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Reorientations of the large-scale flow in turbulent convection in a cube
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Large-eddy simulations of turbulent Rayleigh-Bénard convection were conducted for a fluid of Prandtl number
Pr = 0.7 confined in a cube, for Rayleigh numbers of 106 and 108. The model solves the unsteady Navier-Stokes
equations under the Boussinesq approximation, using a dynamic Smagorinsky model with a Lagrangian averaging
technique for the subgrid terms. Under fully developed conditions the flow topology is characterized by a
large-scale circulation (LSC) developing in a plane containing one of the diagonals of the cell, while two
counter-rotating vortices consequently develop in the other diagonal plane, resulting in a strong inflow at the
horizontal midplane. This flow structure is not static, with the LSC undergoing nonperiodic reorientations, or
switching, between the two diagonal planes; hence, we supplement the observations of the three-dimensional
time-averaged flow structures with single point measurements (time series) to shed light on the dynamics of
the reorientations. For all observations, this switching results from a lateral rotation of the LSC in which
some finite time spent in a transient state where the large-scale circulation is parallel to one set of side walls;
there are, importantly, no observations consistent with so-called cessations of the LSC, in which it decays
and then reforms in another plane without such a rotation. The average switching rate for the LSC is in
excellent agreement with the results of Bai et al. [K. Bai, D. Ji, and E. Brown, Phys. Rev. E 93, 023117
(2016)].

DOI: 10.1103/PhysRevE.95.033107

I. INTRODUCTION

Rayleigh-Bénard convection (RBC) is a simplified system
with well-defined boundary conditions for studying the prop-
erties of thermal convection. Under conditions of turbulence,
far from equilibrium, it provides a useful reference system,
reproducing the essential physics, for flows present in more
complex environments in nature and engineering applications.
RBC consists of a fluid confined in a shallow layer heated
from below and cooled from above. The system has been the
subject of extensive theoretical, experimental, and numerical
studies in recent years (for reviews, see Refs. [1–9]) but many
facets of this flow are only partially understood, at least in fully
developed turbulent flows.

Thermal convection occurs in response to the unstable
density differences induced by an imposed temperature gra-
dient, represented by a nondimensional Rayleigh number,
Ra = αg�T H 3/νκ , where α is the isobaric thermal expansion
coefficient, g the acceleration of gravity, �T the temperature
difference maintained across the fluid layer of height H , and
ν and κ are respectively the kinematic viscosity and thermal
diffusivity of the fluid. Ra is the principal control parameter
for free convection flows. With increasing Ra, the laminar
structures characteristic of the primary convection onset give
way to the emission of plumes from increasingly thinner
boundary layers at the heated horizontal surfaces. In confined
cells at least, these thermal plumes cluster to form a coherent
structure known as the large-scale circulation (LSC), or mean
wind [3,10–12], with upwelling and downwelling flow on
opposite sides of the container. The geometrical shape of the
container, in addition to the aspect ratio between characteristic
horizontal and vertical lengths, has a nonintuitive influence on
statistical features of the turbulent flow, such as the scaling of

the root-mean-square (rms) fluctuations in the cell center (see,
for example, Refs. [13,14]). It should not be surprising that
the orientational properties of the LSC are also affected by the
container shape. Most experiments and numerical simulations
have been carried out in a cylindrical geometry of aspect
ratio (e.g., of diameter to height for a cylinder) unity which
has a quasi-two-dimensional (2D) single-roll structure with
a finite width of approximately half the cell diameter [15].
A number of works have addressed the dynamics of LSC;
for example, experimental work by Niemela et al. [10] and
subsequent analysis by Sreenivasan et al. [3] demonstrated the
switching of the direction of the LSC at a single point, but
could not distinguish between azimuthal rotations of the flow
and cessations in which the LSC slows to a stop and restarts
in a new orientation without undergoing a rotation. In a later
experiment, Brown et al. [5] studied the orientational motion of
the wind using multiple temperature probes and showed that
both cessation and azimuthal rotation exist, with the former
being less frequent. Stringano and Verzicco [16] simulated
convection in air in a cylinder of aspect ratio 1/2 and observed
a single roll breaking into two counter-rotating rolls stack
vertically. Breuer and Hansen [17] studied RBC for infinite
Prandtl number, Pr, in a 2D numerical model in a box and
observed reversals of the LSC for Rayleigh number Ra = 108.
Further work by the same group provided a more detailed
statistical analysis of the reversal mechanism [18]. There are
other 2D numerical studies in a box that report the reversals
of the LSC to be due to cessations [19] or due to the chaotic
movement of rolls perpendicular to the roll axis [20]. Sugiyama
et al. [21] performed both experiments and simulations for
the width-to-height aspect ratio � = 0.85 in a (quasi-)2D
rectangular geometry and found that the corner-flow rolls
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play a crucial role in reversing the wind direction (see also
Ref. [3]); recent experiments by Ni et al. [22] found that the
main damping force of the LSC in a quasi-2D system is from
the corner rolls rather than the viscous drag from the side walls.
In a three-dimensional (3D) cubic box, there are few studies
on the orientations of the LSC plane. This geometry does not
have the azimuthal symmetry of cylindrical containers and the
LSC is found in one or the other diagonals [1,13] although as
we show below it may undergo reorientations between the two
diagonal planes. The intermediate states are transient and the
flow is never found to be stable over appreciable times in any
nondiagonal orientation. In general, the stability of the LSC
in cubic enclosures remains an open area of investigation for
such turbulent flows [23], p. 93].

In this paper we use wall-resolving large-eddy simulation
(LES) to investigate the problem. In LES the large-scale
motions in the flow are solved directly, whereas the effects
of the small-scale motions are parametrized. Wall resolving
means that we directly resolve the momentum and thermal
boundary layers as in direct numerical simulation (DNS). This
class of simulation is also defined as quasi-DNS [24] and
its computational cost scales like 2.5 power of the Reynolds
number, Re, less steeply than that of a DNS (∝Re3.5) which
attempts to resolve all scales present in the turbulent flow.
Hence, LES requires less computational power than DNS
and is suited for the long-time simulations reported in this
paper. The specific LES code has been used in recent years
for a number of challenging physical problems, among others,
in transitional flows (see Ref. [25]) and in stratified flows
(see Refs. [26,27]). Here, in order to be even closer to DNS
than in our previous work [14], we increased the number of
cells by a factor of 6 and in addition have run significantly
longer simulations, aimed at the analysis of switching already
suggested by our previous observations but not reported there
prior to a more systematic investigation.

Though numerical simulations are limited both in attainable
Ra and in duration of observations with respect to experiments,
i.e., in number of LSC turnover times, the advantages are that
full spatial information is available. In other words, there is a
trade-off between dynamics and structure.

The goal of the present work is to gain a better un-
derstanding of the 3D flow structure in a cubic geometry
through simulations and to simultaneously use numerical
experiments to shed light on the reorientation dynamics of
the LSC, acknowledging that the sampling is limited with
respect to experiments in general. Combining the two provides
a fuller picture of the specific turbulent regime present in
square cross-sectional geometries (including cubes). We first
introduce the numerical scheme and boundary conditions in
Sec. II. In Sec. III we present the numerical results for the
stable and transient flow configurations in a cube, as well as
the reorientation dynamics of the LSC. Finally, we summarize
our findings in Sec. IV.

II. FORMULATION OF THE PROBLEM

A. Numerical method

Large-eddy simulations of the Boussinesq form of the
Navier-Stokes equations for incompressible flow were per-
formed using a second-order nonstaggered finite difference

scheme. Variables are filtered through application of a low-pass
filter whose width is proportional to the cell size, Δ̄ =
(ΔxΔyΔz)1/3. The filtered governing equations can be written
as follows:
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Here, the overbar represents the filtering operation, ui is the
velocity component in the i direction (namely u, v, and w), xi

is the spatial coordinate in the i direction with x2 as the vertical
(upward) direction, P is the pressure field, t is time, and δij is
the Kronecker symbol. τij and λj are the subgrid-scale (SGS)
stress tensor and the SGS heat flux, respectively. We assume
that the density is a linear function of the temperature as ρ =
ρ0[1 − α(T − T0)], where ρ0 is the density at the reference
temperature T0.

B. The subgrid-scale models

Filtered equations (1)–(3), in space, lead to unknown SGS
terms which represent the effect of the subgrid scales on the
large-scale eddies and must be parametrized so as to resolve the
large-scale motion. The SGS stresses appearing in the filtered
Navier-Stokes equations are responsible for the occurrence of
energy between the large-scale and the subgrid-scale eddies.
The numerical solution of the governing equations largely
follows the approach described by Meneveau et al. [28] and
Armenio and Sarkar [26], so we provide only a brief summary
here.

We use the Lagrangian dynamic eddy-viscosity model [28]
to parametrize the SGS stress tensor,

τij = uiuj − uiuj = −2CΔ
2|S|Sij , (4)

where Sij = 1
2 ( ∂ūi

∂xj
+ ∂ūj

∂xi
) is the strain rate tensor. The same

procedure is employed to resolve SGS heat flux by Armenio
and Sarkar [26]:

λj = ujρ − ujρ = −CρΔ
2|S| ∂ρ̄

∂xj

. (5)

Here C and Cρ are the Smagorinsky coefficients evaluated
through a procedure introduced by Germano et al. [29]. The
procedure involves the introduction of an additional test filter
denoted by Δ̂ = 2Δ̄. The model coefficient, C, in the SGS
stress model is given by

C = 〈MijLij 〉A
〈MmnMmn〉A , (6)

where in this case averaging is over the Lagrangian trajectories
of the fluid particles, denoted by 〈· · · 〉A and

Lij = ûiuj − ûi ûj ,

Mij = 2
̂

Δ
2|S|Sij − 2Δ̂

2 |̂S |̂Sij .

033107-2



REORIENTATIONS OF THE LARGE-SCALE FLOW IN . . . PHYSICAL REVIEW E 95, 033107 (2017)

FIG. 1. Schematic of an arbitrary horizontal plane showing the
azimuthal positions for probes, placed at azimuthal angles φi =
(iπ/4) (i = 0, . . . ,7). The distance from the vertical walls is 0.1H

for all cases. Probe positions P6 and P4 are shown in blue (grey in
print) to help illustrate the positions for corresponding data shown
below in Fig. 8.

The model coefficient, Cρ , in the SGS heat flux model is
given by

Cρ = 〈IiMi〉A
〈MkMk〉A , (7)

where

Ii = ̂̄ρūi − ̂̄ρ ̂̄ui, Mi = 2
̂

Δ
2|S| ∂ρ̄

∂xi

− 2Δ̂
2 |̂S |̂Sij

∂ρ̂

∂xi

.

The governing equations together with the density equation
are solved using the semi-implicit, fractional-step algorithm
developed by Zang et al. [30]. In our study, the Adams-
Bashforth technique is used for the time advancement of the
convective terms, whereas the diffusive terms are treated im-
plicitly with the Crank-Nicolson scheme. The space derivatives
are discretized with the second-order centered scheme; thus,
the algorithm is overall second-order accurate in both time
and space. The Poisson equation is solved using a multigrid
method [31,32].

C. Computational domain and boundary conditions

In our study, the variables are made nondimensional by the
height of the cube, H , as the length scale, free-fall velocity
Uf = √

αg�T H as the velocity scale, and �ρ = ρt − ρb as
the density scale, where the subscripts t and b refer to the
top and bottom boundaries, respectively. Similar to some of
the earlier experiments [5,33–35], we placed eight equally
spaced probes around the azimuth at different heights into the

numerical Rayleigh-Bénard sample. The probes are located
at φi = iπ/4 (i = 0, . . . ,7) and vertical heights y = 0.25H ,
0.5H , and 0.75H . All probes are spaced 0.1H from the vertical
walls. A schematic diagram of the probes in any horizontal
plane is depicted in Fig. 1. Note that the eddy turnover time can
be defined as Teddy = 2H/vrms [35], where vrms is time average
of the eight probes at midheight, vrms = (1/8)

∑8
i=1(vi

rms), with
vi

rms(x) = [〈v(x)v(x)〉t − 〈v(x)〉t 〈v(x)〉t ]1/2. Values of Teddy for
different Ra are listed in Table I. In this work, we also note
that the LSC orientation can be determined with more precision
from the vertical velocity profile than azimuthal temperature
profile as pointed out by Stevens et al. [33].

Besides Ra, other control parameters are the Prandtl num-
ber, Pr = ν/κ , and the characteristic width-to-height aspect
ratio �. For confined convection, � does not sufficiently
describe the geometry, since the geometrical shape of the
container also plays a crucial role in the space-time evolution
of the convective flow [13,14].

Since we solve the turbulent field down to the wall, no-slip
conditions are used at all walls for the velocity; for the
thermal field, adiabatic conditions are used at the vertical
walls (∂ρ/∂n = 0, where n is the normal vector on surface)
and isothermal conditions on the horizontal plates; the density
difference �ρ/ρ0 = 1. The Prandtl number is set to Pr = 0.7
and we consider Ra = 106 and Ra = 108. The grid cells are
clustered near all six walls to solve properly the momentum
and thermal boundary layers (λu,λθ ). We estimate the mean
thickness of the thermal boundary layer by λ̄θ = H/(2Nu),
where the Nusselt number (Nu) represents the dimensionless
heat transfer [14], and ensure the number of grid points inside
the thermal boundary layer (NBL) to be greater than 3–5
(see Refs. [36,37] for a discussion). These grid points (NBL)
were chosen differently for different Ra to satisfy the above
condition (see Table I).

We calculate the Nusselt number at the wall using Eq. (8),
which is accurate at the second order (the error decreases with
�y2). This is also consistent with the way the derivatives are
calculated at the wall in the numerical method we use for
the space-time integration of the Navier-Stokes equations. We
note that the expression here is written for the bottom wall; a
similar one also can be used for the top wall by symmetry. In
practice we calculate Nusselt number at both walls and take
the average:

Nub(x,z) = H

�ρ

(−8ρ0 + 9ρ1 − ρ2

3(�y1)

)
. (8)

Nusselt numbers obtained using Eq. (8) are shown in Table I.
Note that we calculated the Nusselt number over 60 short time

TABLE I. Simulation parameters for Pr = 0.7, � = 1. Nx , Ny , and Nz are the number of grid points along x, y, and z directions; �y
min,

�y
max, �x

min, and �x
max are, respectively, the minimum and maximum grid spacing in the vertical y and horizontal x directions; NBL is the

number of grid points for solving the thermal boundary layer in conformity with Shishkina et al. [36] (actual resolution or requirement); the
mean Nusselt number Nu represents the dimensionless heat transfer calculated over the top and bottom horizontal plane near the boundary;
and Teddy = 2H/vrms is the eddy-turnover time of the large-scale flow for different Ra.

Ra Nx × Ny × Nz �y
min/H �y

max/H �x
min/H �x

min/H NBL Nu Teddy

106 64 × 96 × 64 1.7 × 10−3 1.6 × 10−2 1.5 × 10−3 2.9 × 10−2 12/2.8 8.1 12
108 64 × 96 × 64 7.4 × 10−4 2.2 × 10−2 1.3 × 10−3 3.2 × 10−2 6/5.5 31.6 7
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FIG. 2. Instantaneous normalized density isosurfaces for (a)
Ra = 106, (b) Ra = 108. Pr = 0.7, � = 1 with 64 × 96 × 64 grids.

records of 350Teddy, each one, however, being of the same order
as the total time used in the DNS study of Ref. [9]. For the main
work presented here at Ra = 108, we obtain Nu = 31.6 ± 0.2,
which includes values from DNS [9] within the error.

We use a hyperbolic tangent function to create stretch-
ing [38] in all directions. The minimum and maximum grid
spacings in the vertical (�y

min/H , �
y
max/H ) and horizontal

directions (�x
min/H , �x

max/H ) are listed in Table I. We started
our simulations from an interpolated turbulent field obtained
from our prior work [14] with the grid of size 64 × 96 × 64 ≈
4 × 105. Note that these grid criteria are less restrictive than
those used in DNS [39]. We let the simulation run for a certain
number of eddy turnover times (say, ten) to make sure that
we reached a statistically steady state, and from there we ran
for another 1200Teddy or so for accumulating statistics. This
way, any dependence on initial conditions is lost. Indeed, the
aim of this paper is to provide accurate characterization of the
temporal evolution of the LSC structures over long periods
of time. It should be stressed that, since the time interval
over which the LSC is stable along any one diagonal at a
given Ra is not constant, some care has to be taken during
analysis of the observations. Throughout the paper (except for
the Nu analysis), fields are averaged over finite time intervals
in which reorientations are not observed to occur, unless stated
otherwise.

The normalized instantaneous density isosurfaces obtained
for two different Ra are shown in Fig. 2. This is qualitatively
very similar to results from the DNS study of Ref. [40]. Indeed,
the small plumes are clearly visible in Fig. 2(b), indicating that
these important structures are resolved by our grid resolution.
Further information on how the increase of Ra affects the size
of flow structures is presented. It is clear that, even though the
mean flow is similar in both cases, the regions of upflow on
the left and the downflow on the right, as well as the size of
the flow structures, decrease rapidly with increasing Ra.

III. RESULTS AND DISCUSSION

A. Flow topology

The 3D perspective of the flow observed in the cubic
enclosure is shown in Fig. 3, which plots streamlines averaged
over a finite time in which the orientation of the LSC is known
to be stable. The color contour denotes the magnitude of
the time-averaged vertical velocity 〈v〉. (Here 〈· · · 〉 denotes
a time average of the quantity within the brackets.) The
streamlines clearly show that the principal flow features are the

FIG. 3. Time-averaged velocity streamlines at Ra = 108, Pr =
0.7, and � = 1. The LSC is oriented along one of the diagonal
directions as illustrated by the large arrow. The color coding (grey-
scale in print) depicts the magnitude of the time-averaged vertical
velocity normalized by the free-fall velocity 〈v〉/Uf .

LSC oriented along one of the vertical diagonal planes, and
two counter-rotating vortices in the opposite plane, flowing
inwards from the cell corner toward the cell interior and
converging at the midheight position. We note that another
feature of Fig. 3 is that the maximum amplitude of velocity,
as a fraction of the free-fall velocity Uf , at Ra = 108 is
roughly 0.25 at the midheight, in good agreement with Niemela
et al. [10] in cylindrical containers. Similar features have been
observed for Ra = 106 (see also Fig. 9).

In Fig. 4 we present a horizontal slice of the cube near
the top boundary. The dark spot appearing in one or the other
of the four corners is the impingement of the upward jet of
plumes, comprising the LSC, on the top solid boundary before
spreading out across the horizontal plane. Comparing the four
panels in Figs. 4(a)–4(d) makes it clear that, even when the
convection is statistically stationary, the LSC does not remain
in the same orientation at all times; when it switches, the
counter-rotating cells also change planes as a simple symmetry
argument would suggest. Altogether, there can thus be four
distinct stable flow states in principle, given the possibility of
two different flow directions of the LSC stable in either of the
two diagonal planes.

Whereas the LSC can change direction, sometime flowing
down at a particular location along the vertical wall and
sometimes flowing up at the same location, the counter-
rotating cells have a fixed direction due to their origin from
the spreading out of the LSC at the horizontal boundaries.
That is, the flow is always downwards from the top and
upwards from the bottom, along the sidewall, and therefore
also always inwards toward the cell center, at the midheight
where the two oppositely directed counter-rotating vortices
converge (discussed further below).

Major reorientations of the LSC from one diagonal plane
to the other occur nonperiodically in time; furthermore, the
time over which the flow structure remains stable in any given
diagonal orientation is not constant. For instance, for Ra =
108, the 3D structure of the flow field depicted in Fig. 4(a) is
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FIG. 4. Time-averaged velocity streamlines in a horizontal plane near the top boundary of the cube for Ra = 108, Pr = 0.7, and � = 1.
The color coding (grey-scale in print) depicts the magnitude of the time-averaged vertical velocity normalized by the free-fall velocity 〈v〉/Uf .
(a)–(d) Different instances in time, illustrating that the LSC does not remain fixed in its orientation.

the time-averaged result over 70Teddy, whereas the flow pattern
shown in Fig. 4(b) is the time-averaged result of over 97Teddy.

In Fig. 5 we show the 3D perspective of the transition
state of the global flow structure during a reorientation of
the LSC from one stable diagonal plane to the other. Indeed,
this transient state is always observed during reorientations
and corresponds to a reorientation due to rotation of the
LSC laterally rather than from cessations and restarting, for

FIG. 5. Transient state during a reorientation of the LSC. Time-
averaged velocity streamlines are shown for Ra = 108, Pr = 0.7, and
� = 1. The color coding (grey-scale in print) depicts the magnitude
of the time-averaged vertical velocity normalized by the free-fall
velocity 〈v〉/Uf . The large arrow shows the direction of the LSC.

instance. We cannot rule out of course that the latter process
would not be observed in a longer time record and/or with
higher resolution. In the case shown the vertical velocity was
averaged over about 25Teddy. To more clearly illustrate the
global structure we show in Figs. 6(a)–6(c) three plane views
of the transient flow. Rather than impinging at a spot, the
contact of the LSC with the top and bottom boundaries occurs
along an extended line. Hence, when the warm or cold fluid
impinges the top or bottom plate [see Fig. 6(a)], two small
back-eddies are formed in the adjacent corners rather than just
one for the stable diagonal flow [see Fig. 6(b)]. Figure 6(c)
shows the vortex structure induced in the vertical plane (zy)
perpendicular to the LSC.

To better understand the stable flow structures occurring in
a cubic geometry we refer to Fig. 7, where the arrows represent
the time-averaged velocity vectors and the color contour shows
the magnitude of the horizontal velocity computed as

〈uh〉 =
√

〈u〉2 + 〈w〉2 (9)

in three different horizontal planes. Figures 7(a)–7(c) show,
respectively, the plane near the bottom plate (Y ≈ 0.02H ),
near the top plate (Y ≈ 0.98H ), and at the midheight (Y ≈
0.5H ). In all three panels of the figure the corners are assumed
to be labeled as A (lower right), B (lower left), C (upper left),
and D (upper right), though they are shown for clarity only in
the first panel. In Fig. 7(a), we see clearly that the large-scale
flow impinges at the bottom plate in a very localized spot
close to corner A and spreads horizontally outward with the
main flow extending to the opposite corner C while some
flow also moves towards the other two corners, B and D,
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FIG. 6. Separated views for horizontal and vertical planes of Fig. 5 showing time-averaged velocity streamlines at Ra = 108, Pr = 0.7, and
� = 1 in the transition mode. (a) Top panel, (b) vertical wall xy, and (c) vertical wall zy. The color coding (grey-scale in print) depicts the
magnitude of the time-averaged vertical velocity normalized by the free-fall velocity 〈v〉/Uf .

as well as “behind” the impingement spot towards corner A.
The latter gives rise to a back eddy. The mirror-symmetric
situation happens at the top surface [Fig. 7(b)] where the
impinging flow from the bottom occurs close to corner C,
flowing mainly towards A, while also flowing towards the
other three corners B, C, and D. This sets up another back
eddy at C and the two horizontal flows at the top and bottom
create the counter-rotating vortices in the opposite diagonal
plane, i.e., that connecting corners B and D.

An interesting observation is shown in Fig. 7(c), represent-
ing the horizontal velocity in the cell midplane. Here we can
see the horizontal inflow from corners B and D due to the
counter-rotating vortices; it is also clear from the color coding
that the vortices do not extend all the way to the center.

We should point out here that if we were to average over the
entire time record, in order to obtain the Reynolds-averaging
behavior, the resulting field would not be representative of the
actual flow topology but instead gives a symmetric eight-roll
pattern.

To obtain information on the dynamics of the reorientations
of the flow, we perform numerical “experiments” by placing
probes at fixed positions in the flow and examining the
time series of various flow variables, much as in a physical
experiment [41]. Referring to Fig. 1, probes 2 and 6 correspond
to one of the vertical diagonal planes and probes 4 and 8
correspond to the opposite vertical diagonal plane. The other
identifier refers to the horizontal plane, being above (u) or

below (d) the midplane (m), so that, e.g., location P6(u) refers
to probe 6 in the horizontal plane at Y = 0.75H , while P2(d)
refers to probe 2 at Y = 0.25H , and so on.

In Figs. 8(a)–8(d), we present time series of the normalized
vertical velocity for Ra = 108. Figure 8(a) shows signals
recorded from probes 4 and 8 at the midheight, i.e., probes
P4(m) and P8(m). Referring to Fig. 1, these are the probes in
the same vertical diagonal plane but on opposite sides of the
cell, φi + π . For the case when the LSC is in the same diagonal
plane, the probes should show equal magnitude but opposite
signs for the vertical velocity. We have isolated one of these
instances by drawing a box around the signal where it occurs,
at the normalized time of about t � 200.

The LSC is seen to be in the same plane at other times
in the series and it is clear that the duration of the LSC for
these instances is not constant. Focusing on the top panel
we see another signature that exhibits equal magnitude but
zero mean and high variance for the velocity observed at both
probes. This is precisely the signature we might expect in the
presence of counter-rotating cells. Whereas the time average
of the vertical velocity at the midplane, where the inflow
occurs, must be zero (velocity entirely horizontally inward),
the turbulent background ensures that the probe will sometimes
see a negative flow of the upper vortex and sometimes a
positive flow associated with the lower one giving rise to high
variance. Looking at the entire time series at the midplane,
then, we see an alternation between the vertical velocity

FIG. 7. 3D velocity vectors superimposed on the color-coded representation of the time-averaged, normalized time-averaged horizontal
velocity 〈uh〉/Uf =

√
〈u〉2 + 〈w〉2 at Ra = 108, Pr = 0.7, and � = 1: (a) horizontal plane near the bottom boundary at Y ≈ 0.02H , (b)

horizontal plane near the top boundary at Y ≈ 0.98H , and (c) horizontal plane at midheight at Y = 0.5H . In (a) we label the corners A–D for
clarity of the discussion (see text). This same labeling is implied in the other two plots.
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FIG. 8. Time series of vertical velocity for different “probe”
positions. Positions P4 and P6 are in blue (grey in print), corre-
sponding to the placement shown in Fig. 1. (a) Probes P4(m) and
P8(m) at midheight, (b) probes P6(m) and P2(m) at the midheight
at the opposite diagonal, (c) probes P6(d) and P2(d) at a distance of
one-quarter of the cell height from the bottom, and (d) probes P6(u)
and P2(u) at a distance of one-quarter of the cell height from the
top. The solid horizontal line shows the position of zero-velocity
magnitude and the boxed regimes highlight a particular part of
the simultaneous time series, illustrating the different flow regimes
occurring on opposite diagonals (LSC or counter-rotating vortices).
The dashed lines in (a) and (b) illustrate the mean values for each
probe. Ra = 108, Pr = 0.7, and � = 1. See text for nomenclature and
the interpretation of these signals.

measured at the two positions having opposite sign and
roughly equal magnitude, characteristic of the LSC, and zero
mean with high variance, characteristic of the counter-rotating
cells. The opposite situation is observed simultaneously,
of course, for the other set of probes, 6 and 2, in the
midplane.

Figure 8(b) plots the vertical velocity from probes P6(m)
and P2(m), situated in the opposite vertical diagonal plane
in which probes P4(m) and P8(m) reside. Looking at the
boxed region—covering precisely the same interval of time
as that drawn in Fig. 8(a)—we see the signature of the
counter-rotating cells. A quick glance at Fig. 8 shows that
whenever the LSC is in one diagonal the counter-rotating
vortices are in the other.

In Figs. 8(c) and 8(d), we also show the signals from
probes corresponding to one of the vertical diagonal planes
but situated in horizontal planes one-quarter of the cell height
above the bottom plate and below the top plate, instead of at the
midheight. It suffices to show only one set of probes: P6 and P2.

FIG. 9. Time-averaged vertical velocity normalized by free-fall
velocity at the midheight as a function of diagonal distance at Ra =
106 (�) and Ra = 108 (�), Pr = 0.7, and � = 1.

Figure 8(c) shows the time series obtained from probes placed
in the lower plane at Y = 0.25H , while Fig. 8(d) corresponds
to the upper horizontal plane at Y = 0.75H . Referring to the
boxed regions (covering the same time interval as before, i.e.,
when the vertical plane containing probes P2 and P6 contains
the counter-rotating vortices), we see that the flow is positive
and of equal magnitude on opposite sides of the cell in Fig. 8(c)
while the flow is negative and of equal magnitude in Fig. 8(d).
Referring to Fig. 3, this signal is clearly understood. However,
when the LSC is now in this same vertical diagonal plane,
only one probe shows the expected magnitude and sign of
the velocity while the other shows a signal with zero mean
and large variance. This seemingly confusing signal arises
simply because that probe is in the region of the back eddy
(see Fig. 3). This illustrates that some probe placements in
physical experiments can lead to signals that could be difficult
to interpret.

Figure 9 displays the profile of the time-averaged vertical
velocity at the midheight as a function of diagonal distance,
i.e., measured from one corner to the opposite corner along a
diagonal. The maximum velocity of LSC is roughly 0.25Uf

in the region close to the corner and is zero at the center of the
cell. Also note that, as Ra increases, the velocity peak shifts
closer to the corner. In other words, the LSC becomes more
squarish in shape, as was observed indirectly in the cylindrical,
aspect ratio unity experiment of Niemela et al. [42].

B. A measure of the LSC reorientations

Following the work of Brown, Ahlers, and others [8,43–47],
the orientation and strength of the LSC can be modeled by
fitting the function

Ti = T0 + δ cos(iπ/4 − φ) (i = 0, . . . ,7) (10)

to the temperatures recorded by the numerical probes at the
midheight and the azimuthal position φi = iπ/4. Here, δ is a
measure of the temperature amplitude of the LSC and φ is the
azimuthal orientation of the LSC at midheight. An example
of such a cosine fit (which we employ as an approximation
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FIG. 10. Vertical velocity profile measured by the sidewall probes
at the midplane for Ra = 108, Pr = 0.7, and � = 1. The solid black
line shows a cosine fit of Eq. (10) to our data. The fit yields the
orientation φ and an amplitude δ that describe the LSC.

for the square cross section) is shown in Fig. 10 with the
eight equally azimuthally spaced probes at the midheight for
Ra = 108 [45,46].

In order to gain a more complete understanding of the
reorientations, we compute at each time t the azimuthal Fourier
transform of the vertical velocities vi(t), where the subscript
refers to a given probe position, similar to the work of Cioni
et al. [34]. Thus, we obtain the phase φ and amplitude δ of
the dipolar mode. The first Fourier components A1 and B1 are
given by

δ(t) =
√

A2
1 + B2

1 , φ(t) = sgn(B1) arccos
A1

|δ| , (11)

where

A1(t) = 1

2

8∑
j=1

vi(t) cos φi, B1(t) = 1

2

8∑
j=1

vi(t) sin φi.

(12)

In Fig. 11, we plot the strength |δ| and the phase φ of the
first Fourier mode, which is a measure of the plane of the LSC.

In all the time series reported here, the change of LSC
orientation (i.e., �φ) is 45◦ � �φ � 135◦. Importantly, we
do not observe values of 180◦ corresponding to a reversal of
flow direction in the same plane. The amplitude δ fluctuates
around a mean value δ = 0.5Uf [see Fig. 11(a)]. As we saw
earlier in Fig. 8, the boxed region near t � 200 shows the
LSC plane align along one of diagonal axes where P8 shows
an upward flow direction (positive) and P4 shows downward
flow (negative). It is clear that the LSC orientation is 135◦ as
shown explicitly in the boxed region in Fig. 11(b).

Figure 12 shows a zoomed representation of a reorientation
of the LSC with �φ ≈ 90◦ near t � 370; note that δ does not
vanish during the transition.

Comparison of the average switching rate for the LSC yields
good agreement with the experimental results of Ref. [45].
Those authors quote a rate of 1.3 × 10−4 s−1 obtained for
a continuous run of 21.7 days in which 251 events were
observed. To compare with our results we need to normalize
time and in this case we use natural units of the LSC
turnover time which we define as the time for an advected
“particle” to move a distance of 2H . Those authors measure
the speed of the LSC by the ratio of the distance between
two vertically separated probes H/4 (where H = 0.203 m)
to the time of peak correlation between their signals, which
they measure as 16.6 ± 0.7 s. Therefore, the turnover time
for their experiments, using the above definition, is 133 s.
The switching rate observed by those authors is then 0.017 in
normalized units of inverse time. For our numerical simulation
we observe 20 events in 1250 normalized time units leading

FIG. 11. Time series of (a) the amplitude δ and (b) phase φ of the first Fourier mode of the vertical velocity used as an approximate measure
for the reorientation of the LSC, for Ra = 108, Pr = 0.7, and � = 1. The boxed region highlights one of the LSC orientations, φ � 135◦ near
t � 200, corresponding to the same region boxed in Fig. 8. Nonperiodic switching of the LSC orientations between the corners is observed
where �φ < 180◦.
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FIG. 12. Zoom of a switching event occurring near t � 370. (a)
Throughout this event δ is seen to remain nonzero and (b) �φ � 90◦

for Ra = 108, Pr = 0.7, and � = 1.

to a nondimensional switching rate of 0.016, in excellent
agreement.

IV. SUMMARY AND CONCLUSIONS

In summary, we have computed turbulent convective flows
confined within a cubic enclosure, using an LES scheme.
The complete flow topology is computed, characterized by a
LSC developing in one of the diagonal planes. Consequently,
two counter-rotating vortices develop in the other diagonal
plane, resulting in inflow at the horizontal midplane. This
flow structure is not fixed in time as the LSC undergoes
nonperiodic reorientations between the two diagonal planes.
No other orientations are observed except for a transient state
in which the LSC is oriented parallel to one set of sidewalls
as it rotates laterally to its new stable position. In this context
we do not observe any other switching scenario besides lateral
rotation, such as cessation and reformation. We point out that
long-time averaging, as in the Reynolds-averaging framework,
leads to a nonphysical flow structure. Monitoring the vertical
velocity at fixed points in the cell provides more insight on
the dynamics of the reorientations and on the interpretation of
signals corresponding to possible probe placement in physical
experiments. Finally we note that the average switching rate
of the LSC is in excellent agreement with the experimental
observations of Bai et al. [45].
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