to expanding
increases with decreasing ξ , illustrating that for sufficiently fat
tori surface tension stresses dominate.

To test the expectations from our model, we experimentally
explore the shrinking-to-expanding transition. We perform
experiments with a constant injected volume of 0.05 mL
and changed the applied voltage and the aspect ratio of the
torus. We plot our results in a V − ξ diagram, using circles
for tori that shrink, rhombi for tori that expand, and squares
for tori whose central circle remains unaltered. We find that
the experiments follow the model predictions, particularly at
high aspect ratio, as shown in Fig. 2(j). The deviations for
lower aspect ratio are most likely due to the fact that the
cross section of the toroidal droplets for high V and low

FIG. 4. Number of droplets n as a function of ξ for tori at
(a) V = 1 kV and (b) V = 4 kV. In (a), all tori shrink, and thus
we use the leftmost points of the steps to obtain the value of ka0

associated to the fastest unstable mode. In (b), all tori expand, and
thus we use the rightmost points of the steps to obtain this quantity.

ξ are not circular, as assumed by the model. This occurs
because the pressure balance cannot be fulfilled everywhere
on the torus; the electric stress is more sharply peaked than
the Laplace pressure, as shown in Fig. 3. As a result, tori
with a central circle that remains approximately stationary, still
shrink near the handle and expand in the outer part of the torus,
resulting in nonsymmetric deformations like those shown in
Figs. 2(g)–2(i). Nevertheless, our simple pressure balance
captures reasonably well the behavior seen experimentally.

III. BREAKING OF CHARGED TOROIDAL DROPLETS

Interestingly, when the drop expands, it always ends up
breaking into spherical droplets. For cylindrical jets, theory
predicts that the growth rate of a mode is a function of
ka0, where k = 2π

λ
is the wave number of a given mode.

Experimentally, the mode that dominates the breakup process
is the mode that grows the fastest [3]. For a torus, we have
periodic boundary conditions, and thus we expect a number
of droplets n that depends on the number of wavelengths of
the fastest unstable mode that we can fit inside a length equal
to 2πR0. As a result, n = 2πR0/λ = ka0 R0/a0 = ka0 ξ . We
then expect that n is linear with ξ . However, n is a discrete
variable, and as a result, plotting n versus ξ results in steps
associated to a range of aspect ratios corresponding to the
same n [6]; this is true irrespective of V . Our experiments
illustrate this, as shown in Fig. 4 for two representative values
of V . However, while for small V the behavior is dominated
by shrinking, and thus the torus typically shrinks before it can
fit an integer number of wavelengths of the fastest unstable
mode, at higher V the torus typically expands before it can
fit an integer number of wavelengths of the fastest unstable
mode. Hence, to obtain the value of ka0 associated to the fastest
unstable mode, at different V , we use the leftmost points of
the steps at low V , where the torus shrinks, and the rightmost
points of the steps at high V , where the torus expands. Using
these points, we confirm that n is linear with ξ , consistent
with our expectations and as shown in Figs. 4(a) and 4(b).
The slopes of the corresponding linear fits provide the value
of ka0 corresponding to the fastest unstable mode. We find
that ka0 increases with increasing V , as shown in Table I,
and in qualitative agreement with theoretical predictions for
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TABLE I. The fastest unstable mode ka0 for different voltages
obtained from experiments and theory.

V ka0 (ka0)theory

1.0 kV 0.59 ± 0.01 0.53
1.5 kV 0.60 ± 0.03 0.54
2.0 kV 0.63 ± 0.03 0.57
3.5 kV 0.79 ± 0.04 0.74
4.0 kV 0.85 ± 0.05 0.85

the breakup of electrified jets [17]. This indicates that λ

decreases with increasing V and that breakup results in
smaller droplets; this is indeed seen in Figs. 2(a)–2(c),
where V = 2 kV and there are three drops after breakup, and
Figs. 2(d)–2(f), where V = 4 kV and there are four drops after
breakup.

To quantitatively account for the breakup results, we
consider theoretical calculations for the evolution of charged
viscous threads immersed in another viscous liquid [28].
The theoretical results depend on two parameters, d = b/a,
where a is the radius of the jet, which is at 	 = V , and
b is the radius of a grounded cylindrical outer surface, and
NE = εrV

2

2γ a0
, which is the electric Bond number accounting

for the relative importance of electric stresses and Laplace
pressure. To compare with our experiments, we choose d and
NE such that the electric stress in the theory is the same as
the average electric stress on the surface of our tori. We find
that the value of ka0 corresponding to the fastest unstable
mode increases with V and that the values are in reasonable
agreement with our experimental results, as shown in Table I.

IV. CONCLUSIONS

We have shown that charge can qualitatively change the
behavior seen for neutral toroidal droplets and cause the handle
to expand. Additionally, and also in contrast to what is seen
for neutral toroidal droplets, charged droplets always end
up breaking via Rayleigh-Plateau instabilities, appropriately
modified to account for the presence of charge. We account
for the expansion with a simple model considering the pressure
drop across a charged toroidal interface. It is the competition
between surface tension and electrical stresses that determines
whether a toroidal droplets shrinks or expands. The model
treats the torus as electrostatically equilibrated, which is
consistent with the small charge relaxation time compared to
the characteristic time scale associated to the droplet evolution.
This indicates the torus is equipotential. Since in the thin
torus limit we can correctly think of the torus as a cylinder,
slender electrified toroidal droplets can be seen as a model
system with which to test instability theories for electrified
jets. In this sense, charged toroidal droplets are advantageous
compared to jets in electrospray, as these last ones are typically
nonequipotential and have surface charge densities that, as a
result, are hard to control and quantify. We believe our results
open the way to additional work in electrohydrodynamics
using toroidal droplets as a novel platform.
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