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Turbulent flows preferentially concentrate inertial particles depending on their stopping time or Stokes number,
which can lead to significant spatial variations in the particle concentration. Cascade models are one way
to describe this process in statistical terms. Here, we use a direct numerical simulation (DNS) dataset of
homogeneous, isotropic turbulence to determine probability distribution functions (PDFs) for cascade multipliers,
which determine the ratio by which a property is partitioned into subvolumes as an eddy is envisioned to decay
into smaller eddies. We present a technique for correcting effects of small particle numbers in the statistics.
We determine multiplier PDFs for particle number, flow dissipation, and enstrophy, all of which are shown to
be scale dependent. However, the particle multiplier PDFs collapse when scaled with an appropriately defined
local Stokes number. As anticipated from earlier works, dissipation and enstrophy multiplier PDFs reach an
asymptote for sufficiently small spatial scales. From the DNS measurements, we derive a cascade model that is
used it to make predictions for the radial distribution function (RDF) for arbitrarily high Reynolds numbers, Re,
finding good agreement with the asymptotic, infinite Re inertial range theory of Zaichik and Alipchenkov [New
J. Phys. 11, 103018 (2009)]. We discuss implications of these results for the statistical modeling of the turbulent
clustering process in the inertial range for high Reynolds numbers inaccessible to numerical simulations.
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I. BACKGROUND AND INTRODUCTION

Clustering of inertial (finite-stopping-time) particles into
dense zones in fluid turbulence has applications in many
fields (for a general review, see Ref. [1]). A number of recent
papers have focused on understanding the basic mechanisms
responsible for this effect; several of these [2–5] provide
thorough reviews and comparisons of previous studies dating
back to the early work of Maxey [6] and Squires and Eaton [7],
which we will only sketch briefly. The early work emphasized
the role of centrifugation of finite-inertia particles out of
vortical structures in turbulence. More recent evidence that
clustering arises even in random, irrotational flows suggests
that, while vorticity still plays a role, the dominant role is
played by so-called “history effects,” in which inertial particle
velocity dispersions at any location carry a memory of particle
encounters with more remote flow regimes which have larger
characteristic velocity differences [8–10]. These history effects
lead to spatial gradients in particle random relative velocities,
and these gradients in turn generate systematic flows or
currents which can outweigh dispersive effects and produce
zones of highly variable particle concentration [2–4,11].

To date, by far the most attention regarding particle
clustering in turbulence has been devoted to very small spatial
scales r < η or even r � η, where η is the Kolmogorov
scale, partly because it is on these scales that particle
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collisions occur and partly because numerical simulations
to date have produced only very limited inertial ranges,
at best (see, however, Refs. [12,13]). Theories by Zaichik
and Alipchenkov [11] et seq., and Pan and Padoan [8]
et seq. have been shown to be promising in explaining the
cause of particle clustering in terms of history effects, with
helpful contributions from the traditional local centrifugation
mechanism [2,4,10,13]. A thorough review of the effects of
clustering and relative velocity effects on particle collisions,
emphasizing the astronomical literature, can be found in Pan
and Padoan [14,15].

Our focus is on clustering at larger scales in the inertial
range η < r < L, where L is the integral scale. Inertial range
clustering has important applications for remote sensing of
terrestrial clouds [16], the formation of primitive planetesimals
(asteroids and comets) in the early solar nebula [17–22], and
even the structure of the interstellar medium [23]. While little
studied in the context of particle clustering, inertial range
scaling is known to have different properties than seen in the
dissipation range r < η [24,25]. Only limited predictions have
been made of its scaling properties at very high Reynolds
number Re [2,11].

In the inertial range, so-called cascade models, which
reproduce the statistics of fluid behavior, even if not realistic
flow structures, may be valuable for modeling high Reynolds
number (Re) regimes too demanding for direct numerical
simulations. Their application is quite general ([26–31]; see
Ref. [32] for more references). We and others have used
cascades to model particle clustering in turbulence in the
astronomical applications mentioned above.
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Cascade models operate by simply applying a partition
function or multiplier 0 � m � 1 to any property P in some
given volume of the flow, thus determining the ratio by which
the property (dissipation, particle density, etc.) is partitioned
into subvolumes as an eddy is envisioned to decay into
smaller eddies. The most common treatment is a binary
cascade, in which P is partitioned into two equal subvolumes;
however, the approach can be applied to arbitrary numbers
of subvolumes [30]. The binary cascade operates on each
volume of space, partitioning P into two equal subvolumes
by multipliers m and 1 − m, with the multiplier m at each
bifurcation drawn from a probability distribution function
(PDF) of multipliers P (m). If P (m) = δ(m − 0.5), where δ is
the δ function, the cascade has no effect because the property
P is evenly divided, and remains constant per unit volume.
On the other hand, broad P (m) functions generate highly
intermittent spatial distributions in which P has a wide range
of values, fluctuating dramatically on small scales such as seen
in dissipation [27,31] [Fig. 1(b)].

The dissipation range, a range of small scales approaching
the Kolmogorov scale η, is found where r < 20 − 30η

[33,34]; in this range, where viscosity is important, the
equations of motion are no longer completely scale-free, and
fluid scaling properties differ from those in the inertial range.
The properties of particle clustering do seem to be scale
independent in this region, however [24,25], and one expects
this regime to be flow independent for high Re. There is also
a range of large scales near the integral scale L, over which
deviation from scale invariance surely occurs, but this range
has not been well studied and is surely flow dependent. The
application to planetesimal formation has become focused

on particle concentration at scales much larger than the
Kolmogorov scale [17,18] because large clumps are needed
for sufficiently rapid gravitational collapse. In previous
particle clustering cascade models, Hogan and Cuzzi [32]
determined the multiplier PDFs for particle concentration
and fluid enstrophy at small spatial scales, not too far from
η (to obtain better statistics), and applied them across all
scales ranging up to the integral scale (see Sec. V A for more
discussion). Realizing the risks in this, they performed tests
that seemed to validate the approach. However, discrepancies
between Hogan and Cuzzi [32] and Pan et al. [20] at the low
probabilities of interest for the planetesimal problem [18]
have led us to explore the scale dependence of P (m) in more
detail, in order to improve the fidelity of the cascade models.

It is worth noting at this point that it is not a requirement of
cascade models that the PDFs be scale independent; it is merely
the first and most obvious assumption. In this paper we present
evidence that the multiplier PDFs for particle concentration
are scale dependent and present simple guidelines for how
this scale dependence can be included in cascades. Multiplier
PDFs can also be conditioned on local properties [31] and
indeed were treated this way in our previous work to allow for
particle mass-loading on the process [32]. Scale dependence
per se is, however, a different effect than local conditioning,
and in this paper we do not address local conditioning.

Before describing our own work, we review some ex-
perimental results on high-Reynolds number atmospheric
boundary layer turbulence, which provide a useful background
in scale invariance and complement the more typical, but
lower-Re, numerical simulations. Studies of the properties of
turbulence in atmospheric boundary layer flows have been

FIG. 1. (a) The second-order structure function for particle velocity for the DNS data we analyze. Statistics are obtained over the trajectories
of particles of different St, from Fig. 2 of Bec et al. [12]. In particular, circles and downward facing triangles refer to tracer-like particles that
more faithfully follow the fluid flow. Dotted power laws labeled “2” and “2/3” are the theoretical expectations for the flow velocity structure
function in the viscous range and the inertial range, respectively. The bottom axis is labeled as in Bec et al. [12] by r/η, and also by us (in green)
with our estimated values for r/L, where L is the integral scale, and also by the cascade level N that gives equidimensional volumes of side
r . Extending out the top of the plot is an offset blue short-dashed line indicating the expected structure function for the high-Re atmospheric
flow of Meneveau and Sreenivasan [37], analyzed by Chhabra et al. [28] and Sreenivasan and Stolovitzky [31], with integral scale which we
estimate as L ∼ 2 × 105η. We have attempted to place a corresponding scale of r/L and N on the top axis (in blue). (b) Scale-independent
multiplier PDFs for dissipation ε as determined by Sreenivasan and Stolovitzky [31] in the atmospheric boundary layer, connected to the left
panel by dotted arrows indicating where those measurements lie on the structure function (300–3000 η, well away from both L and η). It is our
expectation that the scale-independent β-distribution with β ∼ 3 [see Eq. (5)] observed by Sreenivasan and Stolovitzky [31] (smooth curve in
right panel) continues at least to the start of the viscous range at about 30η. Our analyses of the DNS dataset are binned on scales between
r = 12η–512η, corresponding to r ∼ L/2 to L/86 on the lower scale as discussed in in Sec I.
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FIG. 2. Plot of a family of normalized qth moments of the
dissipation Er in an atmospheric boundary layer, as averaged over
binning lengthscale r , plotted against r/η (taken from Figs. 5(g)–5(l)
of Chhabra et al. [28]; we retain their subfigure labels). The quantity
μi(q,l) ≡ (Er )qi /�j (Er )qj , where (Er )i is the dissipation in the ith
bin of size r . Smaller |q| values suppress the effect of strongly
anomalous regions, while large negative values of q select for regions
of anomalously low turbulent dissipation. Abrupt changes in the slope
of these plots (most obvious for large |q|) might indicate departure
from the true scale-free inertial range, both in the dissipation range at
<20–30η, and at very large scales where vortex stretching has yet to
become effective. Vertical arrows on horizontal axis are the authors
[28] estimate of the inertial scaling range, but the scaling range is
narrower for larger |q|.

conducted by Kholmyanskiy [35], van Atta and Yeh [36],
and Meneveau and Sreenivasan [37]; further analysis of the
Meneveau and Sreenivasan [37] data was done by Chhabra
et al. [28,38]. The best reference for the basic experimental
data is Meneveau and Sreenivasan [37, see their Table 1],
who conducted an experiment on boundary layer turbulence
using a sensor mounted 2 m above the flat roof of a four
story building. The Reynolds number for the flow is calculated
using the free stream velocity U = 6 m/s and the height
h = 2 m of the sensor above the roof: Re = Uh/ν = 8 × 105

where the kinematic viscosity is 1.5 × 10−5m2/s, consistent
with tabulated values in Meneveau and Sreenivasan [37] of
the Taylor-scale Reynolds number Reλ, and its characteristic
lengthscale λ and velocity u′. Meneveau and Sreenivasan [37]
give the Kolmogorov scale as η = 7 × 10−4 m (we retain their
preferred units). Analyses of flow structures by Chhabra et al.
[28] (their Fig. 5 and our Fig. 2) show fairly well-behaved
power-law scaling of dissipation for weighings that suppress
regions that are strongly anomalous [Figs. 2(g) and 2(h)], i.e.,
strongly differing from the mean, to almost r ∼ 1.8 × 104η =
12.6 m � h, suggesting an extensive inertial range. The large
or integral scale L, which contains the energy in this flow, is
thus apparently much larger than the vertical distance of the
sensor from the boundary (h = 2 m) and plausibly the same
as the longitudinal integral scale given as L = 180 m [37],

see also Hunt and Morrison [39], and thus L/η ∼ 2 × 105.
However, when the role of strongly anomalous regions is em-
phasized [Figs. 2(i)–2(l)] the scalable inertial range contracts.

In cascade applications, it may be more meaningful to
assess the scale dependence of P (m) at large scales not in
terms of multiples of η as in Sreenivasan and Stolovitzky [31]
and most other work (e.g., Ref. [24]), but in terms of fractions
of L, which more closely connects to causality and energy flow.
We will also express scale fractions r/L in terms of cascade
bifurcation levels N needed to achieve cubes r on a side:

r/L = 2−N/3. (1)

For example, Sreenivasan and Stolovitzky [31] compared
multiplier PDFs for dissipation in the atmospheric boundary
layer over a range of scales [see Fig. 1(b)] and showed that
P (m) is highly scale independent over a wide range of scales:
372η–3072η, or 372η to L/86 (see also Ref. [29]). Dissipation
depends on higher-order moments of the velocity gradients,
so we are drawn for guidance to the behavior seen in the
higher-order moments (larger |q|) in Fig. 2 [28]. The results
of Sreenivasan and Stolovitzky [31] are consistent with the
generally power law behavior seen for 25η–10000η (roughly
25η to L/26) in Fig. 2. That is, one might infer from where the
plots in Chhabra et al. [28] deviate from power-law behavior,
that the scale-free behavior demonstrated by Sreenivasan and
Stolovitzky [31] [Fig. 1(b)] might carry on to larger sizes than
they actually presented, possibly until r ∼ L/26 or 10 000η,
but deviate noticeably for scales larger than r ∼ L/15 (and
at the smaller end below 25η). Moreover, we can conclude
from these comparisons that the scale-free behavior seen by
Sreenivasan and Stolovitzky [31] was safely out of the viscous
range and continued through the inertial range at scales up to
L/86 < L/10.

The goal of this paper is to use DNS data to derive
probability distribution functions for cascade multipliers and
construct a cascade model that can be used for modeling
higher Re-number flows not accessible to direct numerical
simulations. The paper is organized as follows: Sec. II
describes the DNS dataset used in this study; Sec. III describes
the data analysis, including a technique for correcting the
effects of small particle number statistics, and presents results
for the multiplier PDFs for particle concentration, dissipation,
and enstrophy; Sec. IV presents predictions of the cascade
model and comparison with DNS data at two different Re; and
Sec. V discusses the results and their implications. A summary
and conclusions are given in Sec. VI.

II. DATASET

In this paper, we use data from the direct numerical
simulations of Bec et al. [12]; see also Arnèodo et al. [40]
and [41]. The simulation computes forced, homogenous,
and isotropic turbulence in an incompressible fluid, and the
dynamics of inertial particles suspended in the flow. The fluid
flow is solved on a 20483 Cartesian grid with a grid spacing
that is approximately the Kolmogorov length scale η ≈ 	x =
	y = 	z. Tracer and inertial particles are introduced into the
flow and their trajectories are tracked. Particles are considered
point particles and are dragged with the flow by viscous forces
only; there is no back-reaction on the flow. Particles of different
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Stokes numbers St ≡ τs/τη are considered, where τs is the
aerodynamic stopping time of the particle (τs = 0 for tracers)
and τη is the Kolmogorov time.

Figure 1(a) shows the second-order structure function
for particle velocity for this numerical flow (taken along
trajectories of different St particles, from Fig. 2 of Ref. [42]),
as a function of normalized scale r/η. While the structure
function seems to show an inertial range to several thousand
η, in reality the integral eddy scale for this simulation seems
to be about half the computational box size, L ∼ 1024η, and
for this flow Reλ ≈ 4(L/η)2/3 ∼ 400 (Table 1 of Ref. [42]).
In blue-green below the horizontal axis we indicate the
corresponding values for r/L, and the corresponding cascade
level N . The blue dashed line indicates the expected inertial
range for the atmospheric flow of Meneveau and Sreenivasan
[37], with corresponding values of r/L and N also indicated
in blue above the figure. Note that the range where P (m)
for dissipation was observed to be scale independent by
Sreenivasan and Stolovitzky [31] corresponds roughly to the
scale range L/860–L/86, well below the expected integral
scale for that flow and well above the viscous subrange.

Data from this simulation are available publicly online [43],
and we have downloaded and analyzed all of the publicly
available data in the present work. This data consists of the
entire flow field sampled at 13 instances in time, and particle
trajectories sampled at 4720 equidistant times, both covering
about six large-eddy time scales τL. All flow components and
their first derivatives are available at the particle locations.
In total there are 3 × 64 files of particle trajectories each
containing 3184 particles (a total of Np ≈ 600k particles) for
each St = 0, 0.16, 0.6, and 1.0, and 64 files containing 3184
particles each (i.e., a total of Np ≈ 200k particles) for each
St = 2, 3, 5, 10, 20, 30, 40, 50, and 70.

III. ANALYSIS

Determining concentration multipliers amounts to counting
particles in cubic subvolumes of size r3 and calculating the
fraction of particles falling in each half of the sampling box.
We bisect each cube in all three orthogonal directions x, y,
and z each yielding 2 multiplier values totaling 6 multiplier
values for r3 cube. The available trajectory data is highly
resolved in time (4720 instances of time over approximately 6
large eddy times τL), much more than what is needed for
this analysis. The number of snapshots required for good
statistics depends on the scale of interest since structures
at large scale evolve more slowly than structures at small
scale (and contain more particles), and therefore can be
sampled less often. We choose to sample the particle data
with a temporal spacing of τsample ≈ 0.55τr , where τr is the
characteristic eddy life time at spatial scale r estimated using
Kolomogorov 1941 arguments as τr = τL(r/L)2/3. For the box
sizes considered, 512η, 256η, 128η, 64η, 45η, 32η, 24η, 16η,
and 12η, this results in sampling intervals of 0.34τL, 0.22τL,
0.14τL, 0.086τL, 0.067τL, 0.055τL, 0.044τL, 0.034τL, and
0.028τL, respectively. We populate the sample volume using
the positions of all particles from the high-resolution trajectory
files at these various discrete times.

A. Tracer particles

First, we will look at the tracer particles (Stokes number
St = 0), which follow the flow exactly. Particles are initially

homogeneously distributed, and since the flow is incompress-
ible, will stay that way on the average, with particle multiplier
distributions given by a δ function at m = 0.5. However, the
observed distributions will only approach this behavior for
a very large number of particles; otherwise, effects of small
number statistics complicate matters. The simulation dataset at
hand has Np ≈ 6 × 105 particles with St = 0, and this is small
enough to cause significant deviations from ideal behavior at
small scales.

For St = 0 particles, we can quantify these small-number
effects analytically. First, the probability of finding n particles
in a given box of size r is governed by a Poisson distribution,

PP (n; n̄) = n̄ne−n̄

n!
, (2)

with the expectation value E(n) = n̄(r), which is here the
average number of particles in a box of size r , that is
n̄(r) = Npr3/L3, and where L is the size of the simulation
domain. This probability is also the probability of finding
a concentration C = n/n̄. A comparison of the observed
probability distribution functions with Eq. (2) is shown in
Fig. 3(a).

Then, for a given box with exactly n particles, consider the
particles one at a time and ask if they fall into one half of the
box, say the left half, or the other, right half. For tracer particles,
the probability to fall into the left side is the same as falling
into the right side of the box, i.e., pleft = pright = p = 0.5, and
the probability of having exactly k particles fall into one side
of the box is then given by a binomial distribution with the
probability:

PB(k; n,p) =
(

n

k

)
pn(1 − p)n−k. (3)

This is then also the probability of finding a multiplier m =
k/n in a box of n particles.

By combining the probabilities Eqs. (2) and (3), we see that
the probability of finding a multiplier m in the entire simulation
domain is

P (m; n̄,p) =
∑

n

PP (n; n̄)PB(k = mn; n,p). (4)

A comparison of this analytical relation with the multiplier
PDFs computed from the tracer particle trajectories in the
simulation is shown in Fig. 3(b). It shows that Eq. (4) models
the observed distributions very accurately, and also that the
distributions become rather wide at small scales even though
the underlying probability distributions are δ functions at m =
0.5. This effect is a kind of “false intermittency” due to small-
number statistics alone.

B. Particle multipliers for nonzero Stokes numbers

1. Correcting for finite particle numbers

As we have seen in the previous section, the number
of particles in the dataset is small enough to significantly
affect the observed multiplier distributions. In the following
we will describe how we can account for these effects and
estimate what the underlying PDFs would be, given infinite
particle numbers. The goal is to separate the finite-particle
number effects, which may be important in many applications,

033115-4



SCALE DEPENDENCE OF MULTIPLIER DISTRIBUTIONS . . . PHYSICAL REVIEW E 95, 033115 (2017)

(a) (b)

FIG. 3. (a) Probability distribution functions (PDFs) of the particle concentration itself for tracer particles (St = 0) from the simulation
dataset, compared to Poisson distributions, for box sizes of r = 512η, 256η, 128η, and 64η. (b) PDFs of the particle concentration multipliers
for St = 0 particles computed from the simulation dataset, and the analytical Poisson-binomial model from Eq. (4).

from the effects of the turbulent concentration process.
The finite-particle-number effects in a specific application
can always be added back into our model later (see, e.g.,
Sec. IV B).

For the following analysis, we will assume a shape for
these PDFs. It has been suggested that, at least in the
atmospheric context [31], symmetric β-distributions provide a
good approximation for multiplier distributions of dissipation.
Such distributions have also been used in previous studies of
particle concentrations (e.g., Ref. [32]) and are defined by

f (m; β) = (m − m2)β−1 �(2β)

2�(β)
, (5)

with � being the � function. The parameter β determines the
width of the distribution with small values of β corresponding
to wide, i.e., more intermittent, distributions. The width of the
β distribution (its standard deviation) is given by

σ (β) =
√

1

4(2β + 1)
. (6)

However, similarly to the tracers, the observed distribution
width, σ0(β), will not only depend on the underlying β

value but also on the number of particles in a given sample,
n, and the number of samples, Ns , used to compute the
distribution. In order to characterize this dependence, we
have conducted Monte Carlo experiments. They mimic the
finite-particle-number effects in the DNS under the assumption
that the underlying probability distributions are β distributions.
The procedure works in the following way: first, for a given
value of β, we draw a random multiplier m from the β

distribution. Given the number of particles n in a sample
volume (a given box), this corresponds to a partition into
nleft = mn and nright = (1 − m)n particles for the two halves
of the sample volume, where nleft and nright are nonintegers in
general. Then, we draw a random particle number kleft from
the corresponding Poisson distribution with expectation value
E(kleft) = nleft. This value (and kright = n − kleft) represents
one random sample of the number of particles found in two

halves of a box, and correspond to “observed” multiplier values
mleft = kleft/n and mright = kright/n. We repeat the procedure
many times and compute the standard deviation σ from all
random samples mleft and mright combined (Ns total number
of samples). The result is a random sample of the “observed”
distribution width given n, Ns , and the true underlying value
of β. Figure 4 shows the results from such experiments for
selected parameters n, Ns . As one would expect, the scatter is
large for a small number of samples, Ns , and becomes smaller
with increasing Ns . Also, one can see that a small number of
particles per box, n, causes the observed distribution width to
be systematically larger than the value from Eq. (6) (red and
green symbols), but approaches the exact value as the number
of particles gets large (blue and orange symbols).

Now that we understand how we can model the small-
number statistics effects, we can proceed to correct the
observations. Given values of n and Ns , we conduct the above

FIG. 4. Symbols: randomly sampled distribution widths for four
sets of parameters Ns, n as a function of β. For each parameter
combination, 50 random samples are plotted. Smooth curve: β(σ )
given by Eq. (6).
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described Monte Carlo experiments for many random values
of β and find the value of β that results in a distribution width
closest to an observed width σ0. This gives us an estimate of
the true underlying β value. In practice, we consider random
values of β between 1 and ∞ by drawing samples with equal
probability with respect to their true width σ (β) [Eq. (6)].
Once we have accumulated at least 100 samples resulting
in distribution widths falling in a tolerance range between
σ0(1 + 	)−1 and σ0(1 + 	), we compute the appropriate mean
and standard deviation of those β values. Initially, a large value
of 	 is chosen, but as more and more samples are accumulated,
	 is reduced step by step by factors of 2 until the standard
deviation converges, i.e., does not change significantly if 	 is
reduced further. We also require that the final 	 is no more
than 0.01 (the width is matched to within at least 1% of the
measured width). To speed up the process, once 	 � 0.1,
we restrict the range of β samples drawn to values between

β̄e−2
√

var(ln β̄) and β̄e2
√

var(ln β̄), where β̄ and
√

var(ln β) are the
mean value and standard deviation of β in the tolerance range.
Specifically, we define β̄ as the β value of the distribution
whose variance (width squared) is the same as the arithmetic
mean of the individual variances, i.e.,

β̄ = β(σ̄ ), (7)

with

σ̄ 2 = 1

M

M∑
i=1

σ (βi)
2, (8)

using Eq. (6) and its inverse β(σ 2) = (8σ 2)−1 − 1
2 , and where

βi are the β values of all the samples having widths within the
tolerance range around σ0. The uncertainty in β̄ is measured
by its variance:

var(ln β̄) = var(β̄)

β̄
≈

[
∂β

∂σ 2
(σ̄ 2)

]2

var(σ̄ 2) = var(σ̄ 2)

64σ̄ 4
, (9)

following nonlinear uncertainty propagation truncating the
series after the first order, and where the variance of σ̄ 2 is
computed by

var(σ̄ 2) = 1

M

M∑
i=1

[σ̄ 2 − σ (βi)
2]2. (10)

Once converged, the final values of β̄ and var(ln β̄) are
estimates of the true β value corrected for finite-particle-
number effects, and an estimate of its uncertainty.

2. Volume-averaged β-distributions

Now that we know how to remove the effects that a finite
number of particles has on the multiplier distributions for
a given box size or scale, we compute corrected volume
averages of the β values for any given spatial scale and Stokes
number. Specifically, at any given scale r , we first compute the
multiplier values for all the sampling boxes. We then compute
the distribution widths σ0,j from each subset of boxes having
the same number of particles nj . This width is then used to
derive a corrected β value, which corresponds to a corrected
width σj [through Eq. (6)]. We then combine all results by
summing the square of these corrected σj values weighted

with the fractional volume that the boxes with nj particles
occupy. The final, combined β value is then given by this
average width through the inverse of Eq. (6).

Figure 5(a) shows the combined concentration multiplier β

values for all Stokes numbers and all spatial scales considered.
We did not consider scales smaller than 12η since the number
of particles in such small boxes is too small to make reliable
statistical inferences, even with our correction procedure.
From the results, it is very apparent that the concentration
multiplier distributions are not only functions of St, as has
been known, but are also very much scale dependent. It seems
intuitive, however, that at any given scale, the multipliers may
depend only on the ratio of the particle stopping time and the
dynamical time at that spatial scale. An effect of this sort was
seen in particle concentration PDFs by Bec et al. [24]. Along
these lines, we construct a local Stokes number,

Str ≡ τs

τr

= St

(
r

η

)−2/3

, (11)

where we have assumed that the dynamical time at scale r is
given by

τr = τη

(
r

η

)2/3

(12)

following Kolmogorov [44]. By plotting the multiplier β

results against the rescaled Stokes number, the curves approx-
imately collapse into one [Fig. 5(b)], at least for scales not too
close to the integral scale. This means that when local scale and
stopping time are accounted for, the scaled multiplier β curves
are cascade level independent for scales r < L/10 or so, and
are thus highly amenable to cascade models at, in principle,
arbitrarily large Re at least within the inertial range. For some
caveats about Re dependence, however, see Sec. V.

Also note that Str can be written in terms of an integral-
scale Stokes number StL:

Str = 22N/9StL, (13)

where

StL ≡ τs

τL

= St

(
L

η

)−2/3

, (14)

using the same Kolmogorov scaling as in Eq. (12). Equation
(13) separates terms that depend only on cascade level (first
term), and particle properties (second term), and indicates that
particles in different flows behave the same (have the same
statistical cascade) if they have the same integral-scale Stokes
number StL. We will use this fact later in Sec. IV B when
we compare the cascade with DNS results from two different
simulations at different Re.

It should be noted that our observed r−2/3-scaling seems to
contradict the scaling found by Bec et al. [24] for “quasi-
Lagrangian” probability distribution functions of the mass
density. Following an idea by Maxey [6], they approximated
the dynamics of inertial particle by those of tracers in an
appropriate synthetic compressible velocity field and derived
a scaling for the rate at which an r-sized “blob” of particles
contracts. They argued that the scaling of the contraction rate
relates to the scaling of the pressure field, give the contraction
rate as being proportional to r−5/3 for the Re of their simulation
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)b()a(

FIG. 5. Concentration multiplier distribution β values corrected for finite-particle number sampling effect as a function of the ordinary
Stokes number St (a), and in terms of the local Stokes number Str (b). Solid lines connect results for the same binning scale for guiding
the eye.

[45], and find that their density PDFs collapse when scaled with
this contraction rate.

3. Composite PDFs

Combining the statistics from boxes with different particle
number to form a single β-distribution that represents the
concentration multipliers assumes that multiplier distributions
are the same for all concentrations. Since the particles are
independent, that is, they do not feel the presence of each
other, one would assume that there is no such concentration
dependence. However, particles concentrate in particular re-
gions of the flow, and therefore flow properties differ in regions
of different particle density and so the multiplier distributions
may also be different. We can relax the assumption of equal
multiplier distributions and compute a composite multiplier
distribution by first computing β-distributions for each particle
concentration separately, and then summing these distributions
weighted with the fractional volume that the boxes with the
particular density occupy. These composite distributions are
shown in Figs. 6–8.

The following observations can be made: First, composite
and mean β-distributions may differ in shape, although by
construction they have identical widths (second moments).
That is, in general, the composite β-distribution is itself not a
β-distribution. At large spatial scales, fat or exponential tails
are apparent in the composite PDFs; these do not have the
same shape as any β-distribution. At small scales, however,
differences disappear within the margin of accuracy. Also,
at the largest scale (512η) there are enough particles such
that finite-particle-number effects are small and the raw PDFs
(shown in green) are essentially identical to the composite
PDFs (shown in black). However, the importance of correcting
for sampling effects becomes apparent as we look at smaller
scales where fewer particles cause spurious widening of the
raw distributions or “false intermittency.” Finally, we should
mention that at the smallest scales, the number of particles
is so small that we are only measuring multipliers in high-
concentration regions, which causes a sampling bias since

particles are known to avoid vorticity, and such regions may
produce more intermittency or broader multiplier PDFs. For
instance, the average number of particles in a 32η box, for the
Stokes numbers for which we have a total of 6 × 105 particles
(see Sec. II) is only (32η/2048η)3Np ≈ 0.44. The situation
is even worse for, say, r = 12η and a case with only 2 × 105

total particles. The average is then only 0.04 particles per
sampling box. Multipliers are measured only in regions with a
particle concentration that is at least 100 times larger than the
mean concentrations since we can only reasonably measure
multipliers if we have at least several particles in a sampling
box.

C. Dissipation and enstrophy multiplier distributions

We also calculated the multipliers for fluid dissipation and
enstrophy. The rate of turbulent dissipation is given by

ε = 2νSijSij = ν[(∂iuj )(∂iuj ) + (∂iuj )(∂jui)], (15)

where Sij and ui are the strain rate tensor and the components
of the velocity field, respectively, and where we use the
Einstein summation convention. The enstrophy on the other
hand is defined as the square of the vorticity:

E = | 
∇ × 
u|2 = (∂iuj )(∂iuj ) − (∂iuj )(∂jui). (16)

All of these flow velocity derivatives are available in the
dataset, both in the particle trajectory data files and in the
flow snapshots. We have computed multiplier distribution β

values for ε and E (βε and βE ) from the trajectory of tracer
particles (as they sample the flow more homogeneously than
nonzero Stokes number particles), and from the full resolution
flow snapshots. The results are shown in Fig. 9, although the
tracer data is only shown for the largest spatial scales since it
also suffers from finite-particle effects (not corrected here).

Note the presence of asymptotes for r � 20η (perhaps
better thought of as r � L/50, see Fig. 14) for both, as
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

FIG. 6. Probability distribution functions (PDFs) of particle multipliers measured from DNS particle trajectories for different Stokes
numbers and a box size of r = 512η (a through l) and 256η (m through x). Shown are the volume-averaged, mean β-distributions (red dashed
curves) as described in Sec. III B 2, the composite PDFs (black dashed curves) as defined in Sec. III B 3, and raw multiplier histograms
uncorrected for finite-particle-number effects (green curves). Corresponding shading in red and grey shows the uncertainty in the measured
PDFs (plus/minus one standard deviation).
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FIG. 7. Same as described in the caption of Fig. 6 but for box sizes r = 128η (a through l) and 64η (m through x).

anticipated [31]. Enstrophy is shown to have wider multiplier
distributions (smaller β values) than dissipation, and is
therefore more intermittent. This is consistent with the findings
of Meneveau et al. [46] in several flows including atmospheric
flow, and in numerical simulations (e.g., see Refs. [47,48]).

For a review, see Sreenivasan and Antonia [49]. Also, we note
that even for the smallest spatial scales considered, still well
within the inertial range, the dissipation rate multiplier β does
not reach the atmospheric flow values of βε ∼ 3 [31]. See
Sec. V for more discussion.
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(a) (b) (c)

(d) (e) (f)
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FIG. 8. Same as described in the caption of Fig. 6 but for box sizes r = 45η (a through l) and 32η (m through x).

IV. NEW CASCADE MODEL WITH LEVEL-DEPENDENT
MULTIPLIERS

A. Cascade simulations

From the collapsed β(Str ) curves [Fig. 5(b)], we can build
an empirical model for the particle multiplier distributions. A
sum of two power laws approximates the curves for fixed scale

r well:

β(Str ) ≈ βmin

[(
Str
a1

)b1

+
(

Str
a2

)b2
]
, (17)

with parameters a1, a2, b1, b2 determining the slopes and
positions of the power laws, respectively, and βmin setting
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FIG. 9. Dissipation and enstrophy multiplier distribution β-
values as a function of spatial scale computed from the flow data
and from tracer particle trajectories (St = 0). Results from tracer
particles are only shown for large spatial scales since at smaller scales
not enough particles are available for a reasonable estimation of the
multiplier distributions.

the minimum β value. From the figure it is evident that
there is some residual scale dependence—the curves for
different spatial scales don’t overlap exactly. The following
parametrization approximates this residual dependence:

a1 = 0.15,

a2 = 0.45 − 0.25 exp

[
−2

3
ln

(
20.5

r

L

)2
]
,

b1 = −1.2, (18)

b2 = 0.85 + 0.35
{

1 + erf
[
−1.8 ln

(
29.3

r

L

)]}
,

βmin = 4 + 4
{

1 + erf
[
ln

(
4

r

L

)]}
,

where erf and ln are the error function and the natural log-
arithm. The parameters asymptote for small r/L � 3 × 10−3

(or large cascade level N � 25) to

a1 = 0.15, a2 = 0.45,

b1 = −1.2, b2 = 1.55, βmin = 4. (19)

The model is shown in Fig. 10 compared to the DNS results.
An even simpler model could probably be constructed using a
single average curve of all r

L
� 1

8 .
With this model for the particle multiplier distributions,

we can perform statistical cascade simulations to predict the
probability distribution function for the particle concentration.
We start at cascade level 0 with a single concentration value of
C(0) = 1.0. At every cascade level N , we then draw a random
multiplier value m(N) from the corresponding distribution
with a β value given by the model [Eq. (18)], and split
the concentration value from the previous level into two
values C

(N)
left = 2C(N−1)m(N) and C

(N)
right = 2C(N−1)(1 − m(N)).

The factor 2 here comes from the fact that the concentration
is the ratio of the particle number in a half box and the mean
number in a half box (which itself is one half of the mean
number of particles in full box). Such a cascade produces
2N random samples of concentrations values at each cascade

FIG. 10. β values of the cascade model following Eqs. (17) and
(18) (dashed lines). Results from the present DNS data are shown for
comparison (solid lines), they are the same curves as in Fig. 5 except
that the symbols have been suppressed here for legibility. Spatial
scales, r , are differentiated by color (see figure legend).

level N , which we use to compute concentration PDFs. For
good statistics, however, we need many more samples, and for
the predictions shown in the following section we computed
50 000 such cascade simulations.

B. Level-dependent cascade predictions compared
to DNS at two different Re

In order to demonstrate and assess the cascade predictions,
we compare the probability distribution functions of the
concentration factor generated by the cascade model with
those measured directly from DNS datasets. In order to do
so, we need to account for the small-number effects present
in the DNS results, which, as we have seen before, can cause
observed distributions to be significantly widened relative to
ideal ones that the cascade produces. Instead of correcting
the DNS PDFs as we have done before for the measured
multiplier distributions, we will degrade the cascade PDFs
for this purpose by introducing finite-particle-number effects
into them.

For motivating the procedure, let us imagine a hypothetical
simulation H with a number of particles so large that finite-
particle-number effects are negligible, and let n̄∞(r) be the
average number of particles in a sampling box at length scale
r in that simulation. Our present dataset, in comparison, has
on average only n̄(r) = Npr3/L3 particles in a box of scale
r , where as before Np is the total number of particles in
the dataset with a given Stokes number, and L is the linear
extent of the simulation domain, respectively. One can think
of our current dataset as a randomly selected subset of the
hypothetical simulation H, generated by retaining particles
from H with a probability of p(r) = n̄(r)/n̄∞(r). For brevity,
we will suppress the r below. Specifically, let’s say some
sampling box in H has n∞ particles in it (and therefore a
concentration factor C∞ = n∞/n̄∞). From these, we select
particles with a probability of p, retaining in total n particles,
where n is an integer random number with an expectation value
of E(n) = C∞n̄. For n̄∞ → ∞, this is a Poisson process and
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(a)

(b)

(c)

FIG. 11. Cumulative probability distribution functions for the concentration factor C, for different Stokes numbers, comparing the DNS
measurements (solid curves) with the cascade predictions, degraded to account for finite-particle-number effects (dotted curves).

n is a random number with a probability mass function

PP (n; C∞n̄) = (C∞n̄)ne−C∞n̄

n!
. (20)

Using this idea, the recipe for introducing finite-particle-
number effects into the cascade PDFs is as follows: First,
we draw a random sample C∞ from a cascade-derived
concentration PDF. Second, we draw a random sample n

from a Poisson distribution with the corresponding expectation
value E(n) = C∞n̄, where n̄ is again the average number of
particles at the spatial scale of interest in the DNS data we
want to compare. The (integer) particle number n corresponds
to a discrete concentration factor C = n/n̄. By repeating the
procedure Ns times, we can build from the samples a discrete
probability distribution function of C. It accounts for the
finite-particle-number effects and can be directly compared
to PDFs measured from the DNS dataset.

Figure 11 shows, for different Stokes numbers, a compar-
ison between the PDFs predicted by the cascade model, and
degraded in this way using Ns = 107, with those calculated
directly from the DNS dataset we analyzed in this paper [43].

Under the assumption that the collapsed multiplier β curve
is universal and does not depend on Reynolds number, we
can use cascade simulation to model conditions at different
Reynolds numbers. For caveats to this and a suggestion
regarding plausible Re dependence, see the discussion in
Sec. V. It follows from Eq. (13) that particles of different Re

flows behave the same and have the same cascade statistics, if
they have identical integral-scale Stokes numbers StL.

Here, we compare our cascade with Pan et al. [20] who
performed direct numerical simulation of a compressible flow
with suspended inertial particles. Their simulation is on a
5123 Cartesian grid with an estimated L/η ∼ 200 (compared
to L/η ∼ 1024 in the dataset we used here), and contains
8.6 × 106 particles per Stokes number. Initial comparison of
their uncorrected multiplier PDFs with ours showed a clear
disagreement but most of that disagreement disappears once
we take into account finite-particle number effects. Figure 12
shows a comparison of cumulative PDFs of the concentration
between Pan et al. [20] and our cascade model showing
reasonable agreement, bearing in mind that the inviscid
simulations of Pan et al. [20] leave a little uncertainty about
the value of St.

C. Model prediction for the radial distribution function

In many applications, e.g., in terrestrial clouds, particle
collisions play an important role, and it is therefore of
great interest to model this process. The rate of collisions
depends on two statistical quantities: the radial relative velocity
between particles, and the radial distribution function (RDF),
g(r), defined as the probability of finding two particles at a
given separation normalized with respect to homogeneously
distributed particles [3,20]. Relative velocities are beyond the
scope of the present model, but the cascade model can be
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FIG. 12. Cumulative probability distribution functions for the
concentration factor C, for different cascade levels comparing DNS
results from Fig. 8 of Pan et al. [20] with an estimated Stokes number
St ≈ 1.2 or StL ≈ 3.5 × 10−2 (solid curves) with the prediction of
our cascade model degraded to account for the finite-particle-number
effects in Pan’s DNS dataset (dotted curves). For our cascade, we
have used our St = 5 model with a StL ≈ 5 × 10−2 close to the value
of Pan.

used to make predictions for the RDF. For this purpose, we
performed statistical simulations similar to Sec. IV A but with
an important difference: we are here interested in the spatial
distribution of the concentration, which then can be used to
compute the RDF.

Our cascade model, however, only describes the particle
multiplier PDF as a function of cascade level, and does

not explicitly contain information about spatial correlations.
There is therefore some ambiguity in how to compute
concentration fields from the cascade model. We have explored
three different methods to assess the range of possible
solutions. Starting at the largest scale, we divide a cube of
space in half along each spatial direction. This results in
eight subcubes with half the linear size. In order to solve
for the concentrations in these subcubes uniquely, we need
eight equations. The first method—method A—makes the
following choice: one constraint it given by the fact that
the average of the concentrations over all eight subcubes
is equal to the mean concentration, and seven additional
constraints are given by relating the concentration in seven sets
of neighboring subcubes through multipliers chosen randomly
from the cascade model. The specific choice of equations is
given in the Appendix. Solving for concentrations to ever
smaller cubes until some small cutoff length scale (r/L)min

then yields a statistical realization of the concentration field
that can be used to compute the RDF. The probability of finding
two particles at a given distance is simply the product of the
concentrations at the two points in space a given distance
apart, averaged over the whole domain. If we start with a
unit concentration at the largest scale, the normalization, that
is the probability for homogeneously distributed particles,
is simply 1. In order to reduce the computational cost and
storage requirements to trackable amounts, we do not follow all
subcubes to ever smaller scale but only a random selection of
them. One half of subcubes are followed at each cascade level.
Two more methods are obtained by relating the concentrations
in the two half-cubes, for each direction separately, through a
random multiplier. This set of equations is underdetermined.
For method B we pick one particular solution, while for method
C we use a least-square solver to determine the minimum-norm
solution. For specifics, again, we refer to the Appendix.
Conceptually, it is clear that the three methods allow for
different amounts of spatial randomness. Method A clearly
maximizes intermittency while method C leads to the least
spatially intermittent solution.

(a) (b)

FIG. 13. (a) Radial distribution function (RDF) g(r) for various values of StL (colored solid lines) determined from cascade model
simulations using method A with the asymptotic RDF value, g0, indicated by an arrow. For comparison, the model of Zaichik and
Alipchenkov [2] from their Fig. 3 for infinite Reynolds number (black dashed line) is also shown. (b) RDFs for StL = 3 × 10−3 for the
different cascade simulation methods, and the Zaichik and Alipchenkov [2] model, scaled by their respective asymptotic value, g0, given in
Table I.
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TABLE I. RDF asymptotic values, g0, for St−3/2
L r/L � 1 and

StL � 1 for the different cascade simulation methods, and the Zaichik
and Alipchenkov [2] model.

Simulation and Model g0

Cascade simulation—Method A 13
Cascade simulation—Method B 5.9
Cascade simulation—Method C 3.9
Zaichik and Alipchenkov [2], Fig. 3 3.9

Figure 13 shows RDFs predicted by our cascade model sim-
ulations down to cascade level 72 (spatial scales of (r/L)min ≈
6 × 10−8). All methods give qualitatively the same results,
all in good agreement with the Zaichik and Alipchenkov [2]
asymptotic Re = ∞ analytical solution, especially regarding
the shape and the active range of scales. In fact, the magnitudes
are even close enough, within a factor of order unity. RDFs
for different StL computed using method A are plotted in
Fig. 13(a) as a function of the scaled distance St−3/2

L r/L and
are shown to collapse for small StL � 10−2. Effectively, the
scaling behavior of the multiplier PDFs (Fig. 5) is carried over
to the RDF. At large scales, St−3/2

L r/L � 102, the RDF has
a value of 1, that is, particles are homogeneously distributed,
and over an active range of scales, 10−2 � St−3/2

L r/L � 102,
it rises and reaches an asymptote, g0. For larger StL in our
sample, however, the active range is shortened by being too
close to the integral scale L, and g(r) asymptotes at smaller
values that are StL dependent. The theory of Zaichik and
Alipchenkov [2] predicts a very similar behavior and their
curve for infinite Reynolds number, effectively for infinitely
small StL, is also shown in Fig. 13.

In Fig. 13(b), we compare RDFs from the different
methods and the Zaichik and Alipchenkov [2] model by
scaling them with their respective g0. The curves are nearly
identical. Method A produces the highest RDF values, i.e.,
the most intermittent concentration distributions, and method
C, as it is biased toward lower intermittency, results in the
smallest asymptotic value (see Table I for values of g0).
Interestingly, g0 for method C is the same as for the Zaichik
and Alipchenkov [2] theory. Zaichik and Alipchenkov [2] use
various approximations in their derivation. Among them, they
model the turbulence by a Gaussian process, which would
underestimate the tails of their probability distributions and
therefore underestimate intermittency.

V. DISCUSSION

A. The nature of scale-dependent particle concentration

As described in Sec. I, the traditional explanation of clus-
tering in terms of centrifugation of particles from eddies has
been replaced with a somewhat more complicated and nuanced
combination of physical processes [3,4]. We believe that our
results [Figs. 5(b) and 10], stripped of their minor variations,
represent a kind of universal curve (“U curve”) for β(Str ) that
can be interpreted in terms of these different processes acting
on a particle of some St over a range of scales r .

In the Str < 0.1 regime, the effect is dominated by centrifu-
gation, which weakens as Str decreases [50, and others]; thus

β increases (the multiplier PDF narrows) with decreasing Str
in this regime. As Str increases beyond 1, the concentration
effect is weakened by the decreasing sensitivity of particles
to perturbations of any kind by eddies with timescales much
shorter than their stopping times, so β again increases. This
effect, which could be thought of as an inertia impedance
mismatch, has been described in terms of response functions
[51–55], but see Pan and Padoan [9], Bec et al. [42], Hubbard
[56], and Hopkins [21] for other more recent and more
sophisticated analyses.

The strongest clustering effect is produced (the multiplier
PDF has the lowest β) across perhaps one or two decades
of eddy scale r for a given St, centered on the combined
parameter Str ∼ 0.3, presumably the regime where history
effects in particle velocities play the dominant role. While our
results support the idea that concentration is generically due
to “eddies on the scale of ηSt3/2

η ...” [13,24], we think a more
refined description one could infer from the U curve is that
clustering is the cumulative result of a history of interactions
with the flow of energy as it cascades over eddies ranging
over two decades in size, driving particles ever deeper into a
concentration “attractor” even in the inertial range [1,3,4]. The
other “universal curve” of Zaichik and Alipchenkov [11] (their
Fig. 1) and their improved model [2, their Fig. 3] reproduced
in Fig. 13 also has this sense. That is, we see a parallel based
on causality, between time-asymmetrical “history effects” on
particles of some St as they are affected by energy flowing
down the cascade through eddies of different scale, and a
trajectory down one side and then back up the other side of our
U curve. Such a picture would lead the particle concentration
as a function of spatial binning scale to increase sharply over
some particular range of scales r/L or r/η related only to St
(the active range), and then remain constant towards smaller
scales where eddy perturbations are felt only weakly because
of, essentially, the poor impedance match with the particle
stopping time.

A natural prediction of this model is thus that, at infinite
Re where energy is available on all timescales, far from
the dissipation range, and in the absence of complications
such as gravitational settling or fragmentation limits, the
maximum particle concentration should not only arise over
a similar range of scales near r ∼ ηSt3/2

η [2,11,13,24], but also
should have a “saturation” amplitude that is St independent.
Indeed this would seem to be the prediction of Zaichik and
Alipchenkov [2, their Fig. 3]. In current simulations [2,13],
as well in simulations we have conducted using the cascade,
the clustering of larger St particles (StL � 0.03) asymptotes
at smaller values of the RDF than seen for smaller particles
(Fig. 13). We expect this is because the scale at which the
larger particles reach Str ∼ 0.3 is too close to the integral scale,
so their potentially two-decade-wide range of interest, which
our U curve indicates is needed to reach a true asymptote, is
truncated at large scales.

Within the dissipation range at r < 20–30η, the energy
spectrum of the flow changes as a result of the now-fixed eddy
timescale tr = tη [25]. Particles of Stη ∼ 1 are now unique
in that they do not experience the usual impedance mismatch
with faster eddy forcing going to smaller spatial scales, so
can continue to increase in concentration going to smaller
scales. As noted by Bragg et al. [25] the question remains
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as to whether there is any sort of rollover at r � η in the
RDF of Stη = 1 particles, or whether an actual singularity
would exist for point particles. In terrestrial applications, finite
particle sizes comparable to η preclude unlimited singular
behavior; however, in protoplanetary nebula applications
[8,9,22], particle sizes of interest (submillimeter to dm) are
orders of magnitude smaller than the Kolmogorov scale (km)
so this is a question of significant interest.

Bec et al. [24] explicitly described the dissipation regime as
characterized by an “attractor” having fractal properties, and
indeed multifractal properties were demonstrated by Hogan
et al. [58] for clustering in this regime. It is known that cascades
lead to fractal and multifractal spatial distributions [31,46, and
references therein]. We now suspect that the cascade of Hogan
and Cuzzi [32], in which the multiplier distributions do seem
to obey level-independent scaling, were effectively dissipation
range cascades. Tests by Hogan and Cuzzi [32] showed good
agreement between their level-independent cascade model
and DNS. However, the multiplier PDFs were determined
at 3η and all their DNS results were for low-to-moderate
Reλ < 140 such that the integral scales were 14η, 24η, 45η,
and 86η. At least the first three of these runs lie mostly
within the dissipation range, where scaling does support level
independence [24,25]. It might be worth exploring the use
of dissipation range cascades further from the standpoint of
modeling fractal structure or to study higher moments of the
particle density PDF. Indeed, Bec and Chétrite [57] present
what is, essentially, a cascade model that reproduces aspects
of the particle concentration PDF.

Moreover, to our knowledge, while fractal or multifractal
behavior has been shown for particle clustering within the
dissipation regime, either at scales of a few to tens of η [58], or
scales smaller than η [59,60], no explicit study of this property
in the inertial range has been done. It would be of interest
to find whether the inertial range cascade as described by
the U function (Fig. 5), which is level dependent but in a
predictable way that is level-independent, would also produce
such a distribution, when suitably scaled for St. This could be
of use in modeling radiative transfer properties [16].

B. Dissipation, enstrophy, and Re dependence

As mentioned earlier in Sec. III C, our dissipation multiplier
PDFs have larger β (are narrower) than the expected βε ∼ 3 for
all binning sizes we could usefully study, reaching an asymp-
tote of βε ∼ 8 at r � L/86. Based on the very extensive inertial
range manifested in Fig. 1 [42], apparently extending up to
>2000η, we had expected to find scale-free behavior in the
dissipation multiplier PDF over most of this range. However,
recalling Fig. 2, especially as selected by larger |q|, which
more strongly weight the structures where most dissipation
occurs, the properties of dissipation are not invariant over as
wide a range as is the second-order velocity structure function
that defines the inertial range in Bec et al. [42].

Figure 14 summarizes the overall scale variation of β for
dissipation and enstrophy, showing the spatial scale both in
terms of η and L following Fig. 1. At large scales, the PDF is
narrow for both (large β) but widens with decreasing scale. At
scales of ∼12η (∼ L/86) it asymptotes at a value that seems to
remain scale-free to smaller scales. Our asymptotic values do

?

?

r/103Low Re, DNS 102101
r/High Re, Atm. 105104103

FIG. 14. Hypothetical scaling behavior of dissipation and enstro-
phy: The solid red and blue symbols, as in Fig. 9, are those we
calculate from the numerical flow at Reλ = 400. Dotted lines are
hypothetical values at very high Re. High-Re atmospheric dissipation
[31] is scale-free at β ≈ 3 at least between L/86–L/860; it is
interesting that whatever changes affect the weighted quantities in
Fig. 2 and the structure function in Fig. 1, the β values for dissipation
and enstropy do not seem to vary through the viscous (dissipation)
subrange r/η < 20. It is plausible and expected that enstrophy will
always be more intermittent than dissipation (have smaller β values).
The atmospheric (high-Re) value for the scale-free asymptote for
dissipation is roughly β = 3 (black dotted line). We hypothesize
that β values at high Re follow trajectories similar to the red and
blue dotted lines for dissipation and enstrophy, respectively. That is,
the observed behaviors (symbols) is the effect of an incompletely
developed inertial range.

not agree with values (βE ∼ 10 for enstrophy) found in Hogan
and Cuzzi [32], or (βε ∼ 3 for dissipation) in Sreenivasan and
Stolovitzky [31]. It may be that the Hogan and Cuzzi [32] βE
is more properly associated with the dissipation range, but the
discrepancy in βε alone merits some discussion.

We hypothesize that at much higher Re than we can study
here, the scale dependence of βε morphs in a fashion so as
to be consistent with Chhabra et al. [28] and Sreenivasan
and Stolovitzky [31]; that is, has a scale-free βε ∼ 3 for all
scales less than at least 3000η (based on Chhabra et al. [28])
and probably less than L/16 (based on Chhabra et al. [28]
and Chhabra and Jensen [61]). At larger scales we expect β

must increase in some smooth fashion similar to ours, with an
overall behavior schematically shown by the red dotted line in
Fig. 14. Meanwhile, by the logic that enstrophy E is always
more intermittent (has smaller β) than dissipation, we then also
hypothesize that βE varies as suggested by the blue dotted line.

We suspect that our observed βε and βE asymptote (for
r � L/86) at larger values than would be true for much
higher Re, because the viscous or dissipation range, which
bounds the inertial range on its small-scale end and extends
to 20–30η in general, here impinges on the small-scale end of
the nascent inertial range, and may prevent the dissipation and
enstrophy from ever fully realizing their high-Re intermittency.
In contrast, at high atmospheric Re, the large-scale onset of
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the inertial range, at 3000–104η based on Chhabra et al. [28]
and Sreenivasan and Stolovitzky [31], is completely isolated
from the viscous range, as indicated in Fig. 1 by the blue axis
labels on the upper horizontal axis.

The scale dependence and asymptotic value of βE is
important, because the process of particle concentration may
track the properties of E rather than those of ε based on the
physics involved (Sec. V A). While it may be coincidental, in
our DNS results, the β for inertial particles minimizes at a
value very close to our value for βE , and considerably smaller
(more intermittent) than our value of βε . A secondary, related
hypothesis is that the particle concentration multipliers may
track the behavior of enstrophy (if velocities and accelerations
are dominated by vorticity), and the minima seen in the
collapsed curves of Fig. 5, which now never fall below 3.0,
might drop to significantly lower values, making the particle
concentration field more intermittent. For this reason, cascades
developed using our current collapsed β(Str ) curves may
underestimate the abundance of zones of high concentration
at high Re to some degree. A better understanding of this Re
dependence will be needed to put cascade modeling of particle
concentration on quantitatively solid ground. The original
dataset of Sreenivasan and Stolovitzky [31] probably contains
enough information to assess the validity of these hypotheses
regarding dissipation, but not for enstrophy.

C. Speculations regarding the effect of higher Re numbers

As described in Sec. IV, a level-dependent cascade can
be described which captures the inertial range behavior for
arbitrary Re (at least to the point where mass loading starts to
affect the physics, e.g., see Hogan and Cuzzi [32]). This might
be of use in modeling particle concentration in rain clouds,
in the protoplanetary nebula, or in other applications at very
high Re where numerical simulations are impractical (such
as spatial variations in microwave opacity). There are several
reasons to expect different behavior in the dissipation range.

Recalling, however, our numerical discrepancy with Sreeni-
vasan and Stolovitzky [31] and others regarding the asymptotic
value of β for dissipation, we think the possibility of Re
dependence of even our collapsed β(Str ) might imply that
our results (and other inertial range results at low Re)
underestimate effects of concentration, in the sense that at
higher Re, the minimum in the universal curve would move to
lower β (more intermittency and higher concentrations). One
might speculate that the minimum β for particles should track
the β for enstrophy instead of for dissipation.

In the application to planetesimal formation proposed by
Cuzzi et al. [18], it is necessary to create a joint PDF of
particle concentration and enstrophy. This motivates a better
understanding of high Re behavior of β for both particles and
enstrophy.

VI. CONCLUSIONS

Our results indicate that the multiplier PDFs for par-
ticle concentration (Sec. III B), dissipation, and enstrophy
(Sec. III C) vary with scale, at least over the largest decade of
spatial scales. We also find that the multiplier PDFs for particle
concentration have two components: a traditional “β-function”
component, and an exponential-tail component (Sec. III B 3).

We find that the concentration multiplier β values collapse to
a scale-independent universal curve when plotted against an
appropriately scaled local Stokes number Str = St(r/η)−2/3

(Sec. III B 2, in particular Eq. (11) and Fig. 5), allowing the
cascade model to be used for modeling higher Re conditions
not accessible to numerical simulation.

For dissipation, the “β ∼ 3” asymptotic behavior of Sreeni-
vasan and Stolovitzky [31] in high Re atmospheric flows
probably appears at around r ∼ L/30 or L/40, and remains
constant to smaller scales, at least to r ∼ 20–30η, where the
dissipation range begins. In the present simulation, the integral
scale and the dissipation range are not separated far enough
for the dissipation βε to reach such low values, and instead
it asymptotes for scales below r ∼ 20η to a value of βε ∼ 8.
Enstrophy, believed to be always more intermittent (smaller β)
than dissipation, asymptotes in the DNS to a value of βE ∼ 3.
In light of the connection between vorticity and the accelera-
tion, centrifuging, and concentrating of particles, it may not be
surprising that this value coincides with the minimum β value
for particle concentration multipliers at the optimal Str .

Given that dissipation, and presumably enstrophy, have
not reached their scale-independent, asymptotic values seen
in very high Re atmospheric flows, it could be expected
that our collapsed particle multiplier β(Str ) curve is also Re
dependent. Analyses of this sort for DNS of particle-laden
flows at significantly higher Reynolds number are therefore
highly desirable, as are measurements of enstrophy multipliers
in very high Reynolds number flows such as atmospheric flows.

We have also found that the cascade model can be used to
construct a spatial distribution of particle concentration, that
can be carried to arbitrarily high Reynolds numbers, and has a
very good resemblance to the analytical theory of Zaichik
and Alipchenkov [2]. More work is needed to assess the
asymptotic level of maximum concentration for particles of
any size (which we find, as did Zaichik and Alipchenkov [2],
is size invariant, in the infinite Re limit).
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APPENDIX: THREE METHODS FOR COMPUTING THE
SPATIAL DISTRIBUTION OF CONCENTRATIONS

We here provide more details about the three methods
for computing spatial concentration fields from multiplier
distributions that we used in Sec. IV C for computing radial
distribution functions.

Let us consider a cube of size r/L = 2−N/3 (cascade level
N ) having a concentration C(N), initially we start with a
cascade level 0 cube having a unit concentration C(0) = 1, and
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divide it in half along each spatial direction. This results in
eight subcubes with half the linear size, which correspond to a
cascade level of N + 3 [Eq. (1)]. We denote the concentrations
in these subcubes as C

(N+3)
ijk , where i,j,k ∈ [1,2] are indices

denoting the left (1) or right (2) subcube in the three spatial
directions. Since there are eight unknowns, we need eight
equations to uniquely determine the concentrations.

The first method—method A—makes the following choice:
one constraint is given by the fact that the average of the
concentrations over all eight subcubes is equal to the mean
concentration, that is∑

i,j,k

1

8
C

(N+3)
ijk = C(N). (A1)

We get seven more constraints by relating the concentration
of neighboring subcubes to multipliers that are chosen ran-
domly from the cascade model. A possible choice are the
combinations(

C
(N+3)
111 + C

(N+3)
211

)
m

(N+3)
1 = C

(N+3)
111 ,(

C
(N+3)
112 + C

(N+3)
212

)
m

(N+3)
3 = C

(N+3)
112 ,(

C
(N+3)
111 + C

(N+3)
121

)
m

(N+3)
5 = C

(N+3)
111 ,(

C
(N+3)
112 + C

(N+3)
122

)
m

(N+3)
7 = C

(N+3)
112 , (A2)(

C
(N+3)
121 + C

(N+3)
221

)
m

(N+3)
2 = C

(N+3)
221 ,(

C
(N+3)
122 + C

(N+3)
222

)
m

(N+3)
4 = C

(N+3)
122 ,(

C
(N+3)
121 + C

(N+3)
112

)
m

(N+3)
6 = C

(N+3)
121 ,

where m
(N+3)
i with i ∈ [1,...,7] are seven random multiplier

values at cascade level N + 3. Equations (A1) and (A2) are
linearly independent and can be solved directly. Applying this
procedure recursively to ever smaller cubes until some small
cutoff length scale (r/L)min yields one statistical realization of
the concentration field.

The two other methods are obtained by relating the concen-
trations in the two half-cubes, for each direction separately,
through a random multiplier, that is∑

j,k

C
(N+3)
1ik = 2CNm

(N+1)
1 ,

∑
i,k

C
(N+3)
i1k = 2CNm

(N+1)
2 , (A3)

∑
i,j

C
(N+3)
ij1 = 2CNm

(N+1)
3 ,

where m
(N+1)
i with i ∈ [1,...,3] are multipliers randomly

drawn from the level N + 1 cascade model. Since these are
only three equations, the linear system is underdetermined.

For method B we choose one particular solution to Eq. (A3),
namely
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)(
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)
,

C
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CN
= (
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1
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,
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. (A4)

There is an ambiguity, of course, as to whether multiplier
m

(N+1)
i is applied to the “left” or “right” half of each box,

but since the multipliers m
(N+1)
i and (1 − m

(N+1)
i ) have equal

probability, either choice would be paired with the opposite
given enough random samples (and we do average many ran-
dom samples to construct each cascade). The eight subcubes
from each large box have the identical concentrations, just
differently distributed, for each set of m

(N+1)
i ,i ∈ [1,...,3],

whether m
(N+1)
i goes to the left or right box in each case.

For the third and final method, method C, we use a
least-square solver to determine the minimum-norm solution
of Eq. (A3), that is the solution that is closest to equally
distributed concentrations. Clearly, this causes a bias towards
the least intermittent spatial distribution. For strongly inter-
mittent multipliers, this method can even lead to negative
concentrations in one of the subcubes. Such solutions have to
be discarded, and this further biases method C toward minimal
intermittency.
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